// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/dbformat.h" #include "table/block_based/index_builder.h" #include "test_util/testharness.h" #include "test_util/testutil.h" namespace ROCKSDB_NAMESPACE { static std::string IKey(const std::string& user_key, uint64_t seq, ValueType vt) { std::string encoded; AppendInternalKey(&encoded, ParsedInternalKey(user_key, seq, vt)); return encoded; } static std::string Shorten(const std::string& s, const std::string& l) { std::string scratch; return ShortenedIndexBuilder::FindShortestInternalKeySeparator( *BytewiseComparator(), s, l, &scratch) .ToString(); } static std::string ShortSuccessor(const std::string& s) { std::string scratch; return ShortenedIndexBuilder::FindShortInternalKeySuccessor( *BytewiseComparator(), s, &scratch) .ToString(); } static void TestKey(const std::string& key, uint64_t seq, ValueType vt) { std::string encoded = IKey(key, seq, vt); Slice in(encoded); ParsedInternalKey decoded("", 0, kTypeValue); ASSERT_OK(ParseInternalKey(in, &decoded, true /* log_err_key */)); ASSERT_EQ(key, decoded.user_key.ToString()); ASSERT_EQ(seq, decoded.sequence); ASSERT_EQ(vt, decoded.type); ASSERT_NOK(ParseInternalKey(Slice("bar"), &decoded, true /* log_err_key */)); } class FormatTest : public testing::Test {}; TEST_F(FormatTest, InternalKey_EncodeDecode) { const char* keys[] = {"", "k", "hello", "longggggggggggggggggggggg"}; const uint64_t seq[] = {1, 2, 3, (1ull << 8) - 1, 1ull << 8, (1ull << 8) + 1, (1ull << 16) - 1, 1ull << 16, (1ull << 16) + 1, (1ull << 32) - 1, 1ull << 32, (1ull << 32) + 1}; for (unsigned int k = 0; k < sizeof(keys) / sizeof(keys[0]); k++) { for (unsigned int s = 0; s < sizeof(seq) / sizeof(seq[0]); s++) { TestKey(keys[k], seq[s], kTypeValue); TestKey("hello", 1, kTypeDeletion); } } } TEST_F(FormatTest, InternalKeyShortSeparator) { // When user keys are same ASSERT_EQ(IKey("foo", 100, kTypeValue), Shorten(IKey("foo", 100, kTypeValue), IKey("foo", 99, kTypeValue))); ASSERT_EQ( IKey("foo", 100, kTypeValue), Shorten(IKey("foo", 100, kTypeValue), IKey("foo", 101, kTypeValue))); ASSERT_EQ( IKey("foo", 100, kTypeValue), Shorten(IKey("foo", 100, kTypeValue), IKey("foo", 100, kTypeValue))); ASSERT_EQ( IKey("foo", 100, kTypeValue), Shorten(IKey("foo", 100, kTypeValue), IKey("foo", 100, kTypeDeletion))); // When user keys are misordered ASSERT_EQ(IKey("foo", 100, kTypeValue), Shorten(IKey("foo", 100, kTypeValue), IKey("bar", 99, kTypeValue))); // When user keys are different, but correctly ordered ASSERT_EQ( IKey("g", kMaxSequenceNumber, kValueTypeForSeek), Shorten(IKey("foo", 100, kTypeValue), IKey("hello", 200, kTypeValue))); ASSERT_EQ(IKey("ABC2", kMaxSequenceNumber, kValueTypeForSeek), Shorten(IKey("ABC1AAAAA", 100, kTypeValue), IKey("ABC2ABB", 200, kTypeValue))); ASSERT_EQ(IKey("AAA2", kMaxSequenceNumber, kValueTypeForSeek), Shorten(IKey("AAA1AAA", 100, kTypeValue), IKey("AAA2AA", 200, kTypeValue))); ASSERT_EQ( IKey("AAA2", kMaxSequenceNumber, kValueTypeForSeek), Shorten(IKey("AAA1AAA", 100, kTypeValue), IKey("AAA4", 200, kTypeValue))); ASSERT_EQ( IKey("AAA1B", kMaxSequenceNumber, kValueTypeForSeek), Shorten(IKey("AAA1AAA", 100, kTypeValue), IKey("AAA2", 200, kTypeValue))); ASSERT_EQ(IKey("AAA2", kMaxSequenceNumber, kValueTypeForSeek), Shorten(IKey("AAA1AAA", 100, kTypeValue), IKey("AAA2A", 200, kTypeValue))); ASSERT_EQ( IKey("AAA1", 100, kTypeValue), Shorten(IKey("AAA1", 100, kTypeValue), IKey("AAA2", 200, kTypeValue))); // When start user key is prefix of limit user key ASSERT_EQ( IKey("foo", 100, kTypeValue), Shorten(IKey("foo", 100, kTypeValue), IKey("foobar", 200, kTypeValue))); // When limit user key is prefix of start user key ASSERT_EQ( IKey("foobar", 100, kTypeValue), Shorten(IKey("foobar", 100, kTypeValue), IKey("foo", 200, kTypeValue))); } TEST_F(FormatTest, InternalKeyShortestSuccessor) { ASSERT_EQ(IKey("g", kMaxSequenceNumber, kValueTypeForSeek), ShortSuccessor(IKey("foo", 100, kTypeValue))); ASSERT_EQ(IKey("\xff\xff", 100, kTypeValue), ShortSuccessor(IKey("\xff\xff", 100, kTypeValue))); } TEST_F(FormatTest, IterKeyOperation) { IterKey k; const char p[] = "abcdefghijklmnopqrstuvwxyz"; const char q[] = "0123456789"; ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()), std::string("")); k.TrimAppend(0, p, 3); ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()), std::string("abc")); k.TrimAppend(1, p, 3); ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()), std::string("aabc")); k.TrimAppend(0, p, 26); ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()), std::string("abcdefghijklmnopqrstuvwxyz")); k.TrimAppend(26, q, 10); ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()), std::string("abcdefghijklmnopqrstuvwxyz0123456789")); k.TrimAppend(36, q, 1); ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()), std::string("abcdefghijklmnopqrstuvwxyz01234567890")); k.TrimAppend(26, q, 1); ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()), std::string("abcdefghijklmnopqrstuvwxyz0")); // Size going up, memory allocation is triggered k.TrimAppend(27, p, 26); ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()), std::string("abcdefghijklmnopqrstuvwxyz0" "abcdefghijklmnopqrstuvwxyz")); } TEST_F(FormatTest, IterKeyWithTimestampOperation) { IterKey k; k.SetUserKey(""); const char p[] = "abcdefghijklmnopqrstuvwxyz"; const char q[] = "0123456789"; ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()), std::string("")); size_t ts_sz = 8; std::string min_timestamp(ts_sz, static_cast(0)); k.TrimAppendWithTimestamp(0, p, 3, ts_sz); ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()), "abc" + min_timestamp); k.TrimAppendWithTimestamp(1, p, 3, ts_sz); ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()), "aabc" + min_timestamp); k.TrimAppendWithTimestamp(0, p, 26, ts_sz); ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()), "abcdefghijklmnopqrstuvwxyz" + min_timestamp); k.TrimAppendWithTimestamp(26, q, 10, ts_sz); ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()), "abcdefghijklmnopqrstuvwxyz0123456789" + min_timestamp); k.TrimAppendWithTimestamp(36, q, 1, ts_sz); ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()), "abcdefghijklmnopqrstuvwxyz01234567890" + min_timestamp); k.TrimAppendWithTimestamp(26, q, 1, ts_sz); ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()), "abcdefghijklmnopqrstuvwxyz0" + min_timestamp); k.TrimAppendWithTimestamp(27, p, 26, ts_sz); ASSERT_EQ(std::string(k.GetUserKey().data(), k.GetUserKey().size()), "abcdefghijklmnopqrstuvwxyz0" "abcdefghijklmnopqrstuvwxyz" + min_timestamp); // IterKey holds an internal key, the last 8 bytes hold the key footer, the // timestamp is expected to be added before the key footer. std::string key_without_ts = "keywithoutts"; k.SetInternalKey(key_without_ts + min_timestamp + "internal"); ASSERT_EQ(std::string(k.GetInternalKey().data(), k.GetInternalKey().size()), key_without_ts + min_timestamp + "internal"); k.TrimAppendWithTimestamp(0, p, 10, ts_sz); ASSERT_EQ(std::string(k.GetInternalKey().data(), k.GetInternalKey().size()), "ab" + min_timestamp + "cdefghij"); k.TrimAppendWithTimestamp(1, p, 8, ts_sz); ASSERT_EQ(std::string(k.GetInternalKey().data(), k.GetInternalKey().size()), "a" + min_timestamp + "abcdefgh"); k.TrimAppendWithTimestamp(9, p, 3, ts_sz); ASSERT_EQ(std::string(k.GetInternalKey().data(), k.GetInternalKey().size()), "aabc" + min_timestamp + "defghabc"); k.TrimAppendWithTimestamp(10, q, 10, ts_sz); ASSERT_EQ(std::string(k.GetInternalKey().data(), k.GetInternalKey().size()), "aabcdefgha01" + min_timestamp + "23456789"); k.TrimAppendWithTimestamp(20, q, 1, ts_sz); ASSERT_EQ(std::string(k.GetInternalKey().data(), k.GetInternalKey().size()), "aabcdefgha012" + min_timestamp + "34567890"); k.TrimAppendWithTimestamp(21, p, 26, ts_sz); ASSERT_EQ( std::string(k.GetInternalKey().data(), k.GetInternalKey().size()), "aabcdefgha01234567890abcdefghijklmnopqr" + min_timestamp + "stuvwxyz"); } TEST_F(FormatTest, UpdateInternalKey) { std::string user_key("abcdefghijklmnopqrstuvwxyz"); uint64_t new_seq = 0x123456; ValueType new_val_type = kTypeDeletion; std::string ikey; AppendInternalKey(&ikey, ParsedInternalKey(user_key, 100U, kTypeValue)); size_t ikey_size = ikey.size(); UpdateInternalKey(&ikey, new_seq, new_val_type); ASSERT_EQ(ikey_size, ikey.size()); Slice in(ikey); ParsedInternalKey decoded; ASSERT_OK(ParseInternalKey(in, &decoded, true /* log_err_key */)); ASSERT_EQ(user_key, decoded.user_key.ToString()); ASSERT_EQ(new_seq, decoded.sequence); ASSERT_EQ(new_val_type, decoded.type); } TEST_F(FormatTest, RangeTombstoneSerializeEndKey) { RangeTombstone t("a", "b", 2); InternalKey k("b", 3, kTypeValue); const InternalKeyComparator cmp(BytewiseComparator()); ASSERT_LT(cmp.Compare(t.SerializeEndKey(), k), 0); } TEST_F(FormatTest, PadInternalKeyWithMinTimestamp) { std::string orig_user_key = "foo"; std::string orig_internal_key = IKey(orig_user_key, 100, kTypeValue); size_t ts_sz = 8; std::string key_buf; PadInternalKeyWithMinTimestamp(&key_buf, orig_internal_key, ts_sz); ParsedInternalKey key_with_timestamp; Slice in(key_buf); ASSERT_OK(ParseInternalKey(in, &key_with_timestamp, true /*log_err_key*/)); std::string min_timestamp(ts_sz, static_cast(0)); ASSERT_EQ(orig_user_key + min_timestamp, key_with_timestamp.user_key); ASSERT_EQ(100, key_with_timestamp.sequence); ASSERT_EQ(kTypeValue, key_with_timestamp.type); } TEST_F(FormatTest, StripTimestampFromInternalKey) { std::string orig_user_key = "foo"; size_t ts_sz = 8; std::string timestamp(ts_sz, static_cast(0)); orig_user_key.append(timestamp.data(), timestamp.size()); std::string orig_internal_key = IKey(orig_user_key, 100, kTypeValue); std::string key_buf; StripTimestampFromInternalKey(&key_buf, orig_internal_key, ts_sz); ParsedInternalKey key_without_timestamp; Slice in(key_buf); ASSERT_OK(ParseInternalKey(in, &key_without_timestamp, true /*log_err_key*/)); ASSERT_EQ("foo", key_without_timestamp.user_key); ASSERT_EQ(100, key_without_timestamp.sequence); ASSERT_EQ(kTypeValue, key_without_timestamp.type); } TEST_F(FormatTest, ReplaceInternalKeyWithMinTimestamp) { std::string orig_user_key = "foo"; size_t ts_sz = 8; orig_user_key.append(ts_sz, static_cast(1)); std::string orig_internal_key = IKey(orig_user_key, 100, kTypeValue); std::string key_buf; ReplaceInternalKeyWithMinTimestamp(&key_buf, orig_internal_key, ts_sz); ParsedInternalKey new_key; Slice in(key_buf); ASSERT_OK(ParseInternalKey(in, &new_key, true /*log_err_key*/)); std::string min_timestamp(ts_sz, static_cast(0)); size_t ukey_diff_offset = new_key.user_key.difference_offset(orig_user_key); ASSERT_EQ(min_timestamp, Slice(new_key.user_key.data() + ukey_diff_offset, ts_sz)); ASSERT_EQ(orig_user_key.size(), new_key.user_key.size()); ASSERT_EQ(100, new_key.sequence); ASSERT_EQ(kTypeValue, new_key.type); } } // namespace ROCKSDB_NAMESPACE int main(int argc, char** argv) { ROCKSDB_NAMESPACE::port::InstallStackTraceHandler(); ::testing::InitGoogleTest(&argc, argv); RegisterCustomObjects(argc, argv); return RUN_ALL_TESTS(); }