// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #pragma once #include #include #include #include #include "file/readahead_file_info.h" #include "monitoring/statistics_impl.h" #include "port/port.h" #include "rocksdb/env.h" #include "rocksdb/file_system.h" #include "rocksdb/options.h" #include "util/aligned_buffer.h" #include "util/autovector.h" #include "util/stop_watch.h" namespace ROCKSDB_NAMESPACE { #define DEFAULT_DECREMENT 8 * 1024 struct IOOptions; class RandomAccessFileReader; struct BufferInfo { AlignedBuffer buffer_; uint64_t offset_ = 0; // Below parameters are used in case of async read flow. // Length requested for in ReadAsync. size_t async_req_len_ = 0; // async_read_in_progress can be used as mutex. Callback can update the buffer // and its size but async_read_in_progress is only set by main thread. bool async_read_in_progress_ = false; // io_handle is allocated and used by underlying file system in case of // asynchronous reads. void* io_handle_ = nullptr; IOHandleDeleter del_fn_ = nullptr; // pos represents the index of this buffer in vector of BufferInfo. uint32_t pos_ = 0; }; enum class FilePrefetchBufferUsage { kTableOpenPrefetchTail, kUnknown, }; // FilePrefetchBuffer is a smart buffer to store and read data from a file. class FilePrefetchBuffer { public: // Constructor. // // All arguments are optional. // readahead_size : the initial readahead size. // max_readahead_size : the maximum readahead size. // If max_readahead_size > readahead_size, the readahead size will be // doubled on every IO until max_readahead_size is hit. // Typically this is set as a multiple of readahead_size. // max_readahead_size should be greater than equal to readahead_size. // enable : controls whether reading from the buffer is enabled. // If false, TryReadFromCache() always return false, and we only take stats // for the minimum offset if track_min_offset = true. // track_min_offset : Track the minimum offset ever read and collect stats on // it. Used for adaptable readahead of the file footer/metadata. // implicit_auto_readahead : Readahead is enabled implicitly by rocksdb after // doing sequential scans for two times. // // Automatic readhead is enabled for a file if readahead_size // and max_readahead_size are passed in. // A user can construct a FilePrefetchBuffer without any arguments, but use // `Prefetch` to load data into the buffer. FilePrefetchBuffer( size_t readahead_size = 0, size_t max_readahead_size = 0, bool enable = true, bool track_min_offset = false, bool implicit_auto_readahead = false, uint64_t num_file_reads = 0, uint64_t num_file_reads_for_auto_readahead = 0, FileSystem* fs = nullptr, SystemClock* clock = nullptr, Statistics* stats = nullptr, FilePrefetchBufferUsage usage = FilePrefetchBufferUsage::kUnknown) : curr_(0), readahead_size_(readahead_size), initial_auto_readahead_size_(readahead_size), max_readahead_size_(max_readahead_size), min_offset_read_(std::numeric_limits::max()), enable_(enable), track_min_offset_(track_min_offset), implicit_auto_readahead_(implicit_auto_readahead), prev_offset_(0), prev_len_(0), num_file_reads_for_auto_readahead_(num_file_reads_for_auto_readahead), num_file_reads_(num_file_reads), explicit_prefetch_submitted_(false), fs_(fs), clock_(clock), stats_(stats), usage_(usage) { assert((num_file_reads_ >= num_file_reads_for_auto_readahead_ + 1) || (num_file_reads_ == 0)); // If ReadOptions.async_io is enabled, data is asynchronously filled in // second buffer while curr_ is being consumed. If data is overlapping in // two buffers, data is copied to third buffer to return continuous buffer. bufs_.resize(3); for (uint32_t i = 0; i < 2; i++) { bufs_[i].pos_ = i; } } ~FilePrefetchBuffer() { // Abort any pending async read request before destroying the class object. if (fs_ != nullptr) { std::vector handles; for (uint32_t i = 0; i < 2; i++) { if (bufs_[i].async_read_in_progress_ && bufs_[i].io_handle_ != nullptr) { handles.emplace_back(bufs_[i].io_handle_); } } if (!handles.empty()) { StopWatch sw(clock_, stats_, ASYNC_PREFETCH_ABORT_MICROS); Status s = fs_->AbortIO(handles); assert(s.ok()); } } // Prefetch buffer bytes discarded. uint64_t bytes_discarded = 0; // Iterated over 2 buffers. for (int i = 0; i < 2; i++) { int first = i; int second = i ^ 1; if (DoesBufferContainData(first)) { // If last block was read completely from first and some bytes in // first buffer are still unconsumed. if (prev_offset_ >= bufs_[first].offset_ && prev_offset_ + prev_len_ < bufs_[first].offset_ + bufs_[first].buffer_.CurrentSize()) { bytes_discarded += bufs_[first].buffer_.CurrentSize() - (prev_offset_ + prev_len_ - bufs_[first].offset_); } // If data was in second buffer and some/whole block bytes were read // from second buffer. else if (prev_offset_ < bufs_[first].offset_ && !DoesBufferContainData(second)) { // If last block read was completely from different buffer, this // buffer is unconsumed. if (prev_offset_ + prev_len_ <= bufs_[first].offset_) { bytes_discarded += bufs_[first].buffer_.CurrentSize(); } // If last block read overlaps with this buffer and some data is // still unconsumed and previous buffer (second) is not cleared. else if (prev_offset_ + prev_len_ > bufs_[first].offset_ && bufs_[first].offset_ + bufs_[first].buffer_.CurrentSize() == bufs_[second].offset_) { bytes_discarded += bufs_[first].buffer_.CurrentSize() - (/*bytes read from this buffer=*/prev_len_ - (bufs_[first].offset_ - prev_offset_)); } } } } for (uint32_t i = 0; i < 2; i++) { // Release io_handle. DestroyAndClearIOHandle(i); } RecordInHistogram(stats_, PREFETCHED_BYTES_DISCARDED, bytes_discarded); } bool Enabled() const { return enable_; } // Load data into the buffer from a file. // opts : the IO options to use. // reader : the file reader. // offset : the file offset to start reading from. // n : the number of bytes to read. Status Prefetch(const IOOptions& opts, RandomAccessFileReader* reader, uint64_t offset, size_t n); // Request for reading the data from a file asynchronously. // If data already exists in the buffer, result will be updated. // reader : the file reader. // offset : the file offset to start reading from. // n : the number of bytes to read. // result : if data already exists in the buffer, result will // be updated with the data. // // If data already exist in the buffer, it will return Status::OK, otherwise // it will send asynchronous request and return Status::TryAgain. Status PrefetchAsync(const IOOptions& opts, RandomAccessFileReader* reader, uint64_t offset, size_t n, Slice* result); // Tries returning the data for a file read from this buffer if that data is // in the buffer. // It handles tracking the minimum read offset if track_min_offset = true. // It also does the exponential readahead when readahead_size is set as part // of the constructor. // // opts : the IO options to use. // reader : the file reader. // offset : the file offset. // n : the number of bytes. // result : output buffer to put the data into. // s : output status. // for_compaction : true if cache read is done for compaction read. bool TryReadFromCache(const IOOptions& opts, RandomAccessFileReader* reader, uint64_t offset, size_t n, Slice* result, Status* s, bool for_compaction = false); bool TryReadFromCacheAsync(const IOOptions& opts, RandomAccessFileReader* reader, uint64_t offset, size_t n, Slice* result, Status* status); // The minimum `offset` ever passed to TryReadFromCache(). This will nly be // tracked if track_min_offset = true. size_t min_offset_read() const { return min_offset_read_; } size_t GetPrefetchOffset() const { return bufs_[curr_].offset_; } // Called in case of implicit auto prefetching. void UpdateReadPattern(const uint64_t& offset, const size_t& len, bool decrease_readaheadsize) { if (decrease_readaheadsize) { // Since this block was eligible for prefetch but it was found in // cache, so check and decrease the readahead_size by 8KB (default) // if eligible. DecreaseReadAheadIfEligible(offset, len); } prev_offset_ = offset; prev_len_ = len; explicit_prefetch_submitted_ = false; } void GetReadaheadState(ReadaheadFileInfo::ReadaheadInfo* readahead_info) { readahead_info->readahead_size = readahead_size_; readahead_info->num_file_reads = num_file_reads_; } void DecreaseReadAheadIfEligible(uint64_t offset, size_t size, size_t value = DEFAULT_DECREMENT) { // Decrease the readahead_size if // - its enabled internally by RocksDB (implicit_auto_readahead_) and, // - readahead_size is greater than 0 and, // - this block would have called prefetch API if not found in cache for // which conditions are: // - few/no bytes are in buffer and, // - block is sequential with the previous read and, // - num_file_reads_ + 1 (including this read) > // num_file_reads_for_auto_readahead_ size_t curr_size = bufs_[curr_].async_read_in_progress_ ? bufs_[curr_].async_req_len_ : bufs_[curr_].buffer_.CurrentSize(); if (implicit_auto_readahead_ && readahead_size_ > 0) { if ((offset + size > bufs_[curr_].offset_ + curr_size) && IsBlockSequential(offset) && (num_file_reads_ + 1 > num_file_reads_for_auto_readahead_)) { readahead_size_ = std::max(initial_auto_readahead_size_, (readahead_size_ >= value ? readahead_size_ - value : 0)); } } } // Callback function passed to underlying FS in case of asynchronous reads. void PrefetchAsyncCallback(const FSReadRequest& req, void* cb_arg); private: // Calculates roundoff offset and length to be prefetched based on alignment // and data present in buffer_. It also allocates new buffer or refit tail if // required. void CalculateOffsetAndLen(size_t alignment, uint64_t offset, size_t roundup_len, uint32_t index, bool refit_tail, uint64_t& chunk_len); void AbortIOIfNeeded(uint64_t offset); void AbortAllIOs(); void UpdateBuffersIfNeeded(uint64_t offset); // It calls Poll API if any there is any pending asynchronous request. It then // checks if data is in any buffer. It clears the outdated data and swaps the // buffers if required. void PollAndUpdateBuffersIfNeeded(uint64_t offset); Status PrefetchAsyncInternal(const IOOptions& opts, RandomAccessFileReader* reader, uint64_t offset, size_t length, size_t readahead_size, bool& copy_to_third_buffer); Status Read(const IOOptions& opts, RandomAccessFileReader* reader, uint64_t read_len, uint64_t chunk_len, uint64_t rounddown_start, uint32_t index); Status ReadAsync(const IOOptions& opts, RandomAccessFileReader* reader, uint64_t read_len, uint64_t rounddown_start, uint32_t index); // Copy the data from src to third buffer. void CopyDataToBuffer(uint32_t src, uint64_t& offset, size_t& length); bool IsBlockSequential(const size_t& offset) { return (prev_len_ == 0 || (prev_offset_ + prev_len_ == offset)); } // Called in case of implicit auto prefetching. void ResetValues() { num_file_reads_ = 1; readahead_size_ = initial_auto_readahead_size_; } // Called in case of implicit auto prefetching. bool IsEligibleForPrefetch(uint64_t offset, size_t n) { // Prefetch only if this read is sequential otherwise reset readahead_size_ // to initial value. if (!IsBlockSequential(offset)) { UpdateReadPattern(offset, n, false /*decrease_readaheadsize*/); ResetValues(); return false; } num_file_reads_++; // Since async request was submitted in last call directly by calling // PrefetchAsync, it skips num_file_reads_ check as this call is to poll the // data submitted in previous call. if (explicit_prefetch_submitted_) { return true; } if (num_file_reads_ <= num_file_reads_for_auto_readahead_) { UpdateReadPattern(offset, n, false /*decrease_readaheadsize*/); return false; } return true; } // Helper functions. bool IsDataBlockInBuffer(uint64_t offset, size_t length, uint32_t index) { return (offset >= bufs_[index].offset_ && offset + length <= bufs_[index].offset_ + bufs_[index].buffer_.CurrentSize()); } bool IsOffsetInBuffer(uint64_t offset, uint32_t index) { return (offset >= bufs_[index].offset_ && offset < bufs_[index].offset_ + bufs_[index].buffer_.CurrentSize()); } bool DoesBufferContainData(uint32_t index) { return bufs_[index].buffer_.CurrentSize() > 0; } bool IsBufferOutdated(uint64_t offset, uint32_t index) { return ( !bufs_[index].async_read_in_progress_ && DoesBufferContainData(index) && offset >= bufs_[index].offset_ + bufs_[index].buffer_.CurrentSize()); } bool IsBufferOutdatedWithAsyncProgress(uint64_t offset, uint32_t index) { return (bufs_[index].async_read_in_progress_ && bufs_[index].io_handle_ != nullptr && offset >= bufs_[index].offset_ + bufs_[index].async_req_len_); } bool IsOffsetInBufferWithAsyncProgress(uint64_t offset, uint32_t index) { return (bufs_[index].async_read_in_progress_ && offset >= bufs_[index].offset_ && offset < bufs_[index].offset_ + bufs_[index].async_req_len_); } bool IsSecondBuffEligibleForPrefetching() { uint32_t second = curr_ ^ 1; if (bufs_[second].async_read_in_progress_) { return false; } assert(!bufs_[curr_].async_read_in_progress_); if (DoesBufferContainData(curr_) && DoesBufferContainData(second) && (bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize() == bufs_[second].offset_)) { return false; } bufs_[second].buffer_.Clear(); return true; } void DestroyAndClearIOHandle(uint32_t index) { if (bufs_[index].io_handle_ != nullptr && bufs_[index].del_fn_ != nullptr) { bufs_[index].del_fn_(bufs_[index].io_handle_); bufs_[index].io_handle_ = nullptr; bufs_[index].del_fn_ = nullptr; } bufs_[index].async_read_in_progress_ = false; } Status HandleOverlappingData(const IOOptions& opts, RandomAccessFileReader* reader, uint64_t offset, size_t length, size_t readahead_size, bool& copy_to_third_buffer, uint64_t& tmp_offset, size_t& tmp_length); bool TryReadFromCacheUntracked(const IOOptions& opts, RandomAccessFileReader* reader, uint64_t offset, size_t n, Slice* result, Status* s, bool for_compaction = false); bool TryReadFromCacheAsyncUntracked(const IOOptions& opts, RandomAccessFileReader* reader, uint64_t offset, size_t n, Slice* result, Status* status); std::vector bufs_; // curr_ represents the index for bufs_ indicating which buffer is being // consumed currently. uint32_t curr_; size_t readahead_size_; size_t initial_auto_readahead_size_; // FilePrefetchBuffer object won't be created from Iterator flow if // max_readahead_size_ = 0. size_t max_readahead_size_; // The minimum `offset` ever passed to TryReadFromCache(). size_t min_offset_read_; // if false, TryReadFromCache() always return false, and we only take stats // for track_min_offset_ if track_min_offset_ = true bool enable_; // If true, track minimum `offset` ever passed to TryReadFromCache(), which // can be fetched from min_offset_read(). bool track_min_offset_; // implicit_auto_readahead is enabled by rocksdb internally after 2 // sequential IOs. bool implicit_auto_readahead_; uint64_t prev_offset_; size_t prev_len_; // num_file_reads_ and num_file_reads_for_auto_readahead_ is only used when // implicit_auto_readahead_ is set. uint64_t num_file_reads_for_auto_readahead_; uint64_t num_file_reads_; // If explicit_prefetch_submitted_ is set then it indicates RocksDB called // PrefetchAsync to submit request. It needs to call TryReadFromCacheAsync to // poll the submitted request without checking if data is sequential and // num_file_reads_. bool explicit_prefetch_submitted_; FileSystem* fs_; SystemClock* clock_; Statistics* stats_; FilePrefetchBufferUsage usage_; }; } // namespace ROCKSDB_NAMESPACE