// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "table/format.h" #include #include #include #include "block_fetcher.h" #include "file/random_access_file_reader.h" #include "memory/memory_allocator_impl.h" #include "monitoring/perf_context_imp.h" #include "monitoring/statistics_impl.h" #include "options/options_helper.h" #include "port/likely.h" #include "rocksdb/env.h" #include "rocksdb/options.h" #include "rocksdb/table.h" #include "table/block_based/block.h" #include "table/block_based/block_based_table_reader.h" #include "table/persistent_cache_helper.h" #include "unique_id_impl.h" #include "util/cast_util.h" #include "util/coding.h" #include "util/compression.h" #include "util/crc32c.h" #include "util/hash.h" #include "util/stop_watch.h" #include "util/string_util.h" #include "util/xxhash.h" namespace ROCKSDB_NAMESPACE { extern const uint64_t kLegacyBlockBasedTableMagicNumber; extern const uint64_t kBlockBasedTableMagicNumber; extern const uint64_t kLegacyPlainTableMagicNumber; extern const uint64_t kPlainTableMagicNumber; const char* kHostnameForDbHostId = "__hostname__"; bool ShouldReportDetailedTime(Env* env, Statistics* stats) { return env != nullptr && stats != nullptr && stats->get_stats_level() > kExceptDetailedTimers; } void BlockHandle::EncodeTo(std::string* dst) const { // Sanity check that all fields have been set assert(offset_ != ~uint64_t{0}); assert(size_ != ~uint64_t{0}); PutVarint64Varint64(dst, offset_, size_); } char* BlockHandle::EncodeTo(char* dst) const { // Sanity check that all fields have been set assert(offset_ != ~uint64_t{0}); assert(size_ != ~uint64_t{0}); char* cur = EncodeVarint64(dst, offset_); cur = EncodeVarint64(cur, size_); return cur; } Status BlockHandle::DecodeFrom(Slice* input) { if (GetVarint64(input, &offset_) && GetVarint64(input, &size_)) { return Status::OK(); } else { // reset in case failure after partially decoding offset_ = 0; size_ = 0; return Status::Corruption("bad block handle"); } } Status BlockHandle::DecodeSizeFrom(uint64_t _offset, Slice* input) { if (GetVarint64(input, &size_)) { offset_ = _offset; return Status::OK(); } else { // reset in case failure after partially decoding offset_ = 0; size_ = 0; return Status::Corruption("bad block handle"); } } // Return a string that contains the copy of handle. std::string BlockHandle::ToString(bool hex) const { std::string handle_str; EncodeTo(&handle_str); if (hex) { return Slice(handle_str).ToString(true); } else { return handle_str; } } const BlockHandle BlockHandle::kNullBlockHandle(0, 0); void IndexValue::EncodeTo(std::string* dst, bool have_first_key, const BlockHandle* previous_handle) const { if (previous_handle) { // WART: this is specific to Block-based table assert(handle.offset() == previous_handle->offset() + previous_handle->size() + BlockBasedTable::kBlockTrailerSize); PutVarsignedint64(dst, handle.size() - previous_handle->size()); } else { handle.EncodeTo(dst); } assert(dst->size() != 0); if (have_first_key) { PutLengthPrefixedSlice(dst, first_internal_key); } } Status IndexValue::DecodeFrom(Slice* input, bool have_first_key, const BlockHandle* previous_handle) { if (previous_handle) { int64_t delta; if (!GetVarsignedint64(input, &delta)) { return Status::Corruption("bad delta-encoded index value"); } // WART: this is specific to Block-based table handle = BlockHandle(previous_handle->offset() + previous_handle->size() + BlockBasedTable::kBlockTrailerSize, previous_handle->size() + delta); } else { Status s = handle.DecodeFrom(input); if (!s.ok()) { return s; } } if (!have_first_key) { first_internal_key = Slice(); } else if (!GetLengthPrefixedSlice(input, &first_internal_key)) { return Status::Corruption("bad first key in block info"); } return Status::OK(); } std::string IndexValue::ToString(bool hex, bool have_first_key) const { std::string s; EncodeTo(&s, have_first_key, nullptr); if (hex) { return Slice(s).ToString(true); } else { return s; } } namespace { inline bool IsLegacyFooterFormat(uint64_t magic_number) { return magic_number == kLegacyBlockBasedTableMagicNumber || magic_number == kLegacyPlainTableMagicNumber; } inline uint64_t UpconvertLegacyFooterFormat(uint64_t magic_number) { if (magic_number == kLegacyBlockBasedTableMagicNumber) { return kBlockBasedTableMagicNumber; } if (magic_number == kLegacyPlainTableMagicNumber) { return kPlainTableMagicNumber; } assert(false); return magic_number; } inline uint64_t DownconvertToLegacyFooterFormat(uint64_t magic_number) { if (magic_number == kBlockBasedTableMagicNumber) { return kLegacyBlockBasedTableMagicNumber; } if (magic_number == kPlainTableMagicNumber) { return kLegacyPlainTableMagicNumber; } assert(false); return magic_number; } inline uint8_t BlockTrailerSizeForMagicNumber(uint64_t magic_number) { if (magic_number == kBlockBasedTableMagicNumber || magic_number == kLegacyBlockBasedTableMagicNumber) { return static_cast(BlockBasedTable::kBlockTrailerSize); } else { return 0; } } // Footer format, in three parts: // * Part1 // -> format_version == 0 (inferred from legacy magic number) // (0 bytes) // -> format_version >= 1 // checksum type (char, 1 byte) // * Part2 // -> format_version <= 5 // metaindex handle (varint64 offset, varint64 size) // index handle (varint64 offset, varint64 size) // for part2 size = 2 * BlockHandle::kMaxEncodedLength = 40 // - This padding is unchecked/ignored // -> format_version >= 6 // extended magic number (4 bytes) = 0x3e 0x00 0x7a 0x00 // - Also surely invalid (size 0) handles if interpreted as older version // - (Helps ensure a corrupted format_version doesn't get us far with no // footer checksum.) // footer_checksum (uint32LE, 4 bytes) // - Checksum of above checksum type of whole footer, with this field // set to all zeros. // base_context_checksum (uint32LE, 4 bytes) // metaindex block size (uint32LE, 4 bytes) // - Assumed to be immediately before footer, < 4GB // (24 bytes, reserved for future use) // - Brings part2 size also to 40 bytes // - Checked that last eight bytes == 0, so reserved for a future // incompatible feature (but under format_version=6) // * Part3 // -> format_version == 0 (inferred from legacy magic number) // legacy magic number (8 bytes) // -> format_version >= 1 (inferred from NOT legacy magic number) // format_version (uint32LE, 4 bytes), also called "footer version" // newer magic number (8 bytes) const std::array kExtendedMagic{{0x3e, 0x00, 0x7a, 0x00}}; constexpr size_t kFooterPart2Size = 2 * BlockHandle::kMaxEncodedLength; } // namespace Status FooterBuilder::Build(uint64_t magic_number, uint32_t format_version, uint64_t footer_offset, ChecksumType checksum_type, const BlockHandle& metaindex_handle, const BlockHandle& index_handle, uint32_t base_context_checksum) { assert(magic_number != Footer::kNullTableMagicNumber); assert(IsSupportedFormatVersion(format_version)); char* part2; char* part3; if (format_version > 0) { slice_ = Slice(data_.data(), Footer::kNewVersionsEncodedLength); // Generate parts 1 and 3 char* cur = data_.data(); // Part 1 *(cur++) = checksum_type; // Part 2 part2 = cur; // Skip over part 2 for now cur += kFooterPart2Size; // Part 3 part3 = cur; EncodeFixed32(cur, format_version); cur += 4; EncodeFixed64(cur, magic_number); assert(cur + 8 == slice_.data() + slice_.size()); } else { slice_ = Slice(data_.data(), Footer::kVersion0EncodedLength); // Legacy SST files use kCRC32c checksum but it's not stored in footer. assert(checksum_type == kNoChecksum || checksum_type == kCRC32c); // Generate part 3 (part 1 empty, skip part 2 for now) part2 = data_.data(); part3 = part2 + kFooterPart2Size; char* cur = part3; // Use legacy magic numbers to indicate format_version=0, for // compatibility. No other cases should use format_version=0. EncodeFixed64(cur, DownconvertToLegacyFooterFormat(magic_number)); assert(cur + 8 == slice_.data() + slice_.size()); } if (format_version >= 6) { if (BlockTrailerSizeForMagicNumber(magic_number) != 0) { // base context checksum required for table formats with block checksums assert(base_context_checksum != 0); assert(ChecksumModifierForContext(base_context_checksum, 0) != 0); } else { // base context checksum not used assert(base_context_checksum == 0); assert(ChecksumModifierForContext(base_context_checksum, 0) == 0); } // Start populating Part 2 char* cur = data_.data() + /* part 1 size */ 1; // Set extended magic of part2 std::copy(kExtendedMagic.begin(), kExtendedMagic.end(), cur); cur += kExtendedMagic.size(); // Fill checksum data with zeros (for later computing checksum) char* checksum_data = cur; EncodeFixed32(cur, 0); cur += 4; // Save base context checksum EncodeFixed32(cur, base_context_checksum); cur += 4; // Compute and save metaindex size uint32_t metaindex_size = static_cast(metaindex_handle.size()); if (metaindex_size != metaindex_handle.size()) { return Status::NotSupported("Metaindex block size > 4GB"); } // Metaindex must be adjacent to footer assert(metaindex_size == 0 || metaindex_handle.offset() + metaindex_handle.size() == footer_offset - BlockTrailerSizeForMagicNumber(magic_number)); EncodeFixed32(cur, metaindex_size); cur += 4; // Zero pad remainder (for future use) std::fill_n(cur, 24U, char{0}); assert(cur + 24 == part3); // Compute checksum, add context uint32_t checksum = ComputeBuiltinChecksum( checksum_type, data_.data(), Footer::kNewVersionsEncodedLength); checksum += ChecksumModifierForContext(base_context_checksum, footer_offset); // Store it EncodeFixed32(checksum_data, checksum); } else { // Base context checksum not used assert(!FormatVersionUsesContextChecksum(format_version)); // Should be left empty assert(base_context_checksum == 0); assert(ChecksumModifierForContext(base_context_checksum, 0) == 0); // Populate all of part 2 char* cur = part2; cur = metaindex_handle.EncodeTo(cur); cur = index_handle.EncodeTo(cur); // Zero pad remainder std::fill(cur, part3, char{0}); } return Status::OK(); } Status Footer::DecodeFrom(Slice input, uint64_t input_offset, uint64_t enforce_table_magic_number) { // Only decode to unused Footer assert(table_magic_number_ == kNullTableMagicNumber); assert(input != nullptr); assert(input.size() >= kMinEncodedLength); const char* magic_ptr = input.data() + input.size() - kMagicNumberLengthByte; uint64_t magic = DecodeFixed64(magic_ptr); // We check for legacy formats here and silently upconvert them bool legacy = IsLegacyFooterFormat(magic); if (legacy) { magic = UpconvertLegacyFooterFormat(magic); } if (enforce_table_magic_number != 0 && enforce_table_magic_number != magic) { return Status::Corruption("Bad table magic number: expected " + std::to_string(enforce_table_magic_number) + ", found " + std::to_string(magic)); } table_magic_number_ = magic; block_trailer_size_ = BlockTrailerSizeForMagicNumber(magic); // Parse Part3 const char* part3_ptr = magic_ptr; uint32_t computed_checksum = 0; uint64_t footer_offset = 0; if (legacy) { // The size is already asserted to be at least kMinEncodedLength // at the beginning of the function input.remove_prefix(input.size() - kVersion0EncodedLength); format_version_ = 0 /* legacy */; checksum_type_ = kCRC32c; } else { part3_ptr = magic_ptr - 4; format_version_ = DecodeFixed32(part3_ptr); if (UNLIKELY(!IsSupportedFormatVersion(format_version_))) { return Status::Corruption("Corrupt or unsupported format_version: " + std::to_string(format_version_)); } // All known format versions >= 1 occupy exactly this many bytes. if (UNLIKELY(input.size() < kNewVersionsEncodedLength)) { return Status::Corruption("Input is too short to be an SST file"); } uint64_t adjustment = input.size() - kNewVersionsEncodedLength; input.remove_prefix(adjustment); footer_offset = input_offset + adjustment; // Parse Part1 char chksum = input.data()[0]; checksum_type_ = lossless_cast(chksum); if (UNLIKELY(!IsSupportedChecksumType(checksum_type()))) { return Status::Corruption("Corrupt or unsupported checksum type: " + std::to_string(lossless_cast(chksum))); } // This is the most convenient place to compute the checksum if (checksum_type_ != kNoChecksum && format_version_ >= 6) { std::array copy_without_checksum; std::copy_n(input.data(), kNewVersionsEncodedLength, ©_without_checksum[0]); EncodeFixed32(©_without_checksum[5], 0); // Clear embedded checksum computed_checksum = ComputeBuiltinChecksum(checksum_type(), copy_without_checksum.data(), kNewVersionsEncodedLength); } // Consume checksum type field input.remove_prefix(1); } // Parse Part2 if (format_version_ >= 6) { Slice ext_magic(input.data(), 4); if (UNLIKELY(ext_magic.compare(Slice(kExtendedMagic.data(), kExtendedMagic.size())) != 0)) { return Status::Corruption("Bad extended magic number: 0x" + ext_magic.ToString(/*hex*/ true)); } input.remove_prefix(4); uint32_t stored_checksum = 0, metaindex_size = 0; bool success; success = GetFixed32(&input, &stored_checksum); assert(success); success = GetFixed32(&input, &base_context_checksum_); assert(success); if (UNLIKELY(ChecksumModifierForContext(base_context_checksum_, 0) == 0)) { return Status::Corruption("Invalid base context checksum"); } computed_checksum += ChecksumModifierForContext(base_context_checksum_, footer_offset); if (UNLIKELY(computed_checksum != stored_checksum)) { return Status::Corruption("Footer at " + std::to_string(footer_offset) + " checksum mismatch"); } success = GetFixed32(&input, &metaindex_size); assert(success); (void)success; uint64_t metaindex_end = footer_offset - GetBlockTrailerSize(); metaindex_handle_ = BlockHandle(metaindex_end - metaindex_size, metaindex_size); // Mark unpopulated index_handle_ = BlockHandle::NullBlockHandle(); // 16 bytes of unchecked reserved padding input.remove_prefix(16U); // 8 bytes of checked reserved padding (expected to be zero unless using a // future feature). uint64_t reserved = 0; success = GetFixed64(&input, &reserved); assert(success); if (UNLIKELY(reserved != 0)) { return Status::NotSupported( "File uses a future feature not supported in this version"); } // End of part 2 assert(input.data() == part3_ptr); } else { // format_version_ < 6 Status result = metaindex_handle_.DecodeFrom(&input); if (result.ok()) { result = index_handle_.DecodeFrom(&input); } if (!result.ok()) { return result; } // Padding in part2 is ignored } return Status::OK(); } std::string Footer::ToString() const { std::string result; result.reserve(1024); bool legacy = IsLegacyFooterFormat(table_magic_number_); if (legacy) { result.append("metaindex handle: " + metaindex_handle_.ToString() + "\n "); result.append("index handle: " + index_handle_.ToString() + "\n "); result.append("table_magic_number: " + std::to_string(table_magic_number_) + "\n "); } else { result.append("metaindex handle: " + metaindex_handle_.ToString() + "\n "); result.append("index handle: " + index_handle_.ToString() + "\n "); result.append("table_magic_number: " + std::to_string(table_magic_number_) + "\n "); result.append("format version: " + std::to_string(format_version_) + "\n "); } return result; } Status ReadFooterFromFile(const IOOptions& opts, RandomAccessFileReader* file, FileSystem& fs, FilePrefetchBuffer* prefetch_buffer, uint64_t file_size, Footer* footer, uint64_t enforce_table_magic_number) { if (file_size < Footer::kMinEncodedLength) { return Status::Corruption("file is too short (" + std::to_string(file_size) + " bytes) to be an " "sstable: " + file->file_name()); } std::string footer_buf; AlignedBuf internal_buf; Slice footer_input; uint64_t read_offset = (file_size > Footer::kMaxEncodedLength) ? file_size - Footer::kMaxEncodedLength : 0; Status s; // TODO: Need to pass appropriate deadline to TryReadFromCache(). Right now, // there is no readahead for point lookups, so TryReadFromCache will fail if // the required data is not in the prefetch buffer. Once deadline is enabled // for iterator, TryReadFromCache might do a readahead. Revisit to see if we // need to pass a timeout at that point // TODO: rate limit footer reads. if (prefetch_buffer == nullptr || !prefetch_buffer->TryReadFromCache(opts, file, read_offset, Footer::kMaxEncodedLength, &footer_input, nullptr)) { if (file->use_direct_io()) { s = file->Read(opts, read_offset, Footer::kMaxEncodedLength, &footer_input, nullptr, &internal_buf); } else { footer_buf.reserve(Footer::kMaxEncodedLength); s = file->Read(opts, read_offset, Footer::kMaxEncodedLength, &footer_input, &footer_buf[0], nullptr); } if (!s.ok()) return s; } // Check that we actually read the whole footer from the file. It may be // that size isn't correct. if (footer_input.size() < Footer::kMinEncodedLength) { uint64_t size_on_disk = 0; if (fs.GetFileSize(file->file_name(), IOOptions(), &size_on_disk, nullptr) .ok()) { // Similar to CheckConsistency message, but not completely sure the // expected size always came from manifest. return Status::Corruption("Sst file size mismatch: " + file->file_name() + ". Expected " + std::to_string(file_size) + ", actual size " + std::to_string(size_on_disk) + "\n"); } else { return Status::Corruption( "Missing SST footer data in file " + file->file_name() + " File too short? Expected size: " + std::to_string(file_size)); } } s = footer->DecodeFrom(footer_input, read_offset, enforce_table_magic_number); if (!s.ok()) { s = Status::CopyAppendMessage(s, " in ", file->file_name()); return s; } return Status::OK(); } namespace { // Custom handling for the last byte of a block, to avoid invoking streaming // API to get an effective block checksum. This function is its own inverse // because it uses xor. inline uint32_t ModifyChecksumForLastByte(uint32_t checksum, char last_byte) { // This strategy bears some resemblance to extending a CRC checksum by one // more byte, except we don't need to re-mix the input checksum as long as // we do this step only once (per checksum). const uint32_t kRandomPrime = 0x6b9083d9; return checksum ^ lossless_cast(last_byte) * kRandomPrime; } } // namespace uint32_t ComputeBuiltinChecksum(ChecksumType type, const char* data, size_t data_size) { switch (type) { case kCRC32c: return crc32c::Mask(crc32c::Value(data, data_size)); case kxxHash: return XXH32(data, data_size, /*seed*/ 0); case kxxHash64: return Lower32of64(XXH64(data, data_size, /*seed*/ 0)); case kXXH3: { if (data_size == 0) { // Special case because of special handling for last byte, not // present in this case. Can be any value different from other // small input size checksums. return 0; } else { // See corresponding code in ComputeBuiltinChecksumWithLastByte uint32_t v = Lower32of64(XXH3_64bits(data, data_size - 1)); return ModifyChecksumForLastByte(v, data[data_size - 1]); } } default: // including kNoChecksum return 0; } } uint32_t ComputeBuiltinChecksumWithLastByte(ChecksumType type, const char* data, size_t data_size, char last_byte) { switch (type) { case kCRC32c: { uint32_t crc = crc32c::Value(data, data_size); // Extend to cover last byte (compression type) crc = crc32c::Extend(crc, &last_byte, 1); return crc32c::Mask(crc); } case kxxHash: { XXH32_state_t* const state = XXH32_createState(); XXH32_reset(state, 0); XXH32_update(state, data, data_size); // Extend to cover last byte (compression type) XXH32_update(state, &last_byte, 1); uint32_t v = XXH32_digest(state); XXH32_freeState(state); return v; } case kxxHash64: { XXH64_state_t* const state = XXH64_createState(); XXH64_reset(state, 0); XXH64_update(state, data, data_size); // Extend to cover last byte (compression type) XXH64_update(state, &last_byte, 1); uint32_t v = Lower32of64(XXH64_digest(state)); XXH64_freeState(state); return v; } case kXXH3: { // XXH3 is a complicated hash function that is extremely fast on // contiguous input, but that makes its streaming support rather // complex. It is worth custom handling of the last byte (`type`) // in order to avoid allocating a large state object and bringing // that code complexity into CPU working set. uint32_t v = Lower32of64(XXH3_64bits(data, data_size)); return ModifyChecksumForLastByte(v, last_byte); } default: // including kNoChecksum return 0; } } Status UncompressBlockData(const UncompressionInfo& uncompression_info, const char* data, size_t size, BlockContents* out_contents, uint32_t format_version, const ImmutableOptions& ioptions, MemoryAllocator* allocator) { Status ret = Status::OK(); assert(uncompression_info.type() != kNoCompression && "Invalid compression type"); StopWatchNano timer(ioptions.clock, ShouldReportDetailedTime(ioptions.env, ioptions.stats)); size_t uncompressed_size = 0; const char* error_msg = nullptr; CacheAllocationPtr ubuf = UncompressData( uncompression_info, data, size, &uncompressed_size, GetCompressFormatForVersion(format_version), allocator, &error_msg); if (!ubuf) { if (!CompressionTypeSupported(uncompression_info.type())) { ret = Status::NotSupported( "Unsupported compression method for this build", CompressionTypeToString(uncompression_info.type())); } else { std::ostringstream oss; oss << "Corrupted compressed block contents"; if (error_msg) { oss << ": " << error_msg; } ret = Status::Corruption( oss.str(), CompressionTypeToString(uncompression_info.type())); } return ret; } *out_contents = BlockContents(std::move(ubuf), uncompressed_size); if (ShouldReportDetailedTime(ioptions.env, ioptions.stats)) { RecordTimeToHistogram(ioptions.stats, DECOMPRESSION_TIMES_NANOS, timer.ElapsedNanos()); } RecordTick(ioptions.stats, BYTES_DECOMPRESSED_FROM, size); RecordTick(ioptions.stats, BYTES_DECOMPRESSED_TO, out_contents->data.size()); RecordTick(ioptions.stats, NUMBER_BLOCK_DECOMPRESSED); TEST_SYNC_POINT_CALLBACK("UncompressBlockData:TamperWithReturnValue", static_cast(&ret)); TEST_SYNC_POINT_CALLBACK( "UncompressBlockData:" "TamperWithDecompressionOutput", static_cast(out_contents)); return ret; } Status UncompressSerializedBlock(const UncompressionInfo& uncompression_info, const char* data, size_t size, BlockContents* out_contents, uint32_t format_version, const ImmutableOptions& ioptions, MemoryAllocator* allocator) { assert(data[size] != kNoCompression); assert(data[size] == static_cast(uncompression_info.type())); return UncompressBlockData(uncompression_info, data, size, out_contents, format_version, ioptions, allocator); } // Replace the contents of db_host_id with the actual hostname, if db_host_id // matches the keyword kHostnameForDbHostId Status ReifyDbHostIdProperty(Env* env, std::string* db_host_id) { assert(db_host_id); if (*db_host_id == kHostnameForDbHostId) { Status s = env->GetHostNameString(db_host_id); if (!s.ok()) { db_host_id->clear(); } return s; } return Status::OK(); } } // namespace ROCKSDB_NAMESPACE