Commit Graph

10 Commits

Author SHA1 Message Date
Peter Dillinger 204fcff751 HyperClockCache support for SecondaryCache, with refactoring (#11301)
Summary:
Internally refactors SecondaryCache integration out of LRUCache specifically and into a wrapper/adapter class that works with various Cache implementations. Notably, this relies on separating the notion of async lookup handles from other cache handles, so that HyperClockCache doesn't have to deal with the problem of allocating handles from the hash table for lookups that might fail anyway, and might be on the same key without support for coalescing. (LRUCache's hash table can incorporate previously allocated handles thanks to its pointer indirection.) Specifically, I'm worried about the case in which hundreds of threads try to access the same block and probing in the hash table degrades to linear search on the pile of entries with the same key.

This change is a big step in the direction of supporting stacked SecondaryCaches, but there are obstacles to completing that. Especially, there is no SecondaryCache hook for evictions to pass from one to the next. It has been proposed that evictions be transmitted simply as the persisted data (as in SaveToCallback), but given the current structure provided by the CacheItemHelpers, that would require an extra copy of the block data, because there's intentionally no way to ask for a contiguous Slice of the data (to allow for flexibility in storage). `AsyncLookupHandle` and the re-worked `WaitAll()` should be essentially prepared for stacked SecondaryCaches, but several "TODO with stacked secondaries" issues remain in various places.

It could be argued that the stacking instead be done as a SecondaryCache adapter that wraps two (or more) SecondaryCaches, but at least with the current API that would require an extra heap allocation on SecondaryCache Lookup for a wrapper SecondaryCacheResultHandle that can transfer a Lookup between secondaries. We could also consider trying to unify the Cache and SecondaryCache APIs, though that might be difficult if `AsyncLookupHandle` is kept a fixed struct.

## cache.h (public API)
Moves `secondary_cache` option from LRUCacheOptions to ShardedCacheOptions so that it is applicable to HyperClockCache.

## advanced_cache.h (advanced public API)
* Add `Cache::CreateStandalone()` so that the SecondaryCache support wrapper can use it.
* Add `SetEvictionCallback()` / `eviction_callback_` so that the SecondaryCache support wrapper can use it. Only a single callback is supported for efficiency. If there is ever a need for more than one, hopefully that can be handled with a broadcast callback wrapper.

These are essentially the two "extra" pieces of `Cache` for pulling out specific SecondaryCache support from the `Cache` implementation. I think it's a good trade-off as these are reasonable, limited, and reusable "cut points" into the `Cache` implementations.

* Remove async capability from standard `Lookup()` (getting rid of awkward restrictions on pending Handles) and add `AsyncLookupHandle` and `StartAsyncLookup()`. As noted in the comments, the full struct of `AsyncLookupHandle` is exposed so that it can be stack allocated, for efficiency, though more data is being copied around than before, which could impact performance. (Lookup info -> AsyncLookupHandle -> Handle vs. Lookup info -> Handle)

I could foresee a future in which a Cache internally saves a pointer to the AsyncLookupHandle, which means it's dangerous to allow it to be copyable or even movable. It also means it's not compatible with std::vector (which I don't like requiring as an API parameter anyway), so `WaitAll()` expects any contiguous array of AsyncLookupHandles. I believe this is best for common case efficiency, while behaving well in other cases also. For example, `WaitAll()` has no effect on default-constructed AsyncLookupHandles, which look like a completed cache miss.

## cacheable_entry.h
A couple of functions are obsolete because Cache::Handle can no longer be pending.

## cache.cc
Provides default implementations for new or revamped Cache functions, especially appropriate for non-blocking caches.

## secondary_cache_adapter.{h,cc}
The full details of the Cache wrapper adding SecondaryCache support. Essentially replicates the SecondaryCache handling that was in LRUCache, but obviously refactored. There is a bit of logic duplication, where Lookup() is essentially a manually optimized version of StartAsyncLookup() and Wait(), but it's roughly a dozen lines of code.

## sharded_cache.h, typed_cache.h, charged_cache.{h,cc}, sim_cache.cc
Simply updated for Cache API changes.

## lru_cache.{h,cc}
Carefully remove SecondaryCache logic, implement `CreateStandalone` and eviction handler functionality.

## clock_cache.{h,cc}
Expose existing `CreateStandalone` functionality, add eviction handler functionality. Light refactoring.

## block_based_table_reader*
Mostly re-worked the only usage of async Lookup, which is in BlockBasedTable::MultiGet. Used arrays in place of autovector in some places for efficiency. Simplified some logic by not trying to process some cache results before they're all ready.

Created new function `BlockBasedTable::GetCachePriority()` to reduce some pre-existing code duplication (and avoid making it worse).

Fixed at least one small bug from the prior confusing mixture of async and sync Lookups. In MaybeReadBlockAndLoadToCache(), called by RetrieveBlock(), called by MultiGet() with wait=false, is_cache_hit for the block_cache_tracer entry would not be set to true if the handle was pending after Lookup and before Wait.

## Intended follow-up work
* Figure out if there are any missing stats or block_cache_tracer work in refactored BlockBasedTable::MultiGet
* Stacked secondary caches (see above discussion)
* See if we can make up for the small MultiGet performance regression.
* Study more performance with SecondaryCache
* Items evicted from over-full LRUCache in Release were not being demoted to SecondaryCache, and still aren't to minimize unit test churn. Ideally they would be demoted, but it's an exceptional case so not a big deal.
* Use CreateStandalone for cache reservations (save unnecessary hash table operations). Not a big deal, but worthy cleanup.
* Somehow I got the contract for SecondaryCache::Insert wrong in #10945. (Doesn't take ownership!) That API comment needs to be fixed, but didn't want to mingle that in here.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11301

Test Plan:
## Unit tests
Generally updated to include HCC in SecondaryCache tests, though HyperClockCache has some different, less strict behaviors that leads to some tests not really being set up to work with it. Some of the tests remain disabled with it, but I think we have good coverage without them.

## Crash/stress test
Updated to use the new combination.

## Performance
First, let's check for regression on caches without secondary cache configured. Adding support for the eviction callback is likely to have a tiny effect, but it shouldn't be worrisome. LRUCache could benefit slightly from less logic around SecondaryCache handling. We can test with cache_bench default settings, built with DEBUG_LEVEL=0 and PORTABLE=0.

```
(while :; do base/cache_bench --cache_type=hyper_clock_cache | grep Rough; done) | awk '{ sum += $9; count++; print $0; print "Average: " int(sum / count) }'
```

**Before** this and #11299 (which could also have a small effect), running for about an hour, before & after running concurrently for each cache type:
HyperClockCache: 3168662 (average parallel ops/sec)
LRUCache: 2940127

**After** this and #11299, running for about an hour:
HyperClockCache: 3164862 (average parallel ops/sec) (0.12% slower)
LRUCache: 2940928 (0.03% faster)

This is an acceptable difference IMHO.

Next, let's consider essentially the worst case of new CPU overhead affecting overall performance. MultiGet uses the async lookup interface regardless of whether SecondaryCache or folly are used. We can configure a benchmark where all block cache queries are for data blocks, and all are hits.

Create DB and test (before and after tests running simultaneously):
```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16
TEST_TMPDIR=/dev/shm base/db_bench -benchmarks=multireadrandom[-X30] -readonly -multiread_batched -batch_size=32 -num=30000000 -bloom_bits=16 -cache_size=6789000000 -duration 20 -threads=16
```

**Before**:
multireadrandom [AVG    30 runs] : 3444202 (± 57049) ops/sec;  240.9 (± 4.0) MB/sec
multireadrandom [MEDIAN 30 runs] : 3514443 ops/sec;  245.8 MB/sec
**After**:
multireadrandom [AVG    30 runs] : 3291022 (± 58851) ops/sec;  230.2 (± 4.1) MB/sec
multireadrandom [MEDIAN 30 runs] : 3366179 ops/sec;  235.4 MB/sec

So that's roughly a 3% regression, on kind of a *worst case* test of MultiGet CPU. Similar story with HyperClockCache:

**Before**:
multireadrandom [AVG    30 runs] : 3933777 (± 41840) ops/sec;  275.1 (± 2.9) MB/sec
multireadrandom [MEDIAN 30 runs] : 3970667 ops/sec;  277.7 MB/sec
**After**:
multireadrandom [AVG    30 runs] : 3755338 (± 30391) ops/sec;  262.6 (± 2.1) MB/sec
multireadrandom [MEDIAN 30 runs] : 3785696 ops/sec;  264.8 MB/sec

Roughly a 4-5% regression. Not ideal, but not the whole story, fortunately.

Let's also look at Get() in db_bench:

```
TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom[-X30] -readonly -num=30000000 -bloom_bits=16 -cache_size=6789000000 -duration 20 -threads=16
```

**Before**:
readrandom [AVG    30 runs] : 2198685 (± 13412) ops/sec;  153.8 (± 0.9) MB/sec
readrandom [MEDIAN 30 runs] : 2209498 ops/sec;  154.5 MB/sec
**After**:
readrandom [AVG    30 runs] : 2292814 (± 43508) ops/sec;  160.3 (± 3.0) MB/sec
readrandom [MEDIAN 30 runs] : 2365181 ops/sec;  165.4 MB/sec

That's showing roughly a 4% improvement, perhaps because of the secondary cache code that is no longer part of LRUCache. But weirdly, HyperClockCache is also showing 2-3% improvement:

**Before**:
readrandom [AVG    30 runs] : 2272333 (± 9992) ops/sec;  158.9 (± 0.7) MB/sec
readrandom [MEDIAN 30 runs] : 2273239 ops/sec;  159.0 MB/sec
**After**:
readrandom [AVG    30 runs] : 2332407 (± 11252) ops/sec;  163.1 (± 0.8) MB/sec
readrandom [MEDIAN 30 runs] : 2335329 ops/sec;  163.3 MB/sec

Reviewed By: ltamasi

Differential Revision: D44177044

Pulled By: pdillinger

fbshipit-source-id: e808e48ff3fe2f792a79841ba617be98e48689f5
2023-03-17 20:23:49 -07:00
Peter Dillinger 3cacd4b4ec Put Cache and CacheWrapper in new public header (#11192)
Summary:
The definition of the Cache class should not be needed by the vast majority of RocksDB users, so I think it is just distracting to include it in cache.h, which is primarily needed for configuring and creating caches. This change moves the class to a new header advanced_cache.h. It is just cut-and-paste except for modifying the class API comment.

In general, operations on shared_ptr<Cache> should continue to work when only a forward declaration of Cache is available, as long as all the Cache instances provided are already shared_ptr. See https://stackoverflow.com/a/17650101/454544

Also, the most common way to customize a Cache is by wrapping an existing implementation, so it makes sense to provide CacheWrapper in the public API. This was a cut-and-paste job except removing the implementation of Name() so that derived classes must provide it.

Intended follow-up: consolidate Release() into one function to reduce customization bugs / confusion

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11192

Test Plan: `make check`

Reviewed By: anand1976

Differential Revision: D43055487

Pulled By: pdillinger

fbshipit-source-id: 7b05492df35e0f30b581b4c24c579bc275b6d110
2023-02-09 12:12:02 -08:00
Peter Dillinger 9f7801c5f1 Major Cache refactoring, CPU efficiency improvement (#10975)
Summary:
This is several refactorings bundled into one to avoid having to incrementally re-modify uses of Cache several times. Overall, there are breaking changes to Cache class, and it becomes more of low-level interface for implementing caches, especially block cache. New internal APIs make using Cache cleaner than before, and more insulated from block cache evolution. Hopefully, this is the last really big block cache refactoring, because of rather effectively decoupling the implementations from the uses. This change also removes the EXPERIMENTAL designation on the SecondaryCache support in Cache. It seems reasonably mature at this point but still subject to change/evolution (as I warn in the API docs for Cache).

The high-level motivation for this refactoring is to minimize code duplication / compounding complexity in adding SecondaryCache support to HyperClockCache (in a later PR). Other benefits listed below.

* static_cast lines of code +29 -35 (net removed 6)
* reinterpret_cast lines of code +6 -32 (net removed 26)

## cache.h and secondary_cache.h
* Always use CacheItemHelper with entries instead of just a Deleter. There are several motivations / justifications:
  * Simpler for implementations to deal with just one Insert and one Lookup.
  * Simpler and more efficient implementation because we don't have to track which entries are using helpers and which are using deleters
  * Gets rid of hack to classify cache entries by their deleter. Instead, the CacheItemHelper includes a CacheEntryRole. This simplifies a lot of code (cache_entry_roles.h almost eliminated). Fixes https://github.com/facebook/rocksdb/issues/9428.
  * Makes it trivial to adjust SecondaryCache behavior based on kind of block (e.g. don't re-compress filter blocks).
  * It is arguably less convenient for many direct users of Cache, but direct users of Cache are now rare with introduction of typed_cache.h (below).
  * I considered and rejected an alternative approach in which we reduce customizability by assuming each secondary cache compatible value starts with a Slice referencing the uncompressed block contents (already true or mostly true), but we apparently intend to stack secondary caches. Saving an entry from a compressed secondary to a lower tier requires custom handling offered by SaveToCallback, etc.
* Make CreateCallback part of the helper and introduce CreateContext to work with it (alternative to https://github.com/facebook/rocksdb/issues/10562). This cleans up the interface while still allowing context to be provided for loading/parsing values into primary cache. This model works for async lookup in BlockBasedTable reader (reader owns a CreateContext) under the assumption that it always waits on secondary cache operations to finish. (Otherwise, the CreateContext could be destroyed while async operation depending on it continues.) This likely contributes most to the observed performance improvement because it saves an std::function backed by a heap allocation.
* Use char* for serialized data, e.g. in SaveToCallback, where void* was confusingly used. (We use `char*` for serialized byte data all over RocksDB, with many advantages over `void*`. `memcpy` etc. are legacy APIs that should not be mimicked.)
* Add a type alias Cache::ObjectPtr = void*, so that we can better indicate the intent of the void* when it is to be the object associated with a Cache entry. Related: started (but did not complete) a refactoring to move away from "value" of a cache entry toward "object" or "obj". (It is confusing to call Cache a key-value store (like DB) when it is really storing arbitrary in-memory objects, not byte strings.)
* Remove unnecessary key param from DeleterFn. This is good for efficiency in HyperClockCache, which does not directly store the cache key in memory. (Alternative to https://github.com/facebook/rocksdb/issues/10774)
* Add allocator to Cache DeleterFn. This is a kind of future-proofing change in case we get more serious about using the Cache allocator for memory tracked by the Cache. Right now, only the uncompressed block contents are allocated using the allocator, and a pointer to that allocator is saved as part of the cached object so that the deleter can use it. (See CacheAllocationPtr.) If in the future we are able to "flatten out" our Cache objects some more, it would be good not to have to track the allocator as part of each object.
* Removes legacy `ApplyToAllCacheEntries` and changes `ApplyToAllEntries` signature for Deleter->CacheItemHelper change.

## typed_cache.h
Adds various "typed" interfaces to the Cache as internal APIs, so that most uses of Cache can use simple type safe code without casting and without explicit deleters, etc. Almost all of the non-test, non-glue code uses of Cache have been migrated. (Follow-up work: CompressedSecondaryCache deserves deeper attention to migrate.) This change expands RocksDB's internal usage of metaprogramming and SFINAE (https://en.cppreference.com/w/cpp/language/sfinae).

The existing usages of Cache are divided up at a high level into these new interfaces. See updated existing uses of Cache for examples of how these are used.
* PlaceholderCacheInterface - Used for making cache reservations, with entries that have a charge but no value.
* BasicTypedCacheInterface<TValue> - Used for primary cache storage of objects of type TValue, which can be cleaned up with std::default_delete<TValue>. The role is provided by TValue::kCacheEntryRole or given in an optional template parameter.
* FullTypedCacheInterface<TValue, TCreateContext> - Used for secondary cache compatible storage of objects of type TValue. In addition to BasicTypedCacheInterface constraints, we require TValue::ContentSlice() to return persistable data. This simplifies usage for the normal case of simple secondary cache compatibility (can give you a Slice to the data already in memory). In addition to TCreateContext performing the role of Cache::CreateContext, it is also expected to provide a factory function for creating TValue.
* For each of these, there's a "Shared" version (e.g. FullTypedSharedCacheInterface) that holds a shared_ptr to the Cache, rather than assuming external ownership by holding only a raw `Cache*`.

These interfaces introduce specific handle types for each interface instantiation, so that it's easy to see what kind of object is controlled by a handle. (Ultimately, this might not be worth the extra complexity, but it seems OK so far.)

Note: I attempted to make the cache 'charge' automatically inferred from the cache object type, such as by expecting an ApproximateMemoryUsage() function, but this is not so clean because there are cases where we need to compute the charge ahead of time and don't want to re-compute it.

## block_cache.h
This header is essentially the replacement for the old block_like_traits.h. It includes various things to support block cache access with typed_cache.h for block-based table.

## block_based_table_reader.cc
Before this change, accessing the block cache here was an awkward mix of static polymorphism (template TBlocklike) and switch-case on a dynamic BlockType value. This change mostly unifies on static polymorphism, relying on minor hacks in block_cache.h to distinguish variants of Block. We still check BlockType in some places (especially for stats, which could be improved in follow-up work) but at least the BlockType is a static constant from the template parameter. (No more awkward partial redundancy between static and dynamic info.) This likely contributes to the overall performance improvement, but hasn't been tested in isolation.

The other key source of simplification here is a more unified system of creating block cache objects: for directly populating from primary cache and for promotion from secondary cache. Both use BlockCreateContext, for context and for factory functions.

## block_based_table_builder.cc, cache_dump_load_impl.cc
Before this change, warming caches was super ugly code. Both of these source files had switch statements to basically transition from the dynamic BlockType world to the static TBlocklike world. None of that mess is needed anymore as there's a new, untyped WarmInCache function that handles all the details just as promotion from SecondaryCache would. (Fixes `TODO akanksha: Dedup below code` in block_based_table_builder.cc.)

## Everything else
Mostly just updating Cache users to use new typed APIs when reasonably possible, or changed Cache APIs when not.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10975

Test Plan:
tests updated

Performance test setup similar to https://github.com/facebook/rocksdb/issues/10626 (by cache size, LRUCache when not "hyper" for HyperClockCache):

34MB 1thread base.hyper -> kops/s: 0.745 io_bytes/op: 2.52504e+06 miss_ratio: 0.140906 max_rss_mb: 76.4844
34MB 1thread new.hyper -> kops/s: 0.751 io_bytes/op: 2.5123e+06 miss_ratio: 0.140161 max_rss_mb: 79.3594
34MB 1thread base -> kops/s: 0.254 io_bytes/op: 1.36073e+07 miss_ratio: 0.918818 max_rss_mb: 45.9297
34MB 1thread new -> kops/s: 0.252 io_bytes/op: 1.36157e+07 miss_ratio: 0.918999 max_rss_mb: 44.1523
34MB 32thread base.hyper -> kops/s: 7.272 io_bytes/op: 2.88323e+06 miss_ratio: 0.162532 max_rss_mb: 516.602
34MB 32thread new.hyper -> kops/s: 7.214 io_bytes/op: 2.99046e+06 miss_ratio: 0.168818 max_rss_mb: 518.293
34MB 32thread base -> kops/s: 3.528 io_bytes/op: 1.35722e+07 miss_ratio: 0.914691 max_rss_mb: 264.926
34MB 32thread new -> kops/s: 3.604 io_bytes/op: 1.35744e+07 miss_ratio: 0.915054 max_rss_mb: 264.488
233MB 1thread base.hyper -> kops/s: 53.909 io_bytes/op: 2552.35 miss_ratio: 0.0440566 max_rss_mb: 241.984
233MB 1thread new.hyper -> kops/s: 62.792 io_bytes/op: 2549.79 miss_ratio: 0.044043 max_rss_mb: 241.922
233MB 1thread base -> kops/s: 1.197 io_bytes/op: 2.75173e+06 miss_ratio: 0.103093 max_rss_mb: 241.559
233MB 1thread new -> kops/s: 1.199 io_bytes/op: 2.73723e+06 miss_ratio: 0.10305 max_rss_mb: 240.93
233MB 32thread base.hyper -> kops/s: 1298.69 io_bytes/op: 2539.12 miss_ratio: 0.0440307 max_rss_mb: 371.418
233MB 32thread new.hyper -> kops/s: 1421.35 io_bytes/op: 2538.75 miss_ratio: 0.0440307 max_rss_mb: 347.273
233MB 32thread base -> kops/s: 9.693 io_bytes/op: 2.77304e+06 miss_ratio: 0.103745 max_rss_mb: 569.691
233MB 32thread new -> kops/s: 9.75 io_bytes/op: 2.77559e+06 miss_ratio: 0.103798 max_rss_mb: 552.82
1597MB 1thread base.hyper -> kops/s: 58.607 io_bytes/op: 1449.14 miss_ratio: 0.0249324 max_rss_mb: 1583.55
1597MB 1thread new.hyper -> kops/s: 69.6 io_bytes/op: 1434.89 miss_ratio: 0.0247167 max_rss_mb: 1584.02
1597MB 1thread base -> kops/s: 60.478 io_bytes/op: 1421.28 miss_ratio: 0.024452 max_rss_mb: 1589.45
1597MB 1thread new -> kops/s: 63.973 io_bytes/op: 1416.07 miss_ratio: 0.0243766 max_rss_mb: 1589.24
1597MB 32thread base.hyper -> kops/s: 1436.2 io_bytes/op: 1357.93 miss_ratio: 0.0235353 max_rss_mb: 1692.92
1597MB 32thread new.hyper -> kops/s: 1605.03 io_bytes/op: 1358.04 miss_ratio: 0.023538 max_rss_mb: 1702.78
1597MB 32thread base -> kops/s: 280.059 io_bytes/op: 1350.34 miss_ratio: 0.023289 max_rss_mb: 1675.36
1597MB 32thread new -> kops/s: 283.125 io_bytes/op: 1351.05 miss_ratio: 0.0232797 max_rss_mb: 1703.83

Almost uniformly improving over base revision, especially for hot paths with HyperClockCache, up to 12% higher throughput seen (1597MB, 32thread, hyper). The improvement for that is likely coming from much simplified code for providing context for secondary cache promotion (CreateCallback/CreateContext), and possibly from less branching in block_based_table_reader. And likely a small improvement from not reconstituting key for DeleterFn.

Reviewed By: anand1976

Differential Revision: D42417818

Pulled By: pdillinger

fbshipit-source-id: f86bfdd584dce27c028b151ba56818ad14f7a432
2023-01-11 14:20:40 -08:00
anand76 727bad78b8 Format files under table/ by clang-format (#10852)
Summary:
Run clang-format on files under the `table` directory.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10852

Reviewed By: ajkr

Differential Revision: D40650732

Pulled By: anand1976

fbshipit-source-id: 2023a958e37fd6274040c5181130284600c9e0ef
2022-10-25 11:50:38 -07:00
Peter Dillinger ef443cead4 Refactor to avoid confusing "raw block" (#10408)
Summary:
We have a lot of confusing code because of mixed, sometimes
completely opposite uses of of the term "raw block" or "raw contents",
sometimes within the same source file. For example, in `BlockBasedTableBuilder`,
`raw_block_contents` and `raw_size` generally referred to uncompressed block
contents and size, while `WriteRawBlock` referred to writing a block that
is already compressed if it is going to be. Meanwhile, in
`BlockBasedTable`, `raw_block_contents` either referred to a (maybe
compressed) block with trailer, or a maybe compressed block maybe
without trailer. (Note: left as follow-up work to use C++ typing to
better sort out the various kinds of BlockContents.)

This change primarily tries to apply some consistent terminology around
the kinds of block representations, avoiding the unclear "raw". (Any
meaning of "raw" assumes some bias toward the storage layer or toward
the logical data layer.) Preferred terminology:

* **Serialized block** - bytes that go into storage. For block-based table
(usually the case) this includes the block trailer. WART: block `size` may or
may not include the trailer; need to be clear about whether it does or not.
* **Maybe compressed block** - like a serialized block, but without the
trailer (or no promise of including a trailer). Must be accompanied by a
CompressionType.
* **Uncompressed block** - "payload" bytes that are either stored with no
compression, used as input to compression function, or result of
decompression function.
* **Parsed block** - an in-memory form of a block in block cache, as it is
used by the table reader. Different C++ types are used depending on the
block type (see block_like_traits.h).

Other refactorings:
* Misc corrections/improvements of internal API comments
* Remove a few misleading / unhelpful / redundant comments.
* Use move semantics in some places to simplify contracts
* Use better parameter names to indicate which parameters are used for
outputs
* Remove some extraneous `extern`
* Various clean-ups to `CacheDumperImpl` (mostly unnecessary code)

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10408

Test Plan: existing tests

Reviewed By: akankshamahajan15

Differential Revision: D38172617

Pulled By: pdillinger

fbshipit-source-id: ccb99299f324ac5ca46996d34c5089621a4f260c
2022-09-22 11:25:32 -07:00
Peter Dillinger efd035164b Meta-internal folly integration with F14FastMap (#9546)
Summary:
Especially after updating to C++17, I don't see a compelling case for
*requiring* any folly components in RocksDB. I was able to purge the existing
hard dependencies, and it can be quite difficult to strip out non-trivial components
from folly for use in RocksDB. (The prospect of doing that on F14 has changed
my mind on the best approach here.)

But this change creates an optional integration where we can plug in
components from folly at compile time, starting here with F14FastMap to replace
std::unordered_map when possible (probably no public APIs for example). I have
replaced the biggest CPU users of std::unordered_map with compile-time
pluggable UnorderedMap which will use F14FastMap when USE_FOLLY is set.
USE_FOLLY is always set in the Meta-internal buck build, and a simulation of
that is in the Makefile for public CI testing. A full folly build is not needed, but
checking out the full folly repo is much simpler for getting the dependency,
and anything else we might want to optionally integrate in the future.

Some picky details:
* I don't think the distributed mutex stuff is actually used, so it was easy to remove.
* I implemented an alternative to `folly::constexpr_log2` (which is much easier
in C++17 than C++11) so that I could pull out the hard dependencies on
`ConstexprMath.h`
* I had to add noexcept move constructors/operators to some types to make
F14's complainUnlessNothrowMoveAndDestroy check happy, and I added a
macro to make that easier in some common cases.
* Updated Meta-internal buck build to use folly F14Map (always)

No updates to HISTORY.md nor INSTALL.md as this is not (yet?) considered a
production integration for open source users.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9546

Test Plan:
CircleCI tests updated so that a couple of them use folly.

Most internal unit & stress/crash tests updated to use Meta-internal latest folly.
(Note: they should probably use buck but they currently use Makefile.)

Example performance improvement: when filter partitions are pinned in cache,
they are tracked by PartitionedFilterBlockReader::filter_map_ and we can build
a test that exercises that heavily. Build DB with

```
TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=30000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -partition_index_and_filters
```

and test with (simultaneous runs with & without folly, ~20 times each to see
convergence)

```
TEST_TMPDIR=/dev/shm/rocksdb ./db_bench_folly -readonly -use_existing_db -benchmarks=readrandom -num=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -partition_index_and_filters -duration=40 -pin_l0_filter_and_index_blocks_in_cache
```

Average ops/s no folly: 26229.2
Average ops/s with folly: 26853.3 (+2.4%)

Reviewed By: ajkr

Differential Revision: D34181736

Pulled By: pdillinger

fbshipit-source-id: ffa6ad5104c2880321d8a1aa7187e00ab0d02e94
2022-04-13 07:34:01 -07:00
anand76 8ea0a2c1bd Parallelize secondary cache lookup in MultiGet (#8405)
Summary:
Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file.

Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future.

Tests:
1. Add unit tests in lru_cache_test
2. Benchmark results with no secondary cache configured
Master -
```
readrandom   :      41.175 micros/op 388562 ops/sec;  106.7 MB/s (7277999 of 7277999 found)
readrandom   :      41.217 micros/op 388160 ops/sec;  106.6 MB/s (7274999 of 7274999 found)
multireadrandom :      10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found)
multireadrandom :      10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found)
```

This PR -
```
readrandom   :      41.158 micros/op 388723 ops/sec;  106.8 MB/s (7290999 of 7290999 found)
readrandom   :      41.185 micros/op 388463 ops/sec;  106.7 MB/s (7287999 of 7287999 found)
multireadrandom :      10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found)
multireadrandom :      10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found)
```

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405

Reviewed By: zhichao-cao

Differential Revision: D29190509

Pulled By: anand1976

fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:59 -07:00
sdong fdf882ded2 Replace namespace name "rocksdb" with ROCKSDB_NAMESPACE (#6433)
Summary:
When dynamically linking two binaries together, different builds of RocksDB from two sources might cause errors. To provide a tool for user to solve the problem, the RocksDB namespace is changed to a flag which can be overridden in build time.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6433

Test Plan: Build release, all and jtest. Try to build with ROCKSDB_NAMESPACE with another flag.

Differential Revision: D19977691

fbshipit-source-id: aa7f2d0972e1c31d75339ac48478f34f6cfcfb3e
2020-02-20 12:09:57 -08:00
Levi Tamasi 3bde41b5a3 Move the filter readers out of the block cache (#5504)
Summary:
Currently, when the block cache is used for the filter block, it is not
really the block itself that is stored in the cache but a FilterBlockReader
object. Since this object is not pure data (it has, for instance, pointers that
might dangle, including in one case a back pointer to the TableReader), it's not
really sharable. To avoid the issues around this, the current code erases the
cache entries when the TableReader is closed (which, BTW, is not sufficient
since a concurrent TableReader might have picked up the object in the meantime).
Instead of doing this, the patch moves the FilterBlockReader out of the cache
altogether, and decouples the filter reader object from the filter block.
In particular, instead of the TableReader owning, or caching/pinning the
FilterBlockReader (based on the customer's settings), with the change the
TableReader unconditionally owns the FilterBlockReader, which in turn
owns/caches/pins the filter block. This change also enables us to reuse the code
paths historically used for data blocks for filters as well.

Note:
Eviction statistics for filter blocks are temporarily broken. We plan to fix this in a
separate phase.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5504

Test Plan: make asan_check

Differential Revision: D16036974

Pulled By: ltamasi

fbshipit-source-id: 770f543c5fb4ed126fd1e04bfd3809cf4ff9c091
2019-07-16 13:14:58 -07:00
Vijay Nadimpalli 50e470791d Organizing rocksdb/table directory by format
Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/5373

Differential Revision: D15559425

Pulled By: vjnadimpalli

fbshipit-source-id: 5d6d6d615582bedd96a4b879bb25d429a6de8b55
2019-05-30 14:51:11 -07:00
Renamed from table/cachable_entry.h (Browse further)