// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #pragma once #include #include #include #include #include "rocksdb/compaction_filter.h" #include "rocksdb/env.h" #include "rocksdb/iterator.h" #include "rocksdb/merge_operator.h" #include "rocksdb/options.h" #include "rocksdb/slice.h" #include "rocksdb/table.h" #include "table/block_based_table_factory.h" #include "table/internal_iterator.h" #include "table/plain_table_factory.h" #include "util/mutexlock.h" #include "util/random.h" namespace rocksdb { class SequentialFile; class SequentialFileReader; namespace test { // Store in *dst a random string of length "len" and return a Slice that // references the generated data. extern Slice RandomString(Random* rnd, int len, std::string* dst); extern std::string RandomHumanReadableString(Random* rnd, int len); // Return a random key with the specified length that may contain interesting // characters (e.g. \x00, \xff, etc.). enum RandomKeyType : char { RANDOM, LARGEST, SMALLEST, MIDDLE }; extern std::string RandomKey(Random* rnd, int len, RandomKeyType type = RandomKeyType::RANDOM); // Store in *dst a string of length "len" that will compress to // "N*compressed_fraction" bytes and return a Slice that references // the generated data. extern Slice CompressibleString(Random* rnd, double compressed_fraction, int len, std::string* dst); // A wrapper that allows injection of errors. class ErrorEnv : public EnvWrapper { public: bool writable_file_error_; int num_writable_file_errors_; ErrorEnv() : EnvWrapper(Env::Default()), writable_file_error_(false), num_writable_file_errors_(0) { } virtual Status NewWritableFile(const std::string& fname, unique_ptr* result, const EnvOptions& soptions) override { result->reset(); if (writable_file_error_) { ++num_writable_file_errors_; return Status::IOError(fname, "fake error"); } return target()->NewWritableFile(fname, result, soptions); } }; // An internal comparator that just forward comparing results from the // user comparator in it. Can be used to test entities that have no dependency // on internal key structure but consumes InternalKeyComparator, like // BlockBasedTable. class PlainInternalKeyComparator : public InternalKeyComparator { public: explicit PlainInternalKeyComparator(const Comparator* c) : InternalKeyComparator(c) {} virtual ~PlainInternalKeyComparator() {} virtual int Compare(const Slice& a, const Slice& b) const override { return user_comparator()->Compare(a, b); } virtual void FindShortestSeparator(std::string* start, const Slice& limit) const override { user_comparator()->FindShortestSeparator(start, limit); } virtual void FindShortSuccessor(std::string* key) const override { user_comparator()->FindShortSuccessor(key); } }; // A test comparator which compare two strings in this way: // (1) first compare prefix of 8 bytes in alphabet order, // (2) if two strings share the same prefix, sort the other part of the string // in the reverse alphabet order. // This helps simulate the case of compounded key of [entity][timestamp] and // latest timestamp first. class SimpleSuffixReverseComparator : public Comparator { public: SimpleSuffixReverseComparator() {} virtual const char* Name() const override { return "SimpleSuffixReverseComparator"; } virtual int Compare(const Slice& a, const Slice& b) const override { Slice prefix_a = Slice(a.data(), 8); Slice prefix_b = Slice(b.data(), 8); int prefix_comp = prefix_a.compare(prefix_b); if (prefix_comp != 0) { return prefix_comp; } else { Slice suffix_a = Slice(a.data() + 8, a.size() - 8); Slice suffix_b = Slice(b.data() + 8, b.size() - 8); return -(suffix_a.compare(suffix_b)); } } virtual void FindShortestSeparator(std::string* start, const Slice& limit) const override {} virtual void FindShortSuccessor(std::string* key) const override {} }; // Returns a user key comparator that can be used for comparing two uint64_t // slices. Instead of comparing slices byte-wise, it compares all the 8 bytes // at once. Assumes same endian-ness is used though the database's lifetime. // Symantics of comparison would differ from Bytewise comparator in little // endian machines. extern const Comparator* Uint64Comparator(); // Iterator over a vector of keys/values class VectorIterator : public InternalIterator { public: explicit VectorIterator(const std::vector& keys) : keys_(keys), current_(keys.size()) { std::sort(keys_.begin(), keys_.end()); values_.resize(keys.size()); } VectorIterator(const std::vector& keys, const std::vector& values) : keys_(keys), values_(values), current_(keys.size()) { assert(keys_.size() == values_.size()); } virtual bool Valid() const override { return current_ < keys_.size(); } virtual void SeekToFirst() override { current_ = 0; } virtual void SeekToLast() override { current_ = keys_.size() - 1; } virtual void Seek(const Slice& target) override { current_ = std::lower_bound(keys_.begin(), keys_.end(), target.ToString()) - keys_.begin(); } virtual void SeekForPrev(const Slice& target) override { current_ = std::upper_bound(keys_.begin(), keys_.end(), target.ToString()) - keys_.begin(); if (!Valid()) { SeekToLast(); } else { Prev(); } } virtual void Next() override { current_++; } virtual void Prev() override { current_--; } virtual Slice key() const override { return Slice(keys_[current_]); } virtual Slice value() const override { return Slice(values_[current_]); } virtual Status status() const override { return Status::OK(); } private: std::vector keys_; std::vector values_; size_t current_; }; extern WritableFileWriter* GetWritableFileWriter(WritableFile* wf); extern RandomAccessFileReader* GetRandomAccessFileReader(RandomAccessFile* raf); extern SequentialFileReader* GetSequentialFileReader(SequentialFile* se); class StringSink: public WritableFile { public: std::string contents_; explicit StringSink(Slice* reader_contents = nullptr) : WritableFile(), contents_(""), reader_contents_(reader_contents), last_flush_(0) { if (reader_contents_ != nullptr) { *reader_contents_ = Slice(contents_.data(), 0); } } const std::string& contents() const { return contents_; } virtual Status Truncate(uint64_t size) override { contents_.resize(static_cast(size)); return Status::OK(); } virtual Status Close() override { return Status::OK(); } virtual Status Flush() override { if (reader_contents_ != nullptr) { assert(reader_contents_->size() <= last_flush_); size_t offset = last_flush_ - reader_contents_->size(); *reader_contents_ = Slice( contents_.data() + offset, contents_.size() - offset); last_flush_ = contents_.size(); } return Status::OK(); } virtual Status Sync() override { return Status::OK(); } virtual Status Append(const Slice& slice) override { contents_.append(slice.data(), slice.size()); return Status::OK(); } void Drop(size_t bytes) { if (reader_contents_ != nullptr) { contents_.resize(contents_.size() - bytes); *reader_contents_ = Slice( reader_contents_->data(), reader_contents_->size() - bytes); last_flush_ = contents_.size(); } } private: Slice* reader_contents_; size_t last_flush_; }; // A wrapper around a StringSink to give it a RandomRWFile interface class RandomRWStringSink : public RandomRWFile { public: explicit RandomRWStringSink(StringSink* ss) : ss_(ss) {} Status Write(uint64_t offset, const Slice& data) { if (offset + data.size() > ss_->contents_.size()) { ss_->contents_.resize(offset + data.size(), '\0'); } char* pos = const_cast(ss_->contents_.data() + offset); memcpy(pos, data.data(), data.size()); return Status::OK(); } Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const { *result = Slice(nullptr, 0); if (offset < ss_->contents_.size()) { size_t str_res_sz = std::min(ss_->contents_.size() - offset, n); *result = Slice(ss_->contents_.data() + offset, str_res_sz); } return Status::OK(); } Status Flush() { return Status::OK(); } Status Sync() { return Status::OK(); } Status Close() { return Status::OK(); } const std::string& contents() const { return ss_->contents(); } private: StringSink* ss_; }; // Like StringSink, this writes into a string. Unlink StringSink, it // has some initial content and overwrites it, just like a recycled // log file. class OverwritingStringSink : public WritableFile { public: explicit OverwritingStringSink(Slice* reader_contents) : WritableFile(), contents_(""), reader_contents_(reader_contents), last_flush_(0) {} const std::string& contents() const { return contents_; } virtual Status Truncate(uint64_t size) override { contents_.resize(static_cast(size)); return Status::OK(); } virtual Status Close() override { return Status::OK(); } virtual Status Flush() override { if (last_flush_ < contents_.size()) { assert(reader_contents_->size() >= contents_.size()); memcpy((char*)reader_contents_->data() + last_flush_, contents_.data() + last_flush_, contents_.size() - last_flush_); last_flush_ = contents_.size(); } return Status::OK(); } virtual Status Sync() override { return Status::OK(); } virtual Status Append(const Slice& slice) override { contents_.append(slice.data(), slice.size()); return Status::OK(); } void Drop(size_t bytes) { contents_.resize(contents_.size() - bytes); if (last_flush_ > contents_.size()) last_flush_ = contents_.size(); } private: std::string contents_; Slice* reader_contents_; size_t last_flush_; }; class StringSource: public RandomAccessFile { public: explicit StringSource(const Slice& contents, uint64_t uniq_id = 0, bool mmap = false) : contents_(contents.data(), contents.size()), uniq_id_(uniq_id), mmap_(mmap), total_reads_(0) {} virtual ~StringSource() { } uint64_t Size() const { return contents_.size(); } virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { total_reads_++; if (offset > contents_.size()) { return Status::InvalidArgument("invalid Read offset"); } if (offset + n > contents_.size()) { n = contents_.size() - static_cast(offset); } if (!mmap_) { memcpy(scratch, &contents_[static_cast(offset)], n); *result = Slice(scratch, n); } else { *result = Slice(&contents_[static_cast(offset)], n); } return Status::OK(); } virtual size_t GetUniqueId(char* id, size_t max_size) const override { if (max_size < 20) { return 0; } char* rid = id; rid = EncodeVarint64(rid, uniq_id_); rid = EncodeVarint64(rid, 0); return static_cast(rid-id); } int total_reads() const { return total_reads_; } void set_total_reads(int tr) { total_reads_ = tr; } private: std::string contents_; uint64_t uniq_id_; bool mmap_; mutable int total_reads_; }; class NullLogger : public Logger { public: using Logger::Logv; virtual void Logv(const char* format, va_list ap) override {} virtual size_t GetLogFileSize() const override { return 0; } }; // Corrupts key by changing the type extern void CorruptKeyType(InternalKey* ikey); extern std::string KeyStr(const std::string& user_key, const SequenceNumber& seq, const ValueType& t, bool corrupt = false); class SleepingBackgroundTask { public: SleepingBackgroundTask() : bg_cv_(&mutex_), should_sleep_(true), done_with_sleep_(false), sleeping_(false) {} bool IsSleeping() { MutexLock l(&mutex_); return sleeping_; } void DoSleep() { MutexLock l(&mutex_); sleeping_ = true; bg_cv_.SignalAll(); while (should_sleep_) { bg_cv_.Wait(); } sleeping_ = false; done_with_sleep_ = true; bg_cv_.SignalAll(); } void WaitUntilSleeping() { MutexLock l(&mutex_); while (!sleeping_ || !should_sleep_) { bg_cv_.Wait(); } } void WakeUp() { MutexLock l(&mutex_); should_sleep_ = false; bg_cv_.SignalAll(); } void WaitUntilDone() { MutexLock l(&mutex_); while (!done_with_sleep_) { bg_cv_.Wait(); } } bool WokenUp() { MutexLock l(&mutex_); return should_sleep_ == false; } void Reset() { MutexLock l(&mutex_); should_sleep_ = true; done_with_sleep_ = false; } static void DoSleepTask(void* arg) { reinterpret_cast(arg)->DoSleep(); } private: port::Mutex mutex_; port::CondVar bg_cv_; // Signalled when background work finishes bool should_sleep_; bool done_with_sleep_; bool sleeping_; }; // Filters merge operands and values that are equal to `num`. class FilterNumber : public CompactionFilter { public: explicit FilterNumber(uint64_t num) : num_(num) {} std::string last_merge_operand_key() { return last_merge_operand_key_; } bool Filter(int level, const rocksdb::Slice& key, const rocksdb::Slice& value, std::string* new_value, bool* value_changed) const override { if (value.size() == sizeof(uint64_t)) { return num_ == DecodeFixed64(value.data()); } return true; } bool FilterMergeOperand(int level, const rocksdb::Slice& key, const rocksdb::Slice& value) const override { last_merge_operand_key_ = key.ToString(); if (value.size() == sizeof(uint64_t)) { return num_ == DecodeFixed64(value.data()); } return true; } const char* Name() const override { return "FilterBadMergeOperand"; } private: mutable std::string last_merge_operand_key_; uint64_t num_; }; inline std::string EncodeInt(uint64_t x) { std::string result; PutFixed64(&result, x); return result; } class StringEnv : public EnvWrapper { public: class SeqStringSource : public SequentialFile { public: explicit SeqStringSource(const std::string& data) : data_(data), offset_(0) {} ~SeqStringSource() {} Status Read(size_t n, Slice* result, char* scratch) override { std::string output; if (offset_ < data_.size()) { n = std::min(data_.size() - offset_, n); memcpy(scratch, data_.data() + offset_, n); offset_ += n; *result = Slice(scratch, n); } else { return Status::InvalidArgument( "Attemp to read when it already reached eof."); } return Status::OK(); } Status Skip(uint64_t n) override { if (offset_ >= data_.size()) { return Status::InvalidArgument( "Attemp to read when it already reached eof."); } // TODO(yhchiang): Currently doesn't handle the overflow case. offset_ += n; return Status::OK(); } private: std::string data_; size_t offset_; }; class StringSink : public WritableFile { public: explicit StringSink(std::string* contents) : WritableFile(), contents_(contents) {} virtual Status Truncate(uint64_t size) override { contents_->resize(size); return Status::OK(); } virtual Status Close() override { return Status::OK(); } virtual Status Flush() override { return Status::OK(); } virtual Status Sync() override { return Status::OK(); } virtual Status Append(const Slice& slice) override { contents_->append(slice.data(), slice.size()); return Status::OK(); } private: std::string* contents_; }; explicit StringEnv(Env* t) : EnvWrapper(t) {} virtual ~StringEnv() {} const std::string& GetContent(const std::string& f) { return files_[f]; } const Status WriteToNewFile(const std::string& file_name, const std::string& content) { unique_ptr r; auto s = NewWritableFile(file_name, &r, EnvOptions()); if (!s.ok()) { return s; } r->Append(content); r->Flush(); r->Close(); assert(files_[file_name] == content); return Status::OK(); } // The following text is boilerplate that forwards all methods to target() Status NewSequentialFile(const std::string& f, unique_ptr* r, const EnvOptions& options) override { auto iter = files_.find(f); if (iter == files_.end()) { return Status::NotFound("The specified file does not exist", f); } r->reset(new SeqStringSource(iter->second)); return Status::OK(); } Status NewRandomAccessFile(const std::string& f, unique_ptr* r, const EnvOptions& options) override { return Status::NotSupported(); } Status NewWritableFile(const std::string& f, unique_ptr* r, const EnvOptions& options) override { auto iter = files_.find(f); if (iter != files_.end()) { return Status::IOError("The specified file already exists", f); } r->reset(new StringSink(&files_[f])); return Status::OK(); } virtual Status NewDirectory(const std::string& name, unique_ptr* result) override { return Status::NotSupported(); } Status FileExists(const std::string& f) override { if (files_.find(f) == files_.end()) { return Status::NotFound(); } return Status::OK(); } Status GetChildren(const std::string& dir, std::vector* r) override { return Status::NotSupported(); } Status DeleteFile(const std::string& f) override { files_.erase(f); return Status::OK(); } Status CreateDir(const std::string& d) override { return Status::NotSupported(); } Status CreateDirIfMissing(const std::string& d) override { return Status::NotSupported(); } Status DeleteDir(const std::string& d) override { return Status::NotSupported(); } Status GetFileSize(const std::string& f, uint64_t* s) override { auto iter = files_.find(f); if (iter == files_.end()) { return Status::NotFound("The specified file does not exist:", f); } *s = iter->second.size(); return Status::OK(); } Status GetFileModificationTime(const std::string& fname, uint64_t* file_mtime) override { return Status::NotSupported(); } Status RenameFile(const std::string& s, const std::string& t) override { return Status::NotSupported(); } Status LinkFile(const std::string& s, const std::string& t) override { return Status::NotSupported(); } Status LockFile(const std::string& f, FileLock** l) override { return Status::NotSupported(); } Status UnlockFile(FileLock* l) override { return Status::NotSupported(); } protected: std::unordered_map files_; }; // Randomly initialize the given DBOptions void RandomInitDBOptions(DBOptions* db_opt, Random* rnd); // Randomly initialize the given ColumnFamilyOptions // Note that the caller is responsible for releasing non-null // cf_opt->compaction_filter. void RandomInitCFOptions(ColumnFamilyOptions* cf_opt, Random* rnd); // A dummy merge operator which can change its name class ChanglingMergeOperator : public MergeOperator { public: explicit ChanglingMergeOperator(const std::string& name) : name_(name + "MergeOperator") {} ~ChanglingMergeOperator() {} void SetName(const std::string& name) { name_ = name; } virtual bool FullMergeV2(const MergeOperationInput& merge_in, MergeOperationOutput* merge_out) const override { return false; } virtual bool PartialMergeMulti(const Slice& key, const std::deque& operand_list, std::string* new_value, Logger* logger) const override { return false; } virtual const char* Name() const override { return name_.c_str(); } protected: std::string name_; }; // Returns a dummy merge operator with random name. MergeOperator* RandomMergeOperator(Random* rnd); // A dummy compaction filter which can change its name class ChanglingCompactionFilter : public CompactionFilter { public: explicit ChanglingCompactionFilter(const std::string& name) : name_(name + "CompactionFilter") {} ~ChanglingCompactionFilter() {} void SetName(const std::string& name) { name_ = name; } bool Filter(int level, const Slice& key, const Slice& existing_value, std::string* new_value, bool* value_changed) const override { return false; } const char* Name() const override { return name_.c_str(); } private: std::string name_; }; // Returns a dummy compaction filter with a random name. CompactionFilter* RandomCompactionFilter(Random* rnd); // A dummy compaction filter factory which can change its name class ChanglingCompactionFilterFactory : public CompactionFilterFactory { public: explicit ChanglingCompactionFilterFactory(const std::string& name) : name_(name + "CompactionFilterFactory") {} ~ChanglingCompactionFilterFactory() {} void SetName(const std::string& name) { name_ = name; } std::unique_ptr CreateCompactionFilter( const CompactionFilter::Context& context) override { return std::unique_ptr(); } // Returns a name that identifies this compaction filter factory. const char* Name() const override { return name_.c_str(); } protected: std::string name_; }; CompressionType RandomCompressionType(Random* rnd); void RandomCompressionTypeVector(const size_t count, std::vector* types, Random* rnd); CompactionFilterFactory* RandomCompactionFilterFactory(Random* rnd); const SliceTransform* RandomSliceTransform(Random* rnd, int pre_defined = -1); TableFactory* RandomTableFactory(Random* rnd, int pre_defined = -1); std::string RandomName(Random* rnd, const size_t len); Status DestroyDir(Env* env, const std::string& dir); } // namespace test } // namespace rocksdb