mirror of
https://github.com/facebook/rocksdb.git
synced 2024-12-04 20:02:50 +00:00
106 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Kshitij Wadhwa | 4ce1dc930c |
don't run ZSTD_TrainDictionary in BlockBasedTableBuilder if there isn't compression needed (#12453)
Summary: fixes https://github.com/facebook/rocksdb/issues/12409 ### Issue ZSTD_TrainDictionary [[link]( |
||
yuzhangyu@fb.com | 1cfdece85d |
Run internal cpp modernizer on RocksDB repo (#12398)
Summary: When internal cpp modernizer attempts to format rocksdb code, it will replace macro `ROCKSDB_NAMESPACE` with its default definition `rocksdb` when collapsing nested namespace. We filed a feedback for the tool T180254030 and the team filed a bug for this: https://github.com/llvm/llvm-project/issues/83452. At the same time, they suggested us to run the modernizer tool ourselves so future auto codemod attempts will be smaller. This diff contains: Running `xplat/scripts/codemod_service/cpp_modernizer.sh` in fbcode/internal_repo_rocksdb/repo (excluding some directories in utilities/transactions/lock/range/range_tree/lib that has a non meta copyright comment) without swapping out the namespace macro `ROCKSDB_NAMESPACE` Followed by RocksDB's own `make format` Pull Request resolved: https://github.com/facebook/rocksdb/pull/12398 Test Plan: Auto tests Reviewed By: hx235 Differential Revision: D54382532 Pulled By: jowlyzhang fbshipit-source-id: e7d5b40f9b113b60e5a503558c181f080b9d02fa |
||
Peter Dillinger | 54cb9c77d9 |
Prefer static_cast in place of most reinterpret_cast (#12308)
Summary: The following are risks associated with pointer-to-pointer reinterpret_cast: * Can produce the "wrong result" (crash or memory corruption). IIRC, in theory this can happen for any up-cast or down-cast for a non-standard-layout type, though in practice would only happen for multiple inheritance cases (where the base class pointer might be "inside" the derived object). We don't use multiple inheritance a lot, but we do. * Can mask useful compiler errors upon code change, including converting between unrelated pointer types that you are expecting to be related, and converting between pointer and scalar types unintentionally. I can only think of some obscure cases where static_cast could be troublesome when it compiles as a replacement: * Going through `void*` could plausibly cause unnecessary or broken pointer arithmetic. Suppose we have `struct Derived: public Base1, public Base2`. If we have `Derived*` -> `void*` -> `Base2*` -> `Derived*` through reinterpret casts, this could plausibly work (though technical UB) assuming the `Base2*` is not dereferenced. Changing to static cast could introduce breaking pointer arithmetic. * Unnecessary (but safe) pointer arithmetic could arise in a case like `Derived*` -> `Base2*` -> `Derived*` where before the Base2 pointer might not have been dereferenced. This could potentially affect performance. With some light scripting, I tried replacing pointer-to-pointer reinterpret_casts with static_cast and kept the cases that still compile. Most occurrences of reinterpret_cast have successfully been changed (except for java/ and third-party/). 294 changed, 257 remain. A couple of related interventions included here: * Previously Cache::Handle was not actually derived from in the implementations and just used as a `void*` stand-in with reinterpret_cast. Now there is a relationship to allow static_cast. In theory, this could introduce pointer arithmetic (as described above) but is unlikely without multiple inheritance AND non-empty Cache::Handle. * Remove some unnecessary casts to void* as this is allowed to be implicit (for better or worse). Most of the remaining reinterpret_casts are for converting to/from raw bytes of objects. We could consider better idioms for these patterns in follow-up work. I wish there were a way to implement a template variant of static_cast that would only compile if no pointer arithmetic is generated, but best I can tell, this is not possible. AFAIK the best you could do is a dynamic check that the void* conversion after the static cast is unchanged. Pull Request resolved: https://github.com/facebook/rocksdb/pull/12308 Test Plan: existing tests, CI Reviewed By: ltamasi Differential Revision: D53204947 Pulled By: pdillinger fbshipit-source-id: 9de23e618263b0d5b9820f4e15966876888a16e2 |
||
Peter Dillinger | 76c834e441 |
Remove 'virtual' when implied by 'override' (#12319)
Summary: ... to follow modern C++ style / idioms. Used this hack: ``` for FILE in `cat my_list_of_files`; do perl -pi -e 'BEGIN{undef $/;} s/ virtual( [^;{]* override)/$1/smg' $FILE; done ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/12319 Test Plan: existing tests, CI Reviewed By: jaykorean Differential Revision: D53275303 Pulled By: pdillinger fbshipit-source-id: bc0881af270aa8ef4d0ae4f44c5a6614b6407377 |
||
Changyu Bi | d5bc30befa |
Enforce status checking after Valid() returns false for IteratorWrapper (#11975)
Summary: ... when compiled with ASSERT_STATUS_CHECKED = 1. The main change is in iterator_wrapper.h. The remaining changes are just fixing existing unit tests. Adding this check to IteratorWrapper gives a good coverage as the class is used in many places, including child iterators under merging iterator, merging iterator under DB iter, file_iter under level iterator, etc. This change can catch the bug fixed in https://github.com/facebook/rocksdb/issues/11782. Future follow up: enable `ASSERT_STATUS_CHECKED=1` for stress test and for DEBUG_LEVEL=0. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11975 Test Plan: * `ASSERT_STATUS_CHECKED=1 DEBUG_LEVEL=2 make -j32 J=32 check` * I tried to run stress test with `ASSERT_STATUS_CHECKED=1`, but there are a lot of existing stress code that ignore status checking, and fail without the change in this PR. So defer that to a follow up task. Reviewed By: ajkr Differential Revision: D50383790 Pulled By: cbi42 fbshipit-source-id: 1a28ce0f5fdf1890f93400b26b3b1b3a287624ce |
||
anand76 | 269478ee46 |
Support compressed and local flash secondary cache stacking (#11812)
Summary: This PR implements support for a three tier cache - primary block cache, compressed secondary cache, and a nvm (local flash) secondary cache. This allows more effective utilization of the nvm cache, and minimizes the number of reads from local flash by caching compressed blocks in the compressed secondary cache. The basic design is as follows - 1. A new secondary cache implementation, ```TieredSecondaryCache```, is introduced. It keeps the compressed and nvm secondary caches and manages the movement of blocks between them and the primary block cache. To setup a three tier cache, we allocate a ```CacheWithSecondaryAdapter```, with a ```TieredSecondaryCache``` instance as the secondary cache. 2. The table reader passes both the uncompressed and compressed block to ```FullTypedCacheInterface::InsertFull```, allowing the block cache to optionally store the compressed block. 3. When there's a miss, the block object is constructed and inserted in the primary cache, and the compressed block is inserted into the nvm cache by calling ```InsertSaved```. This avoids the overhead of recompressing the block, as well as avoiding putting more memory pressure on the compressed secondary cache. 4. When there's a hit in the nvm cache, we attempt to insert the block in the compressed secondary cache and the primary cache, subject to the admission policy of those caches (i.e admit on second access). Blocks/items evicted from any tier are simply discarded. We can easily implement additional admission policies if desired. Todo (In a subsequent PR): 1. Add to db_bench and run benchmarks 2. Add to db_stress Pull Request resolved: https://github.com/facebook/rocksdb/pull/11812 Reviewed By: pdillinger Differential Revision: D49461842 Pulled By: anand1976 fbshipit-source-id: b40ac1330ef7cd8c12efa0a3ca75128e602e3a0b |
||
Peter Dillinger | ef6f025563 |
Placeholder for AutoHyperClockCache, more (#11692)
Summary: * The plan is for AutoHyperClockCache to be selected when HyperClockCacheOptions::estimated_entry_charge == 0, and in that case to use a new configuration option min_avg_entry_charge for determining an extreme case maximum size for the hash table. For the placeholder, a hack is in place in HyperClockCacheOptions::MakeSharedCache() to make the unit tests happy despite the new options not really making sense with the current implementation. * Mostly updating and refactoring tests to test both the current HCC (internal name FixedHyperClockCache) and a placeholder for the new version (internal name AutoHyperClockCache). * Simplify some existing tests not to depend directly on cache type. * Type-parameterize the shard-level unit tests, which unfortunately requires more syntax like `this->` in places for disambiguation. * Added means of choosing auto_hyper_clock_cache to cache_bench, db_bench, and db_stress, including add to crash test. * Add another templated class BaseHyperClockCache to reduce future copy-paste * Added ReportProblems support to cache_bench * Added a DEBUG-level diagnostic to ReportProblems for the variance in load factor throughout the table, which will become more of a concern with linear hashing to be used in the Auto implementation. Example with current Fixed HCC: ``` 2023/08/10-13:41:41.602450 6ac36 [DEBUG] [che/clock_cache.cc:1507] Slot occupancy stats: Overall 49% (129008/262144), Min/Max/Window = 39%/60%/500, MaxRun{Pos/Neg} = 18/17 ``` In other words, with overall occupancy of 49%, the lowest across any 500 contiguous cells is 39% and highest 60%. Longest run of occupied is 18 and longest run of unoccupied is 17. This seems consistent with random samples from a uniform distribution. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11692 Test Plan: Shouldn't be any meaningful changes yet to production code or to what is tested, but there is temporary redundancy in testing until the new implementation is plugged in. Reviewed By: jowlyzhang Differential Revision: D48247413 Pulled By: pdillinger fbshipit-source-id: 11541f996d97af403c2e43c92fb67ff22dd0b5da |
||
Peter Dillinger | f4a02f2c52 |
Add hash_seed to Caches (#11391)
Summary: See motivation and description in new ShardedCacheOptions::hash_seed option. Updated db_bench so that its seed param is used for the cache hash seed. Made its code more safe to ensure seed is set before use. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11391 Test Plan: unit tests added / updated **Performance** - no discernible difference seen running cache_bench repeatedly before & after. With lru_cache and hyper_clock_cache. Reviewed By: hx235 Differential Revision: D45557797 Pulled By: pdillinger fbshipit-source-id: 40bf4da6d66f9d41a8a0eb8e5cf4246a4aa07934 |
||
Peter Dillinger | 41a7fbf758 |
Avoid long parameter lists configuring Caches (#11386)
Summary: For better clarity, encouraging more options explicitly specified using fields rather than positionally via constructor parameter lists. Simplifies code maintenance as new fields are added. Deprecate some cases of the confusing pattern of NewWhatever() functions returning shared_ptr. Net reduction of about 70 source code lines (including comments). Pull Request resolved: https://github.com/facebook/rocksdb/pull/11386 Test Plan: existing tests Reviewed By: ajkr Differential Revision: D45059075 Pulled By: pdillinger fbshipit-source-id: d53fa09b268024f9c55254bb973b6c69feebf41a |
||
Peter Dillinger | 204fcff751 |
HyperClockCache support for SecondaryCache, with refactoring (#11301)
Summary: Internally refactors SecondaryCache integration out of LRUCache specifically and into a wrapper/adapter class that works with various Cache implementations. Notably, this relies on separating the notion of async lookup handles from other cache handles, so that HyperClockCache doesn't have to deal with the problem of allocating handles from the hash table for lookups that might fail anyway, and might be on the same key without support for coalescing. (LRUCache's hash table can incorporate previously allocated handles thanks to its pointer indirection.) Specifically, I'm worried about the case in which hundreds of threads try to access the same block and probing in the hash table degrades to linear search on the pile of entries with the same key. This change is a big step in the direction of supporting stacked SecondaryCaches, but there are obstacles to completing that. Especially, there is no SecondaryCache hook for evictions to pass from one to the next. It has been proposed that evictions be transmitted simply as the persisted data (as in SaveToCallback), but given the current structure provided by the CacheItemHelpers, that would require an extra copy of the block data, because there's intentionally no way to ask for a contiguous Slice of the data (to allow for flexibility in storage). `AsyncLookupHandle` and the re-worked `WaitAll()` should be essentially prepared for stacked SecondaryCaches, but several "TODO with stacked secondaries" issues remain in various places. It could be argued that the stacking instead be done as a SecondaryCache adapter that wraps two (or more) SecondaryCaches, but at least with the current API that would require an extra heap allocation on SecondaryCache Lookup for a wrapper SecondaryCacheResultHandle that can transfer a Lookup between secondaries. We could also consider trying to unify the Cache and SecondaryCache APIs, though that might be difficult if `AsyncLookupHandle` is kept a fixed struct. ## cache.h (public API) Moves `secondary_cache` option from LRUCacheOptions to ShardedCacheOptions so that it is applicable to HyperClockCache. ## advanced_cache.h (advanced public API) * Add `Cache::CreateStandalone()` so that the SecondaryCache support wrapper can use it. * Add `SetEvictionCallback()` / `eviction_callback_` so that the SecondaryCache support wrapper can use it. Only a single callback is supported for efficiency. If there is ever a need for more than one, hopefully that can be handled with a broadcast callback wrapper. These are essentially the two "extra" pieces of `Cache` for pulling out specific SecondaryCache support from the `Cache` implementation. I think it's a good trade-off as these are reasonable, limited, and reusable "cut points" into the `Cache` implementations. * Remove async capability from standard `Lookup()` (getting rid of awkward restrictions on pending Handles) and add `AsyncLookupHandle` and `StartAsyncLookup()`. As noted in the comments, the full struct of `AsyncLookupHandle` is exposed so that it can be stack allocated, for efficiency, though more data is being copied around than before, which could impact performance. (Lookup info -> AsyncLookupHandle -> Handle vs. Lookup info -> Handle) I could foresee a future in which a Cache internally saves a pointer to the AsyncLookupHandle, which means it's dangerous to allow it to be copyable or even movable. It also means it's not compatible with std::vector (which I don't like requiring as an API parameter anyway), so `WaitAll()` expects any contiguous array of AsyncLookupHandles. I believe this is best for common case efficiency, while behaving well in other cases also. For example, `WaitAll()` has no effect on default-constructed AsyncLookupHandles, which look like a completed cache miss. ## cacheable_entry.h A couple of functions are obsolete because Cache::Handle can no longer be pending. ## cache.cc Provides default implementations for new or revamped Cache functions, especially appropriate for non-blocking caches. ## secondary_cache_adapter.{h,cc} The full details of the Cache wrapper adding SecondaryCache support. Essentially replicates the SecondaryCache handling that was in LRUCache, but obviously refactored. There is a bit of logic duplication, where Lookup() is essentially a manually optimized version of StartAsyncLookup() and Wait(), but it's roughly a dozen lines of code. ## sharded_cache.h, typed_cache.h, charged_cache.{h,cc}, sim_cache.cc Simply updated for Cache API changes. ## lru_cache.{h,cc} Carefully remove SecondaryCache logic, implement `CreateStandalone` and eviction handler functionality. ## clock_cache.{h,cc} Expose existing `CreateStandalone` functionality, add eviction handler functionality. Light refactoring. ## block_based_table_reader* Mostly re-worked the only usage of async Lookup, which is in BlockBasedTable::MultiGet. Used arrays in place of autovector in some places for efficiency. Simplified some logic by not trying to process some cache results before they're all ready. Created new function `BlockBasedTable::GetCachePriority()` to reduce some pre-existing code duplication (and avoid making it worse). Fixed at least one small bug from the prior confusing mixture of async and sync Lookups. In MaybeReadBlockAndLoadToCache(), called by RetrieveBlock(), called by MultiGet() with wait=false, is_cache_hit for the block_cache_tracer entry would not be set to true if the handle was pending after Lookup and before Wait. ## Intended follow-up work * Figure out if there are any missing stats or block_cache_tracer work in refactored BlockBasedTable::MultiGet * Stacked secondary caches (see above discussion) * See if we can make up for the small MultiGet performance regression. * Study more performance with SecondaryCache * Items evicted from over-full LRUCache in Release were not being demoted to SecondaryCache, and still aren't to minimize unit test churn. Ideally they would be demoted, but it's an exceptional case so not a big deal. * Use CreateStandalone for cache reservations (save unnecessary hash table operations). Not a big deal, but worthy cleanup. * Somehow I got the contract for SecondaryCache::Insert wrong in #10945. (Doesn't take ownership!) That API comment needs to be fixed, but didn't want to mingle that in here. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11301 Test Plan: ## Unit tests Generally updated to include HCC in SecondaryCache tests, though HyperClockCache has some different, less strict behaviors that leads to some tests not really being set up to work with it. Some of the tests remain disabled with it, but I think we have good coverage without them. ## Crash/stress test Updated to use the new combination. ## Performance First, let's check for regression on caches without secondary cache configured. Adding support for the eviction callback is likely to have a tiny effect, but it shouldn't be worrisome. LRUCache could benefit slightly from less logic around SecondaryCache handling. We can test with cache_bench default settings, built with DEBUG_LEVEL=0 and PORTABLE=0. ``` (while :; do base/cache_bench --cache_type=hyper_clock_cache | grep Rough; done) | awk '{ sum += $9; count++; print $0; print "Average: " int(sum / count) }' ``` **Before** this and #11299 (which could also have a small effect), running for about an hour, before & after running concurrently for each cache type: HyperClockCache: 3168662 (average parallel ops/sec) LRUCache: 2940127 **After** this and #11299, running for about an hour: HyperClockCache: 3164862 (average parallel ops/sec) (0.12% slower) LRUCache: 2940928 (0.03% faster) This is an acceptable difference IMHO. Next, let's consider essentially the worst case of new CPU overhead affecting overall performance. MultiGet uses the async lookup interface regardless of whether SecondaryCache or folly are used. We can configure a benchmark where all block cache queries are for data blocks, and all are hits. Create DB and test (before and after tests running simultaneously): ``` TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16 TEST_TMPDIR=/dev/shm base/db_bench -benchmarks=multireadrandom[-X30] -readonly -multiread_batched -batch_size=32 -num=30000000 -bloom_bits=16 -cache_size=6789000000 -duration 20 -threads=16 ``` **Before**: multireadrandom [AVG 30 runs] : 3444202 (± 57049) ops/sec; 240.9 (± 4.0) MB/sec multireadrandom [MEDIAN 30 runs] : 3514443 ops/sec; 245.8 MB/sec **After**: multireadrandom [AVG 30 runs] : 3291022 (± 58851) ops/sec; 230.2 (± 4.1) MB/sec multireadrandom [MEDIAN 30 runs] : 3366179 ops/sec; 235.4 MB/sec So that's roughly a 3% regression, on kind of a *worst case* test of MultiGet CPU. Similar story with HyperClockCache: **Before**: multireadrandom [AVG 30 runs] : 3933777 (± 41840) ops/sec; 275.1 (± 2.9) MB/sec multireadrandom [MEDIAN 30 runs] : 3970667 ops/sec; 277.7 MB/sec **After**: multireadrandom [AVG 30 runs] : 3755338 (± 30391) ops/sec; 262.6 (± 2.1) MB/sec multireadrandom [MEDIAN 30 runs] : 3785696 ops/sec; 264.8 MB/sec Roughly a 4-5% regression. Not ideal, but not the whole story, fortunately. Let's also look at Get() in db_bench: ``` TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom[-X30] -readonly -num=30000000 -bloom_bits=16 -cache_size=6789000000 -duration 20 -threads=16 ``` **Before**: readrandom [AVG 30 runs] : 2198685 (± 13412) ops/sec; 153.8 (± 0.9) MB/sec readrandom [MEDIAN 30 runs] : 2209498 ops/sec; 154.5 MB/sec **After**: readrandom [AVG 30 runs] : 2292814 (± 43508) ops/sec; 160.3 (± 3.0) MB/sec readrandom [MEDIAN 30 runs] : 2365181 ops/sec; 165.4 MB/sec That's showing roughly a 4% improvement, perhaps because of the secondary cache code that is no longer part of LRUCache. But weirdly, HyperClockCache is also showing 2-3% improvement: **Before**: readrandom [AVG 30 runs] : 2272333 (± 9992) ops/sec; 158.9 (± 0.7) MB/sec readrandom [MEDIAN 30 runs] : 2273239 ops/sec; 159.0 MB/sec **After**: readrandom [AVG 30 runs] : 2332407 (± 11252) ops/sec; 163.1 (± 0.8) MB/sec readrandom [MEDIAN 30 runs] : 2335329 ops/sec; 163.3 MB/sec Reviewed By: ltamasi Differential Revision: D44177044 Pulled By: pdillinger fbshipit-source-id: e808e48ff3fe2f792a79841ba617be98e48689f5 |
||
Peter Dillinger | 3cacd4b4ec |
Put Cache and CacheWrapper in new public header (#11192)
Summary: The definition of the Cache class should not be needed by the vast majority of RocksDB users, so I think it is just distracting to include it in cache.h, which is primarily needed for configuring and creating caches. This change moves the class to a new header advanced_cache.h. It is just cut-and-paste except for modifying the class API comment. In general, operations on shared_ptr<Cache> should continue to work when only a forward declaration of Cache is available, as long as all the Cache instances provided are already shared_ptr. See https://stackoverflow.com/a/17650101/454544 Also, the most common way to customize a Cache is by wrapping an existing implementation, so it makes sense to provide CacheWrapper in the public API. This was a cut-and-paste job except removing the implementation of Name() so that derived classes must provide it. Intended follow-up: consolidate Release() into one function to reduce customization bugs / confusion Pull Request resolved: https://github.com/facebook/rocksdb/pull/11192 Test Plan: `make check` Reviewed By: anand1976 Differential Revision: D43055487 Pulled By: pdillinger fbshipit-source-id: 7b05492df35e0f30b581b4c24c579bc275b6d110 |
||
sdong | 4720ba4391 |
Remove RocksDB LITE (#11147)
Summary: We haven't been actively mantaining RocksDB LITE recently and the size must have been gone up significantly. We are removing the support. Most of changes were done through following comments: unifdef -m -UROCKSDB_LITE `git grep -l ROCKSDB_LITE | egrep '[.](cc|h)'` by Peter Dillinger. Others changes were manually applied to build scripts, CircleCI manifests, ROCKSDB_LITE is used in an expression and file db_stress_test_base.cc. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11147 Test Plan: See CI Reviewed By: pdillinger Differential Revision: D42796341 fbshipit-source-id: 4920e15fc2060c2cd2221330a6d0e5e65d4b7fe2 |
||
Levi Tamasi | 6da2e20df3 |
Remove more obsolete statistics (#11131)
Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/11131 Test Plan: `make check` Reviewed By: pdillinger Differential Revision: D42753997 Pulled By: ltamasi fbshipit-source-id: ce8b84c1e55374257e93ed74fd255c9b759723ce |
||
sdong | 2800aa069a |
Remove compressed block cache (#11117)
Summary: Compressed block cache is replaced by compressed secondary cache. Remove the feature. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11117 Test Plan: See CI passes Reviewed By: pdillinger Differential Revision: D42700164 fbshipit-source-id: 6cbb24e460da29311150865f60ecb98637f9f67d |
||
Peter Dillinger | 9f7801c5f1 |
Major Cache refactoring, CPU efficiency improvement (#10975)
Summary: This is several refactorings bundled into one to avoid having to incrementally re-modify uses of Cache several times. Overall, there are breaking changes to Cache class, and it becomes more of low-level interface for implementing caches, especially block cache. New internal APIs make using Cache cleaner than before, and more insulated from block cache evolution. Hopefully, this is the last really big block cache refactoring, because of rather effectively decoupling the implementations from the uses. This change also removes the EXPERIMENTAL designation on the SecondaryCache support in Cache. It seems reasonably mature at this point but still subject to change/evolution (as I warn in the API docs for Cache). The high-level motivation for this refactoring is to minimize code duplication / compounding complexity in adding SecondaryCache support to HyperClockCache (in a later PR). Other benefits listed below. * static_cast lines of code +29 -35 (net removed 6) * reinterpret_cast lines of code +6 -32 (net removed 26) ## cache.h and secondary_cache.h * Always use CacheItemHelper with entries instead of just a Deleter. There are several motivations / justifications: * Simpler for implementations to deal with just one Insert and one Lookup. * Simpler and more efficient implementation because we don't have to track which entries are using helpers and which are using deleters * Gets rid of hack to classify cache entries by their deleter. Instead, the CacheItemHelper includes a CacheEntryRole. This simplifies a lot of code (cache_entry_roles.h almost eliminated). Fixes https://github.com/facebook/rocksdb/issues/9428. * Makes it trivial to adjust SecondaryCache behavior based on kind of block (e.g. don't re-compress filter blocks). * It is arguably less convenient for many direct users of Cache, but direct users of Cache are now rare with introduction of typed_cache.h (below). * I considered and rejected an alternative approach in which we reduce customizability by assuming each secondary cache compatible value starts with a Slice referencing the uncompressed block contents (already true or mostly true), but we apparently intend to stack secondary caches. Saving an entry from a compressed secondary to a lower tier requires custom handling offered by SaveToCallback, etc. * Make CreateCallback part of the helper and introduce CreateContext to work with it (alternative to https://github.com/facebook/rocksdb/issues/10562). This cleans up the interface while still allowing context to be provided for loading/parsing values into primary cache. This model works for async lookup in BlockBasedTable reader (reader owns a CreateContext) under the assumption that it always waits on secondary cache operations to finish. (Otherwise, the CreateContext could be destroyed while async operation depending on it continues.) This likely contributes most to the observed performance improvement because it saves an std::function backed by a heap allocation. * Use char* for serialized data, e.g. in SaveToCallback, where void* was confusingly used. (We use `char*` for serialized byte data all over RocksDB, with many advantages over `void*`. `memcpy` etc. are legacy APIs that should not be mimicked.) * Add a type alias Cache::ObjectPtr = void*, so that we can better indicate the intent of the void* when it is to be the object associated with a Cache entry. Related: started (but did not complete) a refactoring to move away from "value" of a cache entry toward "object" or "obj". (It is confusing to call Cache a key-value store (like DB) when it is really storing arbitrary in-memory objects, not byte strings.) * Remove unnecessary key param from DeleterFn. This is good for efficiency in HyperClockCache, which does not directly store the cache key in memory. (Alternative to https://github.com/facebook/rocksdb/issues/10774) * Add allocator to Cache DeleterFn. This is a kind of future-proofing change in case we get more serious about using the Cache allocator for memory tracked by the Cache. Right now, only the uncompressed block contents are allocated using the allocator, and a pointer to that allocator is saved as part of the cached object so that the deleter can use it. (See CacheAllocationPtr.) If in the future we are able to "flatten out" our Cache objects some more, it would be good not to have to track the allocator as part of each object. * Removes legacy `ApplyToAllCacheEntries` and changes `ApplyToAllEntries` signature for Deleter->CacheItemHelper change. ## typed_cache.h Adds various "typed" interfaces to the Cache as internal APIs, so that most uses of Cache can use simple type safe code without casting and without explicit deleters, etc. Almost all of the non-test, non-glue code uses of Cache have been migrated. (Follow-up work: CompressedSecondaryCache deserves deeper attention to migrate.) This change expands RocksDB's internal usage of metaprogramming and SFINAE (https://en.cppreference.com/w/cpp/language/sfinae). The existing usages of Cache are divided up at a high level into these new interfaces. See updated existing uses of Cache for examples of how these are used. * PlaceholderCacheInterface - Used for making cache reservations, with entries that have a charge but no value. * BasicTypedCacheInterface<TValue> - Used for primary cache storage of objects of type TValue, which can be cleaned up with std::default_delete<TValue>. The role is provided by TValue::kCacheEntryRole or given in an optional template parameter. * FullTypedCacheInterface<TValue, TCreateContext> - Used for secondary cache compatible storage of objects of type TValue. In addition to BasicTypedCacheInterface constraints, we require TValue::ContentSlice() to return persistable data. This simplifies usage for the normal case of simple secondary cache compatibility (can give you a Slice to the data already in memory). In addition to TCreateContext performing the role of Cache::CreateContext, it is also expected to provide a factory function for creating TValue. * For each of these, there's a "Shared" version (e.g. FullTypedSharedCacheInterface) that holds a shared_ptr to the Cache, rather than assuming external ownership by holding only a raw `Cache*`. These interfaces introduce specific handle types for each interface instantiation, so that it's easy to see what kind of object is controlled by a handle. (Ultimately, this might not be worth the extra complexity, but it seems OK so far.) Note: I attempted to make the cache 'charge' automatically inferred from the cache object type, such as by expecting an ApproximateMemoryUsage() function, but this is not so clean because there are cases where we need to compute the charge ahead of time and don't want to re-compute it. ## block_cache.h This header is essentially the replacement for the old block_like_traits.h. It includes various things to support block cache access with typed_cache.h for block-based table. ## block_based_table_reader.cc Before this change, accessing the block cache here was an awkward mix of static polymorphism (template TBlocklike) and switch-case on a dynamic BlockType value. This change mostly unifies on static polymorphism, relying on minor hacks in block_cache.h to distinguish variants of Block. We still check BlockType in some places (especially for stats, which could be improved in follow-up work) but at least the BlockType is a static constant from the template parameter. (No more awkward partial redundancy between static and dynamic info.) This likely contributes to the overall performance improvement, but hasn't been tested in isolation. The other key source of simplification here is a more unified system of creating block cache objects: for directly populating from primary cache and for promotion from secondary cache. Both use BlockCreateContext, for context and for factory functions. ## block_based_table_builder.cc, cache_dump_load_impl.cc Before this change, warming caches was super ugly code. Both of these source files had switch statements to basically transition from the dynamic BlockType world to the static TBlocklike world. None of that mess is needed anymore as there's a new, untyped WarmInCache function that handles all the details just as promotion from SecondaryCache would. (Fixes `TODO akanksha: Dedup below code` in block_based_table_builder.cc.) ## Everything else Mostly just updating Cache users to use new typed APIs when reasonably possible, or changed Cache APIs when not. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10975 Test Plan: tests updated Performance test setup similar to https://github.com/facebook/rocksdb/issues/10626 (by cache size, LRUCache when not "hyper" for HyperClockCache): 34MB 1thread base.hyper -> kops/s: 0.745 io_bytes/op: 2.52504e+06 miss_ratio: 0.140906 max_rss_mb: 76.4844 34MB 1thread new.hyper -> kops/s: 0.751 io_bytes/op: 2.5123e+06 miss_ratio: 0.140161 max_rss_mb: 79.3594 34MB 1thread base -> kops/s: 0.254 io_bytes/op: 1.36073e+07 miss_ratio: 0.918818 max_rss_mb: 45.9297 34MB 1thread new -> kops/s: 0.252 io_bytes/op: 1.36157e+07 miss_ratio: 0.918999 max_rss_mb: 44.1523 34MB 32thread base.hyper -> kops/s: 7.272 io_bytes/op: 2.88323e+06 miss_ratio: 0.162532 max_rss_mb: 516.602 34MB 32thread new.hyper -> kops/s: 7.214 io_bytes/op: 2.99046e+06 miss_ratio: 0.168818 max_rss_mb: 518.293 34MB 32thread base -> kops/s: 3.528 io_bytes/op: 1.35722e+07 miss_ratio: 0.914691 max_rss_mb: 264.926 34MB 32thread new -> kops/s: 3.604 io_bytes/op: 1.35744e+07 miss_ratio: 0.915054 max_rss_mb: 264.488 233MB 1thread base.hyper -> kops/s: 53.909 io_bytes/op: 2552.35 miss_ratio: 0.0440566 max_rss_mb: 241.984 233MB 1thread new.hyper -> kops/s: 62.792 io_bytes/op: 2549.79 miss_ratio: 0.044043 max_rss_mb: 241.922 233MB 1thread base -> kops/s: 1.197 io_bytes/op: 2.75173e+06 miss_ratio: 0.103093 max_rss_mb: 241.559 233MB 1thread new -> kops/s: 1.199 io_bytes/op: 2.73723e+06 miss_ratio: 0.10305 max_rss_mb: 240.93 233MB 32thread base.hyper -> kops/s: 1298.69 io_bytes/op: 2539.12 miss_ratio: 0.0440307 max_rss_mb: 371.418 233MB 32thread new.hyper -> kops/s: 1421.35 io_bytes/op: 2538.75 miss_ratio: 0.0440307 max_rss_mb: 347.273 233MB 32thread base -> kops/s: 9.693 io_bytes/op: 2.77304e+06 miss_ratio: 0.103745 max_rss_mb: 569.691 233MB 32thread new -> kops/s: 9.75 io_bytes/op: 2.77559e+06 miss_ratio: 0.103798 max_rss_mb: 552.82 1597MB 1thread base.hyper -> kops/s: 58.607 io_bytes/op: 1449.14 miss_ratio: 0.0249324 max_rss_mb: 1583.55 1597MB 1thread new.hyper -> kops/s: 69.6 io_bytes/op: 1434.89 miss_ratio: 0.0247167 max_rss_mb: 1584.02 1597MB 1thread base -> kops/s: 60.478 io_bytes/op: 1421.28 miss_ratio: 0.024452 max_rss_mb: 1589.45 1597MB 1thread new -> kops/s: 63.973 io_bytes/op: 1416.07 miss_ratio: 0.0243766 max_rss_mb: 1589.24 1597MB 32thread base.hyper -> kops/s: 1436.2 io_bytes/op: 1357.93 miss_ratio: 0.0235353 max_rss_mb: 1692.92 1597MB 32thread new.hyper -> kops/s: 1605.03 io_bytes/op: 1358.04 miss_ratio: 0.023538 max_rss_mb: 1702.78 1597MB 32thread base -> kops/s: 280.059 io_bytes/op: 1350.34 miss_ratio: 0.023289 max_rss_mb: 1675.36 1597MB 32thread new -> kops/s: 283.125 io_bytes/op: 1351.05 miss_ratio: 0.0232797 max_rss_mb: 1703.83 Almost uniformly improving over base revision, especially for hot paths with HyperClockCache, up to 12% higher throughput seen (1597MB, 32thread, hyper). The improvement for that is likely coming from much simplified code for providing context for secondary cache promotion (CreateCallback/CreateContext), and possibly from less branching in block_based_table_reader. And likely a small improvement from not reconstituting key for DeleterFn. Reviewed By: anand1976 Differential Revision: D42417818 Pulled By: pdillinger fbshipit-source-id: f86bfdd584dce27c028b151ba56818ad14f7a432 |
||
Peter Dillinger | 3182beeffc |
Observe and warn about misconfigured HyperClockCache (#10965)
Summary: Background. One of the core risks of chosing HyperClockCache is ending up with degraded performance if estimated_entry_charge is very significantly wrong. Too low leads to under-utilized hash table, which wastes a bit of (tracked) memory and likely increases access times due to larger working set size (more TLB misses). Too high leads to fully populated hash table (at some limit with reasonable lookup performance) and not being able to cache as many objects as the memory limit would allow. In either case, performance degradation is graceful/continuous but can be quite significant. For example, cutting block size in half without updating estimated_entry_charge could lead to a large portion of configured block cache memory (up to roughly 1/3) going unused. Fix. This change adds a mechanism through which the DB periodically probes the block cache(s) for "problems" to report, and adds diagnostics to the HyperClockCache for bad estimated_entry_charge. The periodic probing is currently done with DumpStats / stats_dump_period_sec, and diagnostics reported to info_log (normally LOG file). Pull Request resolved: https://github.com/facebook/rocksdb/pull/10965 Test Plan: unit test included. Doesn't cover all the implemented subtleties of reporting, but ensures basics of when to report or not. Also manual testing with db_bench. Create db with ``` ./db_bench --benchmarks=fillrandom,flush --num=3000000 --disable_wal=1 ``` Use and check LOG file for HyperClockCache for various block sizes (used as estimated_entry_charge) ``` ./db_bench --use_existing_db --benchmarks=readrandom --num=3000000 --duration=20 --stats_dump_period_sec=8 --cache_type=hyper_clock_cache -block_size=XXXX ``` Seeing warnings / errors or not as expected. Reviewed By: anand1976 Differential Revision: D41406932 Pulled By: pdillinger fbshipit-source-id: 4ca56162b73017e4b9cec2cad74466f49c27a0a7 |
||
Peter Dillinger | 32520df1d9 |
Remove prototype FastLRUCache (#10954)
Summary: This was just a stepping stone to what eventually became HyperClockCache, and is now just more code to maintain. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10954 Test Plan: tests updated Reviewed By: akankshamahajan15 Differential Revision: D41310123 Pulled By: pdillinger fbshipit-source-id: 618ee148a1a0a29ee756ba8fe28359617b7cd67c |
||
Andrew Kryczka | 5cf6ab6f31 |
Ran clang-format on db/ directory (#10910)
Summary: Ran `find ./db/ -type f | xargs clang-format -i`. Excluded minor changes it tried to make on db/db_impl/. Everything else it changed was directly under db/ directory. Included minor manual touchups mentioned in PR commit history. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10910 Reviewed By: riversand963 Differential Revision: D40880683 Pulled By: ajkr fbshipit-source-id: cfe26cda05b3fb9a72e3cb82c286e21d8c5c4174 |
||
Andrew Kryczka | 33ceea9b76 |
Add DB property for fast block cache stats collection (#10832)
Summary: This new property allows users to trigger the background block cache stats collection mode through the `GetProperty()` and `GetMapProperty()` APIs. The background mode has much lower overhead at the expense of returning stale values in more cases. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10832 Test Plan: updated unit test Reviewed By: pdillinger Differential Revision: D40497883 Pulled By: ajkr fbshipit-source-id: bdcc93402f426463abb2153756aad9e295447343 |
||
Peter Dillinger | 0f91c72adc |
Call experimental new clock cache HyperClockCache (#10684)
Summary: This change establishes a distinctive name for the experimental new lock-free clock cache (originally developed by guidotag and revamped in PR https://github.com/facebook/rocksdb/issues/10626). A few reasons: * We want to make it clear that this is a fundamentally different implementation vs. the old clock cache, to avoid people saying "I already tried clock cache." * We want to highlight the key feature: it's fast (especially under parallel load) * Because it requires an estimated charge per entry, it is not drop-in API compatible with old clock cache. This estimate might always be required for highest performance, and giving it a distinct name should reduce confusion about the distinct API requirements. * We might develop a variant requiring the same estimate parameter but with LRU eviction. In that case, using the name HyperLRUCache should make things more clear. (FastLRUCache is just a prototype that might soon be removed.) Some API detail: * To reduce copy-pasting parameter lists, etc. as in LRUCache construction, I have a `MakeSharedCache()` function on `HyperClockCacheOptions` instead of `NewHyperClockCache()`. * Changes -cache_type=clock_cache to -cache_type=hyper_clock_cache for applicable tools. I think this is more consistent / sustainable for reasons already stated. For performance tests see https://github.com/facebook/rocksdb/pull/10626 Pull Request resolved: https://github.com/facebook/rocksdb/pull/10684 Test Plan: no interesting functional changes; tests updated Reviewed By: anand1976 Differential Revision: D39547800 Pulled By: pdillinger fbshipit-source-id: 5c0fe1b5cf3cb680ab369b928c8569682b9795bf |
||
Peter Dillinger | 5724348689 |
Revamp, optimize new experimental clock cache (#10626)
Summary: * Consolidates most metadata into a single word per slot so that more can be accomplished with a single atomic update. In the common case, Lookup was previously about 4 atomic updates, now just 1 atomic update. Common case Release was previously 1 atomic read + 1 atomic update, now just 1 atomic update. * Eliminate spins / waits / yields, which likely threaten some "lock free" benefits. Compare-exchange loops are only used in explicit Erase, and strict_capacity_limit=true Insert. Eviction uses opportunistic compare- exchange. * Relaxes some aggressiveness and guarantees. For example, * Duplicate Inserts will sometimes go undetected and the shadow duplicate will age out with eviction. * In many cases, the older Inserted value for a given cache key will be kept (i.e. Insert does not support overwrite). * Entries explicitly erased (rather than evicted) might not be freed immediately in some rare cases. * With strict_capacity_limit=false, capacity limit is not tracked/enforced as precisely as LRUCache, but is self-correcting and should only deviate by a very small number of extra or fewer entries. * Use smaller "computed default" number of cache shards in many cases, because benefits to larger usage tracking / eviction pools outweigh the small cost of more lock-free atomic contention. The improvement in CPU and I/O is dramatic in some limit-memory cases. * Even without the sharding change, the eviction algorithm is likely more effective than LRU overall because it's more stateful, even though the "hot path" state tracking for it is essentially free with ref counting. It is like a generalized CLOCK with aging (see code comments). I don't have performance numbers showing a specific improvement, but in theory, for a Poisson access pattern to each block, keeping some state allows better estimation of time to next access (Poisson interval) than strict LRU. The bounded randomness in CLOCK can also reduce "cliff" effect for repeated range scans approaching and exceeding cache size. ## Hot path algorithm comparison Rough descriptions, focusing on number and kind of atomic operations: * Old `Lookup()` (2-5 atomic updates per probe): ``` Loop: Increment internal ref count at slot If possible hit: Check flags atomic (and non-atomic fields) If cache hit: Three distinct updates to 'flags' atomic Increment refs for internal-to-external Return Decrement internal ref count while atomic read 'displacements' > 0 ``` * New `Lookup()` (1-2 atomic updates per probe): ``` Loop: Increment acquire counter in meta word (optimistic) If visible entry (already read meta word): If match (read non-atomic fields): Return Else: Decrement acquire counter in meta word Else if invisible entry (rare, already read meta word): Decrement acquire counter in meta word while atomic read 'displacements' > 0 ``` * Old `Release()` (1 atomic update, conditional on atomic read, rarely more): ``` Read atomic ref count If last reference and invisible (rare): Use CAS etc. to remove Return Else: Decrement ref count ``` * New `Release()` (1 unconditional atomic update, rarely more): ``` Increment release counter in meta word If last reference and invisible (rare): Use CAS etc. to remove Return ``` ## Performance test setup Build DB with ``` TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16 ``` Test with ``` TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics ``` Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations: base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6) folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry) gt_clock: experimental ClockCache before this change new_clock: experimental ClockCache with this change ## Performance test results First test "hot path" read performance, with block cache large enough for whole DB: 4181MB 1thread base -> kops/s: 47.761 4181MB 1thread folly -> kops/s: 45.877 4181MB 1thread gt_clock -> kops/s: 51.092 4181MB 1thread new_clock -> kops/s: 53.944 4181MB 16thread base -> kops/s: 284.567 4181MB 16thread folly -> kops/s: 249.015 4181MB 16thread gt_clock -> kops/s: 743.762 4181MB 16thread new_clock -> kops/s: 861.821 4181MB 24thread base -> kops/s: 303.415 4181MB 24thread folly -> kops/s: 266.548 4181MB 24thread gt_clock -> kops/s: 975.706 4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944) 4181MB 32thread base -> kops/s: 311.251 4181MB 32thread folly -> kops/s: 274.952 4181MB 32thread gt_clock -> kops/s: 1045.98 4181MB 32thread new_clock -> kops/s: 1370.38 4181MB 48thread base -> kops/s: 310.504 4181MB 48thread folly -> kops/s: 268.322 4181MB 48thread gt_clock -> kops/s: 1195.65 4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944) 4181MB 64thread base -> kops/s: 307.839 4181MB 64thread folly -> kops/s: 272.172 4181MB 64thread gt_clock -> kops/s: 1204.47 4181MB 64thread new_clock -> kops/s: 1615.37 4181MB 128thread base -> kops/s: 310.934 4181MB 128thread folly -> kops/s: 267.468 4181MB 128thread gt_clock -> kops/s: 1188.75 4181MB 128thread new_clock -> kops/s: 1595.46 Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x. Now test a large block cache with low miss ratio, but some eviction is required: 1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23 1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43 1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4 1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56 1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59 1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8 1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89 1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45 1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98 1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91 1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26 1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63 610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137 610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996 610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934 610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5 610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402 610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742 610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062 610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453 610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457 610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426 610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273 610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812 The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.) Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc. 233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371 233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293 233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844 233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461 233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227 233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738 233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688 233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402 233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84 233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785 233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94 233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016 89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086 89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984 89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441 89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754 89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812 89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418 89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422 89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293 89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43 89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824 89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32 89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223 ^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.) Even smaller cache size: 34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914 34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281 34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523 34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125 34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48 34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531 34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465 34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793 34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484 34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457 34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41 34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52 As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn: 13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328 13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633 13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684 13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383 13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492 13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863 13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121 13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758 13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539 13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098 13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77 13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27 gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention: 13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852 13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516 13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688 13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707 13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57 13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219 13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871 13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109 Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626 Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN Reviewed By: anand1976 Differential Revision: D39368406 Pulled By: pdillinger fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9 |
||
Peter Dillinger | 6de7081cf3 |
Always verify SST unique IDs on SST file open (#10532)
Summary: Although we've been tracking SST unique IDs in the DB manifest unconditionally, checking has been opt-in and with an extra pass at DB::Open time. This changes the behavior of `verify_sst_unique_id_in_manifest` to check unique ID against manifest every time an SST file is opened through table cache (normal DB operations), replacing the explicit pass over files at DB::Open time. This change also enables the option by default and removes the "EXPERIMENTAL" designation. One possible criticism is that the option no longer ensures the integrity of a DB at Open time. This is far from an all-or-nothing issue. Verifying the IDs of all SST files hardly ensures all the data in the DB is readable. (VerifyChecksum is supposed to do that.) Also, with max_open_files=-1 (default, extremely common), all SST files are opened at DB::Open time anyway. Implementation details: * `VerifySstUniqueIdInManifest()` functions are the extra/explicit pass that is now removed. * Unit tests that manipulate/corrupt table properties have to opt out of this check, because that corrupts the "actual" unique id. (And even for testing we don't currently have a mechanism to set "no unique id" in the in-memory file metadata for new files.) * A lot of other unit test churn relates to (a) default checking on, and (b) checking on SST open even without DB::Open (e.g. on flush) * Use `FileMetaData` for more `TableCache` operations (in place of `FileDescriptor`) so that we have access to the unique_id whenever we might need to open an SST file. **There is the possibility of performance impact because we can no longer use the more localized `fd` part of an `FdWithKeyRange` but instead follow the `file_metadata` pointer. However, this change (possible regression) is only done for `GetMemoryUsageByTableReaders`.** * Removed a completely unnecessary constructor overload of `TableReaderOptions` Possible follow-up: * Verification only happens when opening through table cache. Are there more places where this should happen? * Improve error message when there is a file size mismatch vs. manifest (FIXME added in the appropriate place). * I'm not sure there's a justification for `FileDescriptor` to be distinct from `FileMetaData`. * I'm skeptical that `FdWithKeyRange` really still makes sense for optimizing some data locality by duplicating some data in memory, but I could be wrong. * An unnecessary overload of NewTableReader was recently added, in the public API nonetheless (though unusable there). It should be cleaned up to put most things under `TableReaderOptions`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10532 Test Plan: updated unit tests Performance test showing no significant difference (just noise I think): `./db_bench -benchmarks=readwhilewriting[-X10] -num=3000000 -disable_wal=1 -bloom_bits=8 -write_buffer_size=1000000 -target_file_size_base=1000000` Before: readwhilewriting [AVG 10 runs] : 68702 (± 6932) ops/sec After: readwhilewriting [AVG 10 runs] : 68239 (± 7198) ops/sec Reviewed By: jay-zhuang Differential Revision: D38765551 Pulled By: pdillinger fbshipit-source-id: a827a708155f12344ab2a5c16e7701c7636da4c2 |
||
Andrew Kryczka | fe5fbe32cb |
Deflake DBBlockCacheTest1.WarmCacheWithBlocksDuringFlush (#10635)
Summary: Previously, automatic compaction could be triggered prior to the test invoking CompactRange(). It could lead to the following flaky failure: ``` /root/project/db/db_block_cache_test.cc:753: Failure Expected equality of these values: 1 + kNumBlocks Which is: 11 options.statistics->getTickerCount(BLOCK_CACHE_INDEX_ADD) Which is: 10 ``` A sequence leading to this failure was: * Automatic compaction * files [1] [2] trivially moved * files [3] [4] [5] [6] trivially moved * CompactRange() * files [7] [8] [9] trivially moved * file [10] trivially moved In such a case, the index/filter block adds that the test expected did not happen since there were no new files. This PR just tweaks settings to ensure the `CompactRange()` produces one new file. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10635 Reviewed By: cbi42 Differential Revision: D39250869 Pulled By: ajkr fbshipit-source-id: a3c94c49069e28c49c40b4b80dae0059739d19fd |
||
Gang Liao | 275cd80cdb |
Add a blob-specific cache priority (#10461)
Summary: RocksDB's `Cache` abstraction currently supports two priority levels for items: high (used for frequently accessed/highly valuable SST metablocks like index/filter blocks) and low (used for SST data blocks). Blobs are typically lower-value targets for caching than data blocks, since 1) with BlobDB, data blocks containing blob references conceptually form an index structure which has to be consulted before we can read the blob value, and 2) cached blobs represent only a single key-value, while cached data blocks generally contain multiple KVs. Since we would like to make it possible to use the same backing cache for the block cache and the blob cache, it would make sense to add a new, lower-than-low cache priority level (bottom level) for blobs so data blocks are prioritized over them. This task is a part of https://github.com/facebook/rocksdb/issues/10156 Pull Request resolved: https://github.com/facebook/rocksdb/pull/10461 Reviewed By: siying Differential Revision: D38672823 Pulled By: ltamasi fbshipit-source-id: 90cf7362036563d79891f47be2cc24b827482743 |
||
Peter Dillinger | 86a1e3e0e7 |
Derive cache keys from SST unique IDs (#10394)
Summary: ... so that cache keys can be derived from DB manifest data before reading the file from storage--so that every part of the file can potentially go in a persistent cache. See updated comments in cache_key.cc for technical details. Importantly, the new cache key encoding uses some fancy but efficient math to pack data into the cache key without depending on the sizes of the various pieces. This simplifies some existing code creating cache keys, like cache warming before the file size is known. This should provide us an essentially permanent mapping between SST unique IDs and base cache keys, with the ability to "upgrade" SST unique IDs (and thus cache keys) with new SST format_versions. These cache keys are of similar, perhaps indistinguishable quality to the previous generation. Before this change (see "corrected" days between collision): ``` ./cache_bench -stress_cache_key -sck_keep_bits=43 18 collisions after 2 x 90 days, est 10 days between (1.15292e+19 corrected) ``` After this change (keep 43 bits, up through 50, to validate "trajectory" is ok on "corrected" days between collision): ``` 19 collisions after 3 x 90 days, est 14.2105 days between (1.63836e+19 corrected) 16 collisions after 5 x 90 days, est 28.125 days between (1.6213e+19 corrected) 15 collisions after 7 x 90 days, est 42 days between (1.21057e+19 corrected) 15 collisions after 17 x 90 days, est 102 days between (1.46997e+19 corrected) 15 collisions after 49 x 90 days, est 294 days between (2.11849e+19 corrected) 15 collisions after 62 x 90 days, est 372 days between (1.34027e+19 corrected) 15 collisions after 53 x 90 days, est 318 days between (5.72858e+18 corrected) 15 collisions after 309 x 90 days, est 1854 days between (1.66994e+19 corrected) ``` However, the change does modify (probably weaken) the "guaranteed unique" promise from this > SST files generated in a single process are guaranteed to have unique cache keys, unless/until number session ids * max file number = 2**86 to this (see https://github.com/facebook/rocksdb/issues/10388) > With the DB id limitation, we only have nice guaranteed unique cache keys for files generated in a single process until biggest session_id_counter and offset_in_file reach combined 64 bits I don't think this is a practical concern, though. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10394 Test Plan: unit tests updated, see simulation results above Reviewed By: jay-zhuang Differential Revision: D38667529 Pulled By: pdillinger fbshipit-source-id: 49af3fe7f47e5b61162809a78b76c769fd519fba |
||
Jay Zhuang | 5d3aefb682 |
Migrate to docker for CI run (#10496)
Summary: Moved linux builds to using docker to avoid CI instability caused by dependency installation site down. Added the `Dockerfile` which is used to build the image. The build time is also significantly reduced, because no dependencies installation and with using 2xlarge+ instance for slow build (like tsan test). Also fixed a few issues detected while building this: * `DestoryDB()` Status not checked for a few tests * nullptr might be used in `inlineskiplist.cc` Pull Request resolved: https://github.com/facebook/rocksdb/pull/10496 Test Plan: CI Reviewed By: ajkr Differential Revision: D38554200 Pulled By: jay-zhuang fbshipit-source-id: 16e8fb2bf07b9c84bb27fb18421c4d54f2f248fd |
||
Guido Tagliavini Ponce | a0798f6f92 |
Enable ClockCache in DB block cache test (#10482)
Summary: A test in db_block_cache_test.cc was skipping ClockCache due to the 16-byte key length requirement. We fixed this. Along the way, we fixed a bug in ApplyToSomeEntries, which assumed the function being applied could modify handle metadata, and thus took an exclusive reference. This is incompatible with calls that need to inspect every element (including externally referenced ones) to gather stats. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10482 Test Plan: ``make -j24 check`` Reviewed By: anand1976 Differential Revision: D38553073 Pulled By: guidotag fbshipit-source-id: 0ed63fed4d3b89e5056b35b7091fce579f5647ae |
||
Peter Dillinger | 65036e4217 |
Revert "Add a blob-specific cache priority (#10309)" (#10434)
Summary:
This reverts commit
|
||
Gang Liao | 8d178090be |
Add a blob-specific cache priority (#10309)
Summary: RocksDB's `Cache` abstraction currently supports two priority levels for items: high (used for frequently accessed/highly valuable SST metablocks like index/filter blocks) and low (used for SST data blocks). Blobs are typically lower-value targets for caching than data blocks, since 1) with BlobDB, data blocks containing blob references conceptually form an index structure which has to be consulted before we can read the blob value, and 2) cached blobs represent only a single key-value, while cached data blocks generally contain multiple KVs. Since we would like to make it possible to use the same backing cache for the block cache and the blob cache, it would make sense to add a new, lower-than-low cache priority level (bottom level) for blobs so data blocks are prioritized over them. This task is a part of https://github.com/facebook/rocksdb/issues/10156 Pull Request resolved: https://github.com/facebook/rocksdb/pull/10309 Reviewed By: ltamasi Differential Revision: D38211655 Pulled By: gangliao fbshipit-source-id: 65ef33337db4d85277cc6f9782d67c421ad71dd5 |
||
Guido Tagliavini Ponce | 9645e66fc9 |
Temporarily return a LRUCache from NewClockCache (#10351)
Summary: ClockCache is still in experimental stage, and currently fails some pre-release fbcode tests. See https://www.internalfb.com/diff/D37772011. API calls to construct ClockCache are done via the function NewClockCache. For now, NewClockCache calls will return an LRUCache (with appropriate arguments), which is stable. The idea that NewClockCache returns nullptr was also floated, but this would be interpreted as unsupported cache, and a default LRUCache would be constructed instead, potentially causing a performance regression that is harder to identify. A new version of the NewClockCache function was created for our internal tests. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10351 Test Plan: ``make -j24 check`` and re-run the pre-release tests. Reviewed By: pdillinger Differential Revision: D37802685 Pulled By: guidotag fbshipit-source-id: 0a8d10612ff21e576f7360cb13e20bc36e244972 |
||
Peter Dillinger | e6c5e0ab9a |
Have Cache use Status::MemoryLimit (#10262)
Summary:
I noticed it would clean up some things to have Cache::Insert()
return our MemoryLimit Status instead of Incomplete for the case in
which the capacity limit is reached. I suspect this fixes some existing but
unknown bugs where this Incomplete could be confused with other uses
of Incomplete, especially no_io cases. This is the most suspicious case I
noticed, but was not able to reproduce a bug, in part because the existing
code is not covered by unit tests (FIXME added):
|
||
sdong | a9565ccb26 |
Try to trivial move more than one files (#10190)
Summary: In leveled compaction, try to trivial move more than one files if possible, up to 4 files or max_compaction_bytes. This is to allow higher write throughput for some use cases where data is loaded in sequential order, where appying compaction results is the bottleneck. When pick up a file to compact and it doesn't have overlapping files in the next level, try to expand to the next file if there is still no overlapping. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10190 Test Plan: Add some unit tests. For performance, Try to run ./db_bench_multi_move --benchmarks=fillseq --compression_type=lz4 --write_buffer_size=5000000 --num=100000000 --value_size=1000 -level_compaction_dynamic_level_bytes Together with https://github.com/facebook/rocksdb/pull/10188 , stalling will be eliminated in this benchmark. Reviewed By: jay-zhuang Differential Revision: D37230647 fbshipit-source-id: 42b260f545c46abc5d90335ac2bbfcd09602b549 |
||
Guido Tagliavini Ponce | 57a0e2f304 |
Clock cache (#10273)
Summary: This is the initial step in the development of a lock-free clock cache. This PR includes the base hash table design (which we mostly ported over from FastLRUCache) and the clock eviction algorithm. Importantly, it's still _not_ lock-free---all operations use a shard lock. Besides the locking, there are other features left as future work: - Remove keys from the handles. Instead, use 128-bit bijective hashes of them for handle comparisons, probing (we need two 32-bit hashes of the key for double hashing) and sharding (we need one 6-bit hash). - Remove the clock_usage_ field, which is updated on every lookup. Even if it were atomically updated, it could cause memory invalidations across cores. - Middle insertions into the clock list. - A test that exercises the clock eviction policy. - Update the Java API of ClockCache and Java calls to C++. Along the way, we improved the code and comments quality of FastLRUCache. These changes are relatively minor. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10273 Test Plan: ``make -j24 check`` Reviewed By: pdillinger Differential Revision: D37522461 Pulled By: guidotag fbshipit-source-id: 3d70b737dbb70dcf662f00cef8c609750f083943 |
||
Peter Dillinger | 126c223714 |
Remove deprecated block-based filter (#10184)
Summary: In https://github.com/facebook/rocksdb/issues/9535, release 7.0, we hid the old block-based filter from being created using the public API, because of its inefficiency. Although we normally maintain read compatibility on old DBs forever, filters are not required for reading a DB, only for optimizing read performance. Thus, it should be acceptable to remove this code and the substantial maintenance burden it carries as useful features are developed and validated (such as user timestamp). This change completely removes the code for reading and writing the old block-based filters, net removing about 1370 lines of code no longer needed. Options removed from testing / benchmarking tools. The prior existence is only evident in a couple of places: * `CacheEntryRole::kDeprecatedFilterBlock` - We can update this public API enum in a major release to minimize source code incompatibilities. * A warning is logged when an old table file is opened that used the old block-based filter. This is provided as a courtesy, and would be a pain to unit test, so manual testing should suffice. Unfortunately, sst_dump does not tell you whether a file uses block-based filter, and the structure of the code makes it very difficult to fix. * To detect that case, `kObsoleteFilterBlockPrefix` (renamed from `kFilterBlockPrefix`) for metaindex is maintained (for now). Other notes: * In some cases where numbers are associated with filter configurations, we have had to update the assigned numbers so that they all correspond to something that exists. * Fixed potential stat counting bug by assuming `filter_checked = false` for cases like `filter == nullptr` rather than assuming `filter_checked = true` * Removed obsolete `block_offset` and `prefix_extractor` parameters from several functions. * Removed some unnecessary checks `if (!table_prefix_extractor() && !prefix_extractor)` because the caller guarantees the prefix extractor exists and is compatible Pull Request resolved: https://github.com/facebook/rocksdb/pull/10184 Test Plan: tests updated, manually test new warning in LOG using base version to generate a DB Reviewed By: riversand963 Differential Revision: D37212647 Pulled By: pdillinger fbshipit-source-id: 06ee020d8de3b81260ffc36ad0c1202cbf463a80 |
||
Guido Tagliavini Ponce | f105e1a501 |
Make the per-shard hash table fixed-size. (#10154)
Summary: We make the size of the per-shard hash table fixed. The base level of the hash table is now preallocated with the required capacity. The user must provide an estimate of the size of the values. Notice that even though the base level becomes fixed, the chains are still dynamic. Overall, the shard capacity mechanisms haven't changed, so we don't need to test this. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10154 Test Plan: `make -j24 check` Reviewed By: pdillinger Differential Revision: D37124451 Pulled By: guidotag fbshipit-source-id: cba6ac76052fe0ec60b8ff4211b3de7650e80d0c |
||
Guido Tagliavini Ponce | 415200d792 |
Assume fixed size key (#10137)
Summary: FastLRUCache now only supports 16B keys. The tests have changed to reflect this. Because the unit tests were designed for caches that accept any string as keys, some tests are no longer compatible with FastLRUCache. We have disabled those for runs with FastLRUCache. (We could potentially change all tests to use 16B keys, but we don't because the cache public API does not require this.) Pull Request resolved: https://github.com/facebook/rocksdb/pull/10137 Test Plan: make -j24 check Reviewed By: gitbw95 Differential Revision: D37083934 Pulled By: guidotag fbshipit-source-id: be1719cf5f8364a9a32bc4555bce1a0de3833b0d |
||
sdong | 736a7b5433 |
Remove own ToString() (#9955)
Summary: ToString() is created as some platform doesn't support std::to_string(). However, we've already used std::to_string() by mistake for 16 months (in db/db_info_dumper.cc). This commit just remove ToString(). Pull Request resolved: https://github.com/facebook/rocksdb/pull/9955 Test Plan: Watch CI tests Reviewed By: riversand963 Differential Revision: D36176799 fbshipit-source-id: bdb6dcd0e3a3ab96a1ac810f5d0188f684064471 |
||
Peter Dillinger | bb87164db3 |
Fork and simplify LRUCache for developing enhancements (#9917)
Summary: To support a project to prototype and evaluate algorithmic enhancments and alternatives to LRUCache, here I have separated out LRUCache into internal-only "FastLRUCache" and cut it down to essentials, so that details like secondary cache handling and priorities do not interfere with prototyping. These can be re-integrated later as needed, along with refactoring to minimize code duplication (which would slow down prototyping for now). Pull Request resolved: https://github.com/facebook/rocksdb/pull/9917 Test Plan: unit tests updated to ensure basic functionality has (likely) been preserved Reviewed By: anand1976 Differential Revision: D35995554 Pulled By: pdillinger fbshipit-source-id: d67b20b7ada3b5d3bfe56d897a73885894a1d9db |
||
Andrew Kryczka | d6e016be6d |
Expose CacheEntryRole and map keys for block cache stat collections (#9838)
Summary: This gives users the ability to examine the map populated by `GetMapProperty()` with property `kBlockCacheEntryStats`. It also sets us up for a possible future where cache reservations are configured according to `CacheEntryRole`s rather than flags coupled to roles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9838 Test Plan: - migrated test DBBlockCacheTest.CacheEntryRoleStats to use this API. That test verifies some of the contents are as expected - added a DBPropertiesTest to verify the public map keys are present, and nothing else Reviewed By: hx235 Differential Revision: D35629493 Pulled By: ajkr fbshipit-source-id: 5c4356b8560e85d1f881fd32c44c15960b02fc68 |
||
Peter Dillinger | afc280fdfd |
Enhance new cache key testing & comments (#9329)
Summary: Follow-up to https://github.com/facebook/rocksdb/issues/9126 Added new unit tests to validate some of the claims of guaranteed uniqueness within certain large bounds. Also cleaned up the cache_bench -stress-cache-key tool with better comments and description. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9329 Test Plan: no changes to production code Reviewed By: mrambacher Differential Revision: D33269328 Pulled By: pdillinger fbshipit-source-id: 3a2b684a6b2b15f79dc872e563e3d16563be26de |
||
Peter Dillinger | 0050a73a4f |
New stable, fixed-length cache keys (#9126)
Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f |
||
Akanksha Mahajan | 96d0773a11 |
Update prepopulate_block_cache logic to support block-based filter (#9300)
Summary: Update prepopulate_block_cache logic to support block-based filter during insertion in block cache Pull Request resolved: https://github.com/facebook/rocksdb/pull/9300 Test Plan: CircleCI tests, make crash_test -j64 Reviewed By: pdillinger Differential Revision: D33132018 Pulled By: akankshamahajan15 fbshipit-source-id: 241deabab8645bda704728e572d6de6354df18b2 |
||
Peter Dillinger | 653c392e47 |
More refactoring ahead of footer & meta changes (#9240)
Summary: I'm working on a new format_version=6 to support context checksum (https://github.com/facebook/rocksdb/issues/9058) and this includes much of the refactoring and test updates to support that change. Test coverage data and manual inspection agree on dead code in block_based_table_reader.cc (removed). Pull Request resolved: https://github.com/facebook/rocksdb/pull/9240 Test Plan: tests enhanced to cover more cases etc. Extreme case performance testing indicates small % regression in fillseq (w/ compaction), though CPU profile etc. doesn't suggest any explanation. There is enhanced correctness checking in Footer::DecodeFrom, but this should be negligible. TEST_TMPDIR=/dev/shm/ ./db_bench -benchmarks=fillseq -memtablerep=vector -allow_concurrent_memtable_write=false -num=30000000 -checksum_type=1 --disable_wal={false,true} (Each is ops/s averaged over 50 runs, run simultaneously with competing configuration for load fairness) Before w/ wal: 454512 After w/ wal: 444820 (-2.1%) Before w/o wal: 1004560 After w/o wal: 998897 (-0.6%) Since this doesn't modify WAL code, one would expect real effects to be larger in w/o wal case. This regression will be corrected in a follow-up PR. Reviewed By: ajkr Differential Revision: D32813769 Pulled By: pdillinger fbshipit-source-id: 444a244eabf3825cd329b7d1b150cddce320862f |
||
Akanksha Mahajan | 9e4d56f2c9 |
Fix segmentation fault in table_options.prepopulate_block_cache when used with partition_filters (#9263)
Summary: When table_options.prepopulate_block_cache is set to BlockBasedTableOptions::PrepopulateBlockCache::kFlushOnly and table_options.partition_filters is also set true, then there is segmentation failure when top level filter is fetched because its entered with wrong type in cache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9263 Test Plan: Updated unit tests; Ran db_stress: make crash_test -j32 Reviewed By: pdillinger Differential Revision: D32936566 Pulled By: akankshamahajan15 fbshipit-source-id: 8bd79e53830d3e3c1bb79787e1ffbc3cb46d4426 |
||
Peter Dillinger | f8c685c4fc |
Check for and disallow shared key space in block caches (#9172)
Summary: We have three layers of block cache that often use the same key but map to different physical data: * BlockBasedTableOptions::block_cache * BlockBasedTableOptions::block_cache_compressed * BlockBasedTableOptions::persistent_cache If any two of these happen to share an underlying implementation and key space (insertion into one shows up in another), then memory safety is broken. The simplest case is block_cache == block_cache_compressed. (Credit mrambacher for asking about this case in a review.) With this change, we explicitly check for overlap and preemptively and safely fail with a Status code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9172 Test Plan: test added. Crashes without new check Reviewed By: anand1976 Differential Revision: D32465659 Pulled By: pdillinger fbshipit-source-id: 3876b45b6dce6167e5a7a642725ddc86b96f8e40 |
||
Peter Dillinger | 2819c7840e |
Fix PrepopulateBlockCache::kFlushOnly (#8750)
Summary: kFlushOnly currently means "always" except in the case of remote compaction. This makes it flushes only. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8750 Test Plan: test updated Reviewed By: akankshamahajan15 Differential Revision: D30968034 Pulled By: pdillinger fbshipit-source-id: 5dbd24dde18852a0e937a540995fba9bfbe89037 |
||
Peter Dillinger | 04db764831 |
Embed original file number in SST table properties (#8686)
Summary: I very recently realized that with https://github.com/facebook/rocksdb/issues/8669 we cannot later add file numbers to external SST files (so that more can share db session ids for better uniqueness properties), because of forward compatibility. We would have a version of RocksDB that assumes session IDs are unique on external SST files and therefore can't really break that invariant in future files. This change adds a table property for "orig_file_number" which is populated by normal SST files and also external SST files generated by SstFileWriter. SstFileWriter now keeps a db_session_id for life of the object and increments its own file numbers for embedding in table properties. (They are arguably "fake" file numbers because these numbers and not embedded in the file name.) While updating block_based_table_builder, I removed several unnecessary fields from Rep, because following the pattern would have created another unnecessary field. This change also updates block_based_table_reader to use this new property when available, which means that for newer SST files, we can determine the stable/original <db_session_id,file_number> unique identifier using just the file contents, not the file name. (It's a bit complicated; detailed comments in block_based_table_reader.) Also added DB host id to properties listing by sst_dump, which could be useful in debugging. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8686 Test Plan: majorly overhauled StableCacheKeys test for this change Reviewed By: zhichao-cao Differential Revision: D30457742 Pulled By: pdillinger fbshipit-source-id: 2e5ae7dddeb94fb9d8eac8a928486aed8b8cd445 |
||
Peter Dillinger | b6269b078a |
Stable cache keys on ingested SST files (#8669)
Summary: Extends https://github.com/facebook/rocksdb/issues/8659 to work for ingested external SST files, even the same file ingested into different DBs sharing a block cache. Note: These new cache keys are currently only enabled when FileSystem does not provide GetUniqueId. For now, they are typically larger, so slightly less efficient. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8669 Test Plan: Extended unit test Reviewed By: zhichao-cao Differential Revision: D30398532 Pulled By: pdillinger fbshipit-source-id: 1f13e2af4b8bfff5741953a69466e9589fbc23c7 |
||
Peter Dillinger | a207c27809 |
Stable cache keys using DB session ids in SSTs (#8659)
Summary: Use DB session ids in SST table properties to make cache keys stable across DB re-open and copy / move / restore / etc. These new cache keys are currently only enabled when FileSystem does not provide GetUniqueId. For now, they are typically larger, so slightly less efficient. Relevant to https://github.com/facebook/rocksdb/issues/7405 This change has a minor regression in PersistentCache functionality: metaindex blocks are no longer cached in PersistentCache. Table properties blocks already were not but ideally should be. I didn't spent effort to fix & test these issues because we don't believe PersistentCache is used much if at all and expect SecondaryCache to replace it. (Though PRs are welcome.) FIXME: there is more to be fixed for stable cache keys on external SST files Pull Request resolved: https://github.com/facebook/rocksdb/pull/8659 Test Plan: new unit test added, which fails when disabling new functionality Reviewed By: zhichao-cao Differential Revision: D30297705 Pulled By: pdillinger fbshipit-source-id: e8539a5c8802a79340405629870f2e3fb3822d3a |
||
Akanksha Mahajan | fd2079938d |
Dynamically configure BlockBasedTableOptions.prepopulate_block_cache (#8620)
Summary: Dynamically configure BlockBasedTableOptions.prepopulate_block_cache using DB::SetOptions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8620 Test Plan: Added new unit test Reviewed By: anand1976 Differential Revision: D30091319 Pulled By: akankshamahajan15 fbshipit-source-id: fb586d1848a8dd525bba7b2f9eeac34f2fc6d82c |