Commit graph

8 commits

Author SHA1 Message Date
Changyu Bi 62fc15f009 Block per key-value checksum (#11287)
Summary:
add option `block_protection_bytes_per_key` and implementation for block per key-value checksum. The main changes are
1. checksum construction and verification in block.cc/h
2. pass the option `block_protection_bytes_per_key` around (mainly for methods defined in table_cache.h)
3. unit tests/crash test updates

Tests:
* Added unit tests
* Crash test: `python3 tools/db_crashtest.py blackbox --simple --block_protection_bytes_per_key=1 --write_buffer_size=1048576`

Follow up (maybe as a separate PR): make sure corruption status returned from BlockIters are correctly handled.

Performance:
Turning on block per KV protection has a non-trivial negative impact on read performance and costs additional memory.
For memory, each block includes additional 24 bytes for checksum-related states beside checksum itself. For CPU, I set up a DB of size ~1.2GB with 5M keys (32 bytes key and 200 bytes value) which compacts to ~5 SST files (target file size 256 MB) in L6 without compression. I tested readrandom performance with various block cache size (to mimic various cache hit rates):

```
SETUP
make OPTIMIZE_LEVEL="-O3" USE_LTO=1 DEBUG_LEVEL=0 -j32 db_bench
./db_bench -benchmarks=fillseq,compact0,waitforcompaction,compact,waitforcompaction -write_buffer_size=33554432 -level_compaction_dynamic_level_bytes=true -max_background_jobs=8 -target_file_size_base=268435456 --num=5000000 --key_size=32 --value_size=200 --compression_type=none

BENCHMARK
./db_bench --use_existing_db -benchmarks=readtocache,readrandom[-X10] --num=5000000 --key_size=32 --disable_auto_compactions --reads=1000000 --block_protection_bytes_per_key=[0|1] --cache_size=$CACHESIZE

The readrandom ops/sec looks like the following:
Block cache size:  2GB        1.2GB * 0.9    1.2GB * 0.8     1.2GB * 0.5   8MB
Main              240805     223604         198176           161653       139040
PR prot_bytes=0   238691     226693         200127           161082       141153
PR prot_bytes=1   214983     193199         178532           137013       108211
prot_bytes=1 vs    -10%        -15%          -10.8%          -15%        -23%
prot_bytes=0
```

The benchmark has a lot of variance, but there was a 5% to 25% regression in this benchmark with different cache hit rates.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11287

Reviewed By: ajkr

Differential Revision: D43970708

Pulled By: cbi42

fbshipit-source-id: ef98d898b71779846fa74212b9ec9e08b7183940
2023-04-25 12:08:23 -07:00
Changyu Bi fd165c869d Add memtable per key-value checksum (#10281)
Summary:
Append per key-value checksum to internal key. These checksums are verified on read paths including Get, Iterator and during Flush. Get and Iterator will return `Corruption` status if there is a checksum verification failure. Flush will make DB become read-only upon memtable entry checksum verification failure.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10281

Test Plan:
- Added new unit test cases: `make check`
- Benchmark on memtable insert
```
TEST_TMPDIR=/dev/shm/memtable_write ./db_bench -benchmarks=fillseq -disable_wal=true -max_write_buffer_number=100 -num=10000000 -min_write_buffer_number_to_merge=100

# avg over 10 runs
Baseline: 1166936 ops/sec
memtable 2 bytes kv checksum : 1.11674e+06 ops/sec (-4%)
memtable 2 bytes kv checksum + write batch 8 bytes kv checksum: 1.08579e+06 ops/sec (-6.95%)
write batch 8 bytes kv checksum: 1.17979e+06 ops/sec (+1.1%)
```
-  Benchmark on only memtable read: ops/sec dropped 31% for `readseq` due to time spend on verifying checksum.
ops/sec for `readrandom` dropped ~6.8%.
```
# Readseq
sudo TEST_TMPDIR=/dev/shm/memtable_read ./db_bench -benchmarks=fillseq,readseq"[-X20]" -disable_wal=true -max_write_buffer_number=100 -num=10000000 -min_write_buffer_number_to_merge=100

readseq [AVG    20 runs] : 7432840 (± 212005) ops/sec;  822.3 (± 23.5) MB/sec
readseq [MEDIAN 20 runs] : 7573878 ops/sec;  837.9 MB/sec

With -memtable_protection_bytes_per_key=2:

readseq [AVG    20 runs] : 5134607 (± 119596) ops/sec;  568.0 (± 13.2) MB/sec
readseq [MEDIAN 20 runs] : 5232946 ops/sec;  578.9 MB/sec

# Readrandom
sudo TEST_TMPDIR=/dev/shm/memtable_read ./db_bench -benchmarks=fillrandom,readrandom"[-X10]" -disable_wal=true -max_write_buffer_number=100 -num=1000000 -min_write_buffer_number_to_merge=100
readrandom [AVG    10 runs] : 140236 (± 3938) ops/sec;    9.8 (± 0.3) MB/sec
readrandom [MEDIAN 10 runs] : 140545 ops/sec;    9.8 MB/sec

With -memtable_protection_bytes_per_key=2:
readrandom [AVG    10 runs] : 130632 (± 2738) ops/sec;    9.1 (± 0.2) MB/sec
readrandom [MEDIAN 10 runs] : 130341 ops/sec;    9.1 MB/sec
```

- Stress test: `python3 -u tools/db_crashtest.py whitebox --duration=1800`

Reviewed By: ajkr

Differential Revision: D37607896

Pulled By: cbi42

fbshipit-source-id: fdaefb475629d2471780d4a5f5bf81b44ee56113
2022-08-12 13:51:32 -07:00
Adam Simpkins 28f54e71f3 fix compile errors in db/kv_checksum.h (#9173)
Summary:
When defining a template class, the constructor should be specified
simply using the class name; it does not take template arguments.a

Apparently older versions of gcc and clang did not complain about this
syntax, but gcc 11.x and recent versions of clang both complain about
this file.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9173

Test Plan:
When building with platform010 I got compile errors in this file both
in `mode/dev` (clang) and in `mode/opt-gcc`.  This diff fixes the
compile failures.

Reviewed By: ajkr

Differential Revision: D32455881

Pulled By: simpkins

fbshipit-source-id: 0682910d9e2cdade94ce1e77973d47ac04d9f7e2
2021-11-16 10:20:50 -08:00
Peter Dillinger 0774d640c0 Fix some lint warnings reported on 6.25 (#8945)
Summary:
Fix some lint warnings

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8945

Test Plan: existing tests, linters

Reviewed By: zhichao-cao

Differential Revision: D31103824

Pulled By: pdillinger

fbshipit-source-id: 4dd9b0c30fa50e588107ac6ed392b2dfb507a5d4
2021-09-27 11:43:20 -07:00
Andrew Kryczka d648cb47b9 Adapt key-value checksum for timestamp-suffixed keys (#8914)
Summary:
After https://github.com/facebook/rocksdb/issues/8725, keys added to `WriteBatch` may be timestamp-suffixed, while `WriteBatch` has no awareness of the timestamp size. Therefore, `WriteBatch` can no longer calculate timestamp checksum separately from the rest of the key's checksum in all cases.

This PR changes the definition of key in KV checksum to include the timestamp suffix. That way we do not need to worry about where the timestamp begins within the key. I believe the only practical effect of this change is now `AssignTimestamp()` requires recomputing the whole key checksum (`UpdateK()`) rather than just the timestamp portion (`UpdateT()`).

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8914

Test Plan:
run stress command that used to fail

```
$ ./db_stress --batch_protection_bytes_per_key=8 -clear_column_family_one_in=0 -test_batches_snapshots=1
```

Reviewed By: riversand963

Differential Revision: D30925715

Pulled By: ajkr

fbshipit-source-id: c143f7ccb46c0efb390ad57ef415c250d754deff
2021-09-14 13:14:39 -07:00
Yanqin Jin 2a2b3e03a5 Allow WriteBatch to have keys with different timestamp sizes (#8725)
Summary:
In the past, we unnecessarily requires all keys in the same write batch
to be from column families whose timestamps' formats are the same for
simplicity. Specifically, we cannot use the same write batch to write to
two column families, one of which enables timestamp while the other
disables it.

The limitation is due to the member `timestamp_size_` that used to exist
in each `WriteBatch` object. We pass a timestamp_size to the constructor
of `WriteBatch`. Therefore, users can simply use the old
`WriteBatch::Put()`, `WriteBatch::Delete()`, etc APIs for write, while
the internal implementation of `WriteBatch` will take care of memory
allocation for timestamps.

The above is not necessary.
One the one hand, users can set up a memory buffer to store user key and
then contiguously append the timestamp to the user key. Then the user
can pass this buffer to the `WriteBatch::Put(Slice&)` API.
On the other hand, users can set up a SliceParts object which is an
array of Slices and let the last Slice to point to the memory buffer
storing timestamp. Then the user can pass the SliceParts object to the
`WriteBatch::Put(SliceParts&)` API.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8725

Test Plan: make check

Reviewed By: ltamasi

Differential Revision: D30654499

Pulled By: riversand963

fbshipit-source-id: 9d848c77ad3c9dd629aa5fc4e2bc16fb0687b4a2
2021-09-12 15:34:26 -07:00
Peter Dillinger 4750421ece Replace most typedef with using= (#8751)
Summary:
Old typedef syntax is confusing

Most but not all changes with

    perl -pi -e 's/typedef (.*) ([a-zA-Z0-9_]+);/using $2 = $1;/g' list_of_files
    make format

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8751

Test Plan: existing

Reviewed By: zhichao-cao

Differential Revision: D30745277

Pulled By: pdillinger

fbshipit-source-id: 6f65f0631c3563382d43347896020413cc2366d9
2021-09-07 11:31:59 -07:00
Andrew Kryczka 78ee8564ad Integrity protection for live updates to WriteBatch (#7748)
Summary:
This PR adds the foundation classes for key-value integrity protection and the first use case: protecting live updates from the source buffers added to `WriteBatch` through the destination buffer in `MemTable`. The width of the protection info is not yet configurable -- only eight bytes per key is supported. This PR allows users to enable protection by constructing `WriteBatch` with `protection_bytes_per_key == 8`. It does not yet expose a way for users to get integrity protection via other write APIs (e.g., `Put()`, `Merge()`, `Delete()`, etc.).

The foundation classes (`ProtectionInfo.*`) embed the coverage info in their type, and provide `Protect.*()` and `Strip.*()` functions to navigate between types with different coverage. For making bytes per key configurable (for powers of two up to eight) in the future, these classes are templated on the unsigned integer type used to store the protection info. That integer contains the XOR'd result of hashes with independent seeds for all covered fields. For integer fields, the hash is computed on the raw unadjusted bytes, so the result is endian-dependent. The most significant bytes are truncated when the hash value (8 bytes) is wider than the protection integer.

When `WriteBatch` is constructed with `protection_bytes_per_key == 8`, we hold a `ProtectionInfoKVOTC` (i.e., one that covers key, value, optype aka `ValueType`, timestamp, and CF ID) for each entry added to the batch. The protection info is generated from the original buffers passed by the user, as well as the original metadata generated internally. When writing to memtable, each entry is transformed to a `ProtectionInfoKVOTS` (i.e., dropping coverage of CF ID and adding coverage of sequence number), since at that point we know the sequence number, and have already selected a memtable corresponding to a particular CF. This protection info is verified once the entry is encoded in the `MemTable` buffer.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/7748

Test Plan:
- an integration test to verify a wide variety of single-byte changes to the encoded `MemTable` buffer are caught
- add to stress/crash test to verify it works in variety of configs/operations without intentional corruption
- [deferred] unit tests for `ProtectionInfo.*` classes for edge cases like KV swap, `SliceParts` and `Slice` APIs are interchangeable, etc.

Reviewed By: pdillinger

Differential Revision: D25754492

Pulled By: ajkr

fbshipit-source-id: e481bac6c03c2ab268be41359730f1ceb9964866
2021-01-29 12:18:58 -08:00