Summary:
This allows tombstone fragmenting to only be performed when the table is opened, and cached for subsequent accesses.
On the same DB used in #4449, running `readrandom` results in the following:
```
readrandom : 0.983 micros/op 1017076 ops/sec; 78.3 MB/s (63103 of 100000 found)
```
Now that Get performance in the presence of range tombstones is reasonable, I also compared the performance between a DB with range tombstones, "expanded" range tombstones (several point tombstones that cover the same keys the equivalent range tombstone would cover, a common workaround for DeleteRange), and no range tombstones. The created DBs had 5 million keys each, and DeleteRange was called at regular intervals (depending on the total number of range tombstones being written) after 4.5 million Puts. The table below summarizes the results of a `readwhilewriting` benchmark (in order to provide somewhat more realistic results):
```
Tombstones? | avg micros/op | stddev micros/op | avg ops/s | stddev ops/s
----------------- | ------------- | ---------------- | ------------ | ------------
None | 0.6186 | 0.04637 | 1,625,252.90 | 124,679.41
500 Expanded | 0.6019 | 0.03628 | 1,666,670.40 | 101,142.65
500 Unexpanded | 0.6435 | 0.03994 | 1,559,979.40 | 104,090.52
1k Expanded | 0.6034 | 0.04349 | 1,665,128.10 | 125,144.57
1k Unexpanded | 0.6261 | 0.03093 | 1,600,457.50 | 79,024.94
5k Expanded | 0.6163 | 0.05926 | 1,636,668.80 | 154,888.85
5k Unexpanded | 0.6402 | 0.04002 | 1,567,804.70 | 100,965.55
10k Expanded | 0.6036 | 0.05105 | 1,667,237.70 | 142,830.36
10k Unexpanded | 0.6128 | 0.02598 | 1,634,633.40 | 72,161.82
25k Expanded | 0.6198 | 0.04542 | 1,620,980.50 | 116,662.93
25k Unexpanded | 0.5478 | 0.0362 | 1,833,059.10 | 121,233.81
50k Expanded | 0.5104 | 0.04347 | 1,973,107.90 | 184,073.49
50k Unexpanded | 0.4528 | 0.03387 | 2,219,034.50 | 170,984.32
```
After a large enough quantity of range tombstones are written, range tombstone Gets can become faster than reading from an equivalent DB with several point tombstones.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4493
Differential Revision: D10842844
Pulled By: abhimadan
fbshipit-source-id: a7d44534f8120e6aabb65779d26c6b9df954c509
Summary:
Currently there are two contrun test failures:
* rocksdb-contrun-lite:
> tools/db_bench_tool.cc: In function ‘int rocksdb::db_bench_tool(int, char**)’:
tools/db_bench_tool.cc:5814:5: error: ‘DumpMallocStats’ is not a member of ‘rocksdb’
rocksdb::DumpMallocStats(&stats_string);
^
make: *** [tools/db_bench_tool.o] Error 1
* rocksdb-contrun-unity:
> In file included from unity.cc:44:0:
db/range_tombstone_fragmenter.cc: In member function ‘void rocksdb::FragmentedRangeTombstoneIterator::FragmentTombstones(std::unique_ptr<rocksdb::InternalIteratorBase<rocksdb::Slice> >, rocksdb::SequenceNumber)’:
db/range_tombstone_fragmenter.cc:90:14: error: reference to ‘ParsedInternalKeyComparator’ is ambiguous
auto cmp = ParsedInternalKeyComparator(icmp_);
This PR will fix them
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4587
Differential Revision: D10846554
Pulled By: miasantreble
fbshipit-source-id: 8d3358879e105060197b1379c84aecf51b352b93
Summary:
Previously, range tombstones were accumulated from every level, which
was necessary if a range tombstone in a higher level covered a key in a lower
level. However, RangeDelAggregator::AddTombstones's complexity is based on
the number of tombstones that are currently stored in it, which is wasteful in
the Get case, where we only need to know the highest sequence number of range
tombstones that cover the key from higher levels, and compute the highest covering
sequence number at the current level. This change introduces this optimization, and
removes the use of RangeDelAggregator from the Get path.
In the benchmark results, the following command was used to initialize the database:
```
./db_bench -db=/dev/shm/5k-rts -use_existing_db=false -benchmarks=filluniquerandom -write_buffer_size=1048576 -compression_type=lz4 -target_file_size_base=1048576 -max_bytes_for_level_base=4194304 -value_size=112 -key_size=16 -block_size=4096 -level_compaction_dynamic_level_bytes=true -num=5000000 -max_background_jobs=12 -benchmark_write_rate_limit=20971520 -range_tombstone_width=100 -writes_per_range_tombstone=100 -max_num_range_tombstones=50000 -bloom_bits=8
```
...and the following command was used to measure read throughput:
```
./db_bench -db=/dev/shm/5k-rts/ -use_existing_db=true -benchmarks=readrandom -disable_auto_compactions=true -num=5000000 -reads=100000 -threads=32
```
The filluniquerandom command was only run once, and the resulting database was used
to measure read performance before and after the PR. Both binaries were compiled with
`DEBUG_LEVEL=0`.
Readrandom results before PR:
```
readrandom : 4.544 micros/op 220090 ops/sec; 16.9 MB/s (63103 of 100000 found)
```
Readrandom results after PR:
```
readrandom : 11.147 micros/op 89707 ops/sec; 6.9 MB/s (63103 of 100000 found)
```
So it's actually slower right now, but this PR paves the way for future optimizations (see #4493).
----
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4449
Differential Revision: D10370575
Pulled By: abhimadan
fbshipit-source-id: 9a2e152be1ef36969055c0e9eb4beb0d96c11f4d