Commit graph

435 commits

Author SHA1 Message Date
Yu Zhang 509947ce2c Quarantine files in a limbo state after a manifest error (#12030)
Summary:
Part of the procedures to handle manifest IO error is to disable file deletion in case some files in limbo state get deleted prematurely. This is not ideal because: 1) not all the VersionEdits whose commit encounter such an error contain updates for files, disabling file deletion sometimes are not necessary. 2) `EnableFileDeletion` has a force mode that could make other threads accidentally disrupt this procedure in recovery.  3) Disabling file deletion as a whole is also not as efficient as more precisely tracking impacted files from being prematurely deleted.  This PR replaces this mechanism with tracking such files and quarantine them from being deleted in `ErrorHandler`.

These are the types of files being actively tracked in quarantine in this PR:
1) new table files and blob files from a background job
2) old manifest file whose immediately following new manifest file's CURRENT file creation gets into unclear state. Current handling is not sufficient to make sure the old manifest file is kept in case it's needed.

Note that WAL logs are not part of the quarantine because `min_log_number_to_keep` is a safe mechanism and it's only updated after successful manifest commits so it can prevent this premature deletion issue from happening.

We track these files' file numbers because they share the same file number space.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/12030

Test Plan: Modified existing unit tests

Reviewed By: ajkr

Differential Revision: D51036774

Pulled By: jowlyzhang

fbshipit-source-id: 84ef26271fbbc888ef70da5c40fe843bd7038716
2023-11-11 08:11:11 -08:00
Jay Huh 2dab137182 Mark more files for periodic compaction during offpeak (#12031)
Summary:
- The struct previously named `OffpeakTimeInfo` has been renamed to `OffpeakTimeOption` to indicate that it's a user-configurable option. Additionally, a new struct, `OffpeakTimeInfo`, has been introduced, which includes two fields: `is_now_offpeak` and `seconds_till_next_offpeak_start`. This change prevents the need to parse the `daily_offpeak_time_utc` string twice.
- It's worth noting that we may consider adding more fields to the `OffpeakTimeInfo` struct, such as `elapsed_seconds` and `total_seconds`, as needed for further optimization.
- Within `VersionStorageInfo::ComputeFilesMarkedForPeriodicCompaction()`, we've adjusted the `allowed_time_limit` to include files that are expected to expire by the next offpeak start.
- We might explore further optimizations, such as evenly distributing files to mark during offpeak hours, if the initial approach results in marking too many files simultaneously during the first scoring in offpeak hours. The primary objective of this PR is to prevent periodic compactions during non-offpeak hours when offpeak hours are configured. We'll start with this straightforward solution and assess whether it suffices for now.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/12031

Test Plan:
Unit Tests added
- `DBCompactionTest::LevelPeriodicCompactionOffpeak` for Leveled
- `DBTestUniversalCompaction2::PeriodicCompaction` for Universal

Reviewed By: cbi42

Differential Revision: D50900292

Pulled By: jaykorean

fbshipit-source-id: 267e7d3332d45a5d9881796786c8650fa0a3b43d
2023-11-06 11:43:59 -08:00
Jay Huh e230e4d248 Make OffpeakTimeInfo available in VersionSet (#12018)
Summary:
As mentioned in  https://github.com/facebook/rocksdb/issues/11893, we are going to use the offpeak time information to pre-process TTL-based compactions. To do so, we need to access `daily_offpeak_time_utc` in `VersionStorageInfo::ComputeCompactionScore()` where we pick the files to compact. This PR is to make the offpeak time information available at the time of compaction-scoring. We are not changing any compaction scoring logic just yet. Will follow up in a separate PR.

There were two ways to achieve what we want.
1.  Make `MutableDBOptions` available in `ColumnFamilyData` and `ComputeCompactionScore()` take `MutableDBOptions` along with `ImmutableOptions` and `MutableCFOptions`.
2. Make `daily_offpeak_time_utc` and `IsNowOffpeak()` available in `VersionStorageInfo`.

We chose the latter as it involves smaller changes.

This change includes the following
- Introduction of `OffpeakTimeInfo` and `IsNowOffpeak()` has been moved from `MutableDBOptions`
- `OffpeakTimeInfo` added to `VersionSet` and it can be set during construction and by `ChangeOffpeakTimeInfo()`
- During `SetDBOptions()`, if offpeak time info needs to change, it calls `MaybeScheduleFlushOrCompaction()` to re-compute compaction scores and process compactions as needed

Pull Request resolved: https://github.com/facebook/rocksdb/pull/12018

Test Plan:
- `DBOptionsTest::OffpeakTimes` changed to include checks for `MaybeScheduleFlushOrCompaction()` calls and `VersionSet`'s OffpeakTimeInfo value change during `SetDBOptions()`.
- `VersionSetTest::OffpeakTimeInfoTest` added to test `ChangeOffpeakTimeInfo()`. `IsNowOffpeak()` tests moved from `DBOptionsTest::OffpeakTimes`

Reviewed By: pdillinger

Differential Revision: D50723881

Pulled By: jaykorean

fbshipit-source-id: 3cff0291936f3729c0e9c7750834b9378fb435f6
2023-10-27 15:56:48 -07:00
Peter Dillinger 4155087746 Use manifest to persist pre-allocated seqnos (#11995)
Summary:
... and other fixes for crash test after https://github.com/facebook/rocksdb/issues/11922.
* When pre-allocating sequence numbers for establishing a time history, record that last sequence number in the manifest so that it is (most likely) restored on recovery even if no user writes were made or were recovered (e.g. no WAL).
* When pre-allocating sequence numbers for establishing a time history, only do this for actually new DBs.
* Remove the feature that ensures non-zero sequence number on creating the first column family with preserve/preclude option after initial DB::Open. Until fixed in a way compatible with the crash test, this creates a gap where some data written with active preserve/preclude option won't have a known associated time.

Together, these ensure we don't upset the crash test by manipulating sequence numbers after initial DB creation (esp when re-opening with different options). (The crash test expects that the seqno after re-open corresponds to a known point in time from previous crash test operation, matching an expected DB state.)

Follow-up work:
* Re-fill the gap to ensure all data written under preserve/preclude settings have a known time estimate.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11995

Test Plan:
Added to unit test SeqnoTimeTablePropTest.PrePopulateInDB

Verified fixes two crash test scenarios:
## 1st reproducer
First apply
```
 diff --git a/db_stress_tool/expected_state.cc b/db_stress_tool/expected_state.cc
index b483e154c..ef63b8d6c 100644
 --- a/db_stress_tool/expected_state.cc
+++ b/db_stress_tool/expected_state.cc
@@ -333,6 +333,7 @@ Status FileExpectedStateManager::SaveAtAndAfter(DB* db) {
     s = NewFileTraceWriter(Env::Default(), soptions, trace_file_path,
                            &trace_writer);
   }
+  if (getenv("CRASH")) assert(false);
   if (s.ok()) {
     TraceOptions trace_opts;
     trace_opts.filter |= kTraceFilterGet;
```

Then
```
mkdir -p /dev/shm/rocksdb_test/rocksdb_crashtest_expected
mkdir -p /dev/shm/rocksdb_test/rocksdb_crashtest_whitebox
rm -rf /dev/shm/rocksdb_test/rocksdb_crashtest_*/*
CRASH=1 ./db_stress --db=/dev/shm/rocksdb_test/rocksdb_crashtest_whitebox --expected_values_dir=/dev/shm/rocksdb_test/rocksdb_crashtest_expected --destroy_db_initially=1 --manual_wal_flush_one_in=1000000 --clear_column_family_one_in=0 --preserve_internal_time_seconds=36000
./db_stress --db=/dev/shm/rocksdb_test/rocksdb_crashtest_whitebox --expected_values_dir=/dev/shm/rocksdb_test/rocksdb_crashtest_expected --destroy_db_initially=0 --manual_wal_flush_one_in=1000000 --clear_column_family_one_in=0 --preserve_internal_time_seconds=0
```

Without the fix you get
```
...
DB path: [/dev/shm/rocksdb_test/rocksdb_crashtest_whitebox]
(Re-)verified 34 unique IDs
Error restoring historical expected values: Corruption: DB is older than any restorable expected state
```

## 2nd reproducer
First apply
```
 diff --git a/db_stress_tool/db_stress_test_base.cc b/db_stress_tool/db_stress_test_base.cc
index 62ddead7b..f2654980f 100644
 --- a/db_stress_tool/db_stress_test_base.cc
+++ b/db_stress_tool/db_stress_test_base.cc
@@ -1126,6 +1126,7 @@ void StressTest::OperateDb(ThreadState* thread) {
         // OPERATION write
         TestPut(thread, write_opts, read_opts, rand_column_families, rand_keys,
                 value);
+        if (getenv("CRASH")) assert(false);
       } else if (prob_op < del_bound) {
         assert(write_bound <= prob_op);
         // OPERATION delete
```

Then
```
rm -rf /dev/shm/rocksdb_test/rocksdb_crashtest_*/*
CRASH=1 ./db_stress --db=/dev/shm/rocksdb_test/rocksdb_crashtest_whitebox --expected_values_dir=/dev/shm/rocksdb_test/rocksdb_crashtest_expected --destroy_db_initially=1 --manual_wal_flush_one_in=1000000 --clear_column_family_one_in=0 --disable_wal=1 --reopen=0 --preserve_internal_time_seconds=0
./db_stress --db=/dev/shm/rocksdb_test/rocksdb_crashtest_whitebox --expected_values_dir=/dev/shm/rocksdb_test/rocksdb_crashtest_expected --destroy_db_initially=0 --manual_wal_flush_one_in=1000000 --clear_column_family_one_in=0 --disable_wal=1 --reopen=0 --preserve_internal_time_seconds=3600
```

Without the fix you get
```
DB path: [/dev/shm/rocksdb_test/rocksdb_crashtest_whitebox]
(Re-)verified 34 unique IDs
db_stress: db_stress_tool/expected_state.cc:380: virtual rocksdb::{anonymous}::ExpectedStateTraceRecordHandler::~
ExpectedStateTraceRecordHandler(): Assertion `IsDone()' failed.
```

Reviewed By: jowlyzhang

Differential Revision: D50533346

Pulled By: pdillinger

fbshipit-source-id: 1056be45c5b9e537c8c601b28c4b27431a782477
2023-10-23 09:20:59 -07:00
Changyu Bi 648fe25bc0 Always clear files marked for compaction in ComputeCompactionScore() (#11946)
Summary:
We were seeing the following stress test failures:
```LevelCompactionBuilder::PickFileToCompact(const rocksdb::autovector<std::pair<int, rocksdb::FileMetaData*> >&, bool): Assertion `!level_file.second->being_compacted' failed```

This can happen when we are picking a file to be compacted from some files marked for compaction, but that file is already being_compacted. We prevent this by always calling `ComputeCompactionScore()` after we pick a compaction and mark some files as being_compacted. However, if SetOptions() is called to disable marking certain files to be compacted, say `enable_blob_garbage_collection`, we currently just skip the relevant logic in `ComputeCompactionScore()` without clearing the existing files already marked for compaction. This PR fixes this issue by already clearing these files.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11946

Test Plan: existing tests.

Reviewed By: akankshamahajan15

Differential Revision: D50232608

Pulled By: cbi42

fbshipit-source-id: 11e4fb5e9d48b0f946ad33b18f7c005f0161f496
2023-10-12 15:26:10 -07:00
Peter Dillinger 1d5bddbc58 Bootstrap, pre-populate seqno_to_time_mapping (#11922)
Summary:
This change has two primary goals (follow-up to https://github.com/facebook/rocksdb/issues/11917, https://github.com/facebook/rocksdb/issues/11920):
* Ensure the DB seqno_to_time_mapping has entries that allow us to put a good time lower bound on any writes that happen after setting up preserve/preclude options (either in a new DB, new CF, SetOptions, etc.) and haven't yet aged out of that time window. This allows us to remove a bunch of work-arounds in tests.
* For new DBs using preserve/preclude options, automatically reserve some sequence numbers and pre-map them to cover the time span back to the preserve/preclude cut-off time. In the future, this will allow us to import data from another DB by key, value, and write time by assigning an appropriate seqno in this DB for that write time.

Note that the pre-population (historical mappings) does not happen if the original options at DB Open time do not have preserve/preclude, so it is recommended to create initial column families at that time with create_missing_column_families, to take advantage of this (future) feature. (Adding these historical mappings after DB Open would risk non-monotonic seqno_to_time_mapping, which is dubious if not dangerous.)

Recommended follow-up:
* Solve existing race conditions (not memory safety) where parallel operations like CreateColumnFamily or SetDBOptions could leave the wrong setting in effect.
* Make SeqnoToTimeMapping more gracefully handle a possible case in which too many mappings are added for the time range of concern. It seems like there could be cases where data is massively excluded from the cold tier because of entries falling off the front of the mapping list (causing GetProximalSeqnoBeforeTime() to return 0). (More investigation needed.)

No release note for the minor bug fix because this is still an experimental feature with limited usage.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11922

Test Plan: tests added / updated

Reviewed By: jowlyzhang

Differential Revision: D49956563

Pulled By: pdillinger

fbshipit-source-id: 92beb918c3a298fae9ca8e509717b1067caa1519
2023-10-06 08:21:21 -07:00
Changyu Bi cc254efea6 Release compaction files in manifest write callback (#11764)
Summary:
Fixes https://github.com/facebook/rocksdb/issues/10257 (also see [here](https://github.com/facebook/rocksdb/pull/10355#issuecomment-1684308556)) by releasing compaction files earlier when writing to manifest in LogAndApply().  This is done by passing in a [callback](ba59751430/db/version_set.h (L1199)) to LogAndApply(). The new Version is created in the same critical section where compaction files are released. When compaction picker is picking compaction based on the new version, these compaction files will already be released.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11764

Test Plan:
* Existing unit tests
* A repro unit test to validate that compaction files are released: `./db_compaction_test --gtest_filter=DBCompactionTest.ReleaseCompactionDuringManifestWrite`
* `python3 ./tools/db_crashtest.py --simple whitebox` with some assertions to check compaction files are released

Reviewed By: ajkr

Differential Revision: D48742152

Pulled By: cbi42

fbshipit-source-id: 7560fd0e723a63fe692234015d2b96850f8b5d77
2023-09-18 13:11:53 -07:00
Jan ba59751430 remove an unused typedef (#11286)
Summary:
`VersionBuilderMap` type alias definition seem unused.
If this PR can be compiled fine then the alias is probably not needed anymore.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11286

Reviewed By: jaykorean

Differential Revision: D48656747

Pulled By: ajkr

fbshipit-source-id: ac8554922aead7dc3d24fe7e6544a4622578c514
2023-08-25 18:01:14 -07:00
Changyu Bi d1ff401472 Delay bottommost level single file compactions (#11701)
Summary:
For leveled compaction, RocksDB has a special kind of compaction with reason "kBottommmostFiles" that compacts bottommost level files to clear data held by snapshots (more detail in https://github.com/facebook/rocksdb/issues/3009). Such compactions can happen soon after a relevant snapshot is released. For some use cases, a bottommost file may contain only a small amount of keys that can be cleared, so compacting such a file has a high write amp. In addition, these bottommost files may be compacted in compactions with reason other than "kBottommmostFiles" if we wait for some time (so that enough data is ingested to trigger such a compaction). This PR introduces an option `bottommost_file_compaction_delay` to specify the delay of these bottommost level single file compactions.

* The main change is in `VersionStorageInfo::ComputeBottommostFilesMarkedForCompaction()` where we only add a file to `bottommost_files_marked_for_compaction_` if it oldest_snapshot is larger than its non-zero largest_seqno **and** the file is old enough. Note that if a file is not old enough but its largest_seqno is less than oldest_snapshot, we exclude it from the calculation of `bottommost_files_mark_threshold_`. This makes the change simpler, but such a file's eligibility for compaction will only be checked the next time `ComputeBottommostFilesMarkedForCompaction()` is called. This happens when a new Version is created (compaction, flush, SetOptions()...), a new enough snapshot is released (`VersionStorageInfo::UpdateOldestSnapshot()`) or when a compaction is picked and compaction score has to be re-calculated.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11701

Test Plan:
* Add two unit tests to test when bottommost_file_compaction_delay > 0.
* Ran crash test with the new option.

Reviewed By: jaykorean, ajkr

Differential Revision: D48331564

Pulled By: cbi42

fbshipit-source-id: c584f3dc5f6354fce3ed65f4c6366dc450b15ba8
2023-08-16 17:45:44 -07:00
huangmengbin 98d0f6ec08 fix: VersionSet::DumpManifest (#11605)
Summary:
Fixes https://github.com/facebook/rocksdb/issues/11604

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11605

Reviewed By: jowlyzhang

Differential Revision: D47459254

Pulled By: ajkr

fbshipit-source-id: 4420e443fbf4bd01ddaa2b47285fc4445bf36246
2023-07-19 10:44:10 -07:00
Changyu Bi 15e8a843d9 Do not include last level in compaction when allow_ingest_behind=true (#11489)
Summary:
when a DB is configured with `allow_ingest_behind = true`, the last level should be reserved for ingested files and these files should not be included in any compaction. Currently, a major compaction can compact these files to smaller levels. This can cause future files to be rejected for ingest behind (see `ExternalSstFileIngestionJob::CheckLevelForIngestedBehindFile()`). This PR fixes the issue such that files in the last level is not included in any compaction.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11489

Test Plan: * Updated unit test `ExternalSSTFileTest.IngestBehind` to test that last level is not included in manual and auto-compaction.

Reviewed By: ajkr

Differential Revision: D46455711

Pulled By: cbi42

fbshipit-source-id: 5e2142c2a709ef932ad797897795021c06c4ac8c
2023-06-14 11:28:56 -07:00
Andrew Kryczka cac3240cbf add property "rocksdb.obsolete-sst-files-size" (#11533)
Summary:
See "unreleased_history/new_features/obsolete_sst_files_size.md" for description

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11533

Test Plan: updated unit test

Reviewed By: jowlyzhang

Differential Revision: D46703152

Pulled By: ajkr

fbshipit-source-id: ea5e31cd6293eccc154130c13e66b5271f57c102
2023-06-13 15:52:45 -07:00
Yu Zhang 4dafa5b220 switch to use RocksDB UnorderedMap (#11507)
Summary:
Switch from std::unordered_map to RocksDB UnorderedMap for all the places that logging user-defined timestamp size in WAL used.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11507

Test Plan:
```
make all check
```

Reviewed By: ltamasi

Differential Revision: D46448975

Pulled By: jowlyzhang

fbshipit-source-id: bdb4d56a723b697a33daaf0f856a61d49a367a99
2023-06-05 13:36:26 -07:00
Yu Zhang 56ca9e3106 Logging timestamp size record in WAL and use it during recovery (#11471)
Summary:
Start logging the timestamp size record in WAL and use the record during recovery.  Currently, user comparator cannot be different from what was used to create a column family, so the timestamp size record is just used to confirm it's consistent with the timestamp size the running user comparator indicates.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11471

Test Plan:
```
make all check
./db_secondary_test
./db_wal_test --gtest_filter="*WithTimestamp*"
./repair_test --gtest_filter="*WithTimestamp*"
```

Reviewed By: ltamasi

Differential Revision: D46236769

Pulled By: jowlyzhang

fbshipit-source-id: f6c60b5c8defdb05021c63df302ccc0be1275ad0
2023-05-30 19:32:00 -07:00
mayue.fight 8d8eb0e77e Support Clip DB to KeyRange (#11379)
Summary:
This PR is part of the request https://github.com/facebook/rocksdb/issues/11317.
(Another part is https://github.com/facebook/rocksdb/pull/11378)

ClipDB() will clip the entries in the CF according to the range [begin_key, end_key). All the entries outside this range will be completely deleted (including tombstones).
 This feature is mainly used to ensure that there is no overlapping Key when calling CreateColumnFamilyWithImports() to import multiple CFs.

When Calling ClipDB [begin, end), there are the following steps

1.  Quickly and directly delete files without overlap
 DeleteFilesInRanges(nullptr, begin) + DeleteFilesInRanges(end, nullptr)
2. Delete the Key outside the range
Delete[smallest_key, begin) + Delete[end, largest_key]
3. Delete the tombstone through Manul Compact
CompactRange(option, nullptr, nullptr)

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11379

Reviewed By: ajkr

Differential Revision: D45840358

Pulled By: cbi42

fbshipit-source-id: 54152e8a45fd8ede137f99787eb252f0b51440a4
2023-05-18 13:25:01 -07:00
Hui Xiao 151242ce46 Group rocksdb.sst.read.micros stat by IOActivity flush and compaction (#11288)
Summary:
**Context:**
The existing stat rocksdb.sst.read.micros does not reflect each of compaction and flush cases but aggregate them, which is not so helpful for us to understand IO read behavior of each of them.

**Summary**
- Update `StopWatch` and `RandomAccessFileReader` to record `rocksdb.sst.read.micros` and `rocksdb.file.{flush/compaction}.read.micros`
   - Fixed the default histogram in `RandomAccessFileReader`
- New field `ReadOptions/IOOptions::io_activity`; Pass `ReadOptions` through paths under db open, flush and compaction to where we can prepare `IOOptions` and pass it to `RandomAccessFileReader`
- Use `thread_status_util` for assertion in `DbStressFSWrapper` for continuous testing on we are passing correct `io_activity` under db open, flush and compaction

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11288

Test Plan:
- **Stress test**
- **Db bench 1: rocksdb.sst.read.micros COUNT ≈ sum of rocksdb.file.read.flush.micros's and rocksdb.file.read.compaction.micros's.**  (without blob)
     - May not be exactly the same due to `HistogramStat::Add` only guarantees atomic not accuracy across threads.
```
./db_bench -db=/dev/shm/testdb/ -statistics=true -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -target_file_size_base=655 -disable_auto_compactions=false -compression_type=none -bloom_bits=3 (-use_plain_table=1 -prefix_size=10)
```
```
// BlockBasedTable
rocksdb.sst.read.micros P50 : 2.009374 P95 : 4.968548 P99 : 8.110362 P100 : 43.000000 COUNT : 40456 SUM : 114805
rocksdb.file.read.flush.micros P50 : 1.871841 P95 : 3.872407 P99 : 5.540541 P100 : 43.000000 COUNT : 2250 SUM : 6116
rocksdb.file.read.compaction.micros P50 : 2.023109 P95 : 5.029149 P99 : 8.196910 P100 : 26.000000 COUNT : 38206 SUM : 108689

// PlainTable
Does not apply
```
- **Db bench 2: performance**

**Read**

SETUP: db with 900 files
```
./db_bench -db=/dev/shm/testdb/ -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655  -disable_auto_compactions=true -target_file_size_base=655 -compression_type=none
```run till convergence
```
./db_bench -seed=1678564177044286 -use_existing_db=true -db=/dev/shm/testdb -benchmarks=readrandom[-X60] -statistics=true -num=1000000 -disable_auto_compactions=true -compression_type=none -bloom_bits=3
```
Pre-change
`readrandom [AVG 60 runs] : 21568 (± 248) ops/sec`
Post-change (no regression, -0.3%)
`readrandom [AVG 60 runs] : 21486 (± 236) ops/sec`

**Compaction/Flush**run till convergence
```
./db_bench -db=/dev/shm/testdb2/ -seed=1678564177044286 -benchmarks="fillseq[-X60]" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655  -disable_auto_compactions=false -target_file_size_base=655 -compression_type=none

rocksdb.sst.read.micros  COUNT : 33820
rocksdb.sst.read.flush.micros COUNT : 1800
rocksdb.sst.read.compaction.micros COUNT : 32020
```
Pre-change
`fillseq [AVG 46 runs] : 1391 (± 214) ops/sec;    0.7 (± 0.1) MB/sec`

Post-change (no regression, ~-0.4%)
`fillseq [AVG 46 runs] : 1385 (± 216) ops/sec;    0.7 (± 0.1) MB/sec`

Reviewed By: ajkr

Differential Revision: D44007011

Pulled By: hx235

fbshipit-source-id: a54c89e4846dfc9a135389edf3f3eedfea257132
2023-04-21 09:07:18 -07:00
Changyu Bi b3c43a5b99 Drain unnecessary levels when level_compaction_dynamic_level_bytes=true (#11340)
Summary:
When a user migrates to level compaction + `level_compaction_dynamic_level_bytes=true`, or when a DB shrinks, there can be unnecessary levels in the DB. Before this PR, this is no way to remove these levels except a manual compaction. These extra unnecessary levels make it harder to guarantee max_bytes_for_level_multiplier and can cause extra space amp. This PR boosts compaction score for these levels to allow RocksDB to automatically drain these levels. Together with https://github.com/facebook/rocksdb/issues/11321, this makes migration to `level_compaction_dynamic_level_bytes=true` automatic without needing user to do a one time full manual compaction. Credit: this PR is modified from https://github.com/facebook/rocksdb/issues/3921.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11340

Test Plan:
- New unit tests
- `python3 tools/db_crashtest.py whitebox --simple` which randomly sets level_compaction_dynamic_level_bytes in each run.

Reviewed By: ajkr

Differential Revision: D44563884

Pulled By: cbi42

fbshipit-source-id: e20d3620bd73dff22be18c5a91a07f340740bcc8
2023-04-06 11:20:43 -07:00
Changyu Bi 601320164b Trivially move files down when opening db with level_compaction_dynamic_l… (#11321)
Summary:
…evel_bytes

 During DB open, if a column family uses level compaction with level_compaction_dynamic_level_bytes=true, trivially move its files down in the LSM such that the bottommost files are in Lmax, the second from bottommost level files are in Lmax-1 and so on. This is aimed to make it easier to migrate level_compaction_dynamic_level_bytes from false to true.  Before this change, a full manual compaction is suggested for such migration. After this change, user can just restart DB to turn on this option. db_crashtest.py is updated to randomly choose value for level_compaction_dynamic_level_bytes.

Note that there may still be too many unnecessary levels if a user is migrating from universal compaction or level compaction with a smaller level multiplier. A full manual compaction may still be needed in that case before some PR that automatically drain unnecessary levels like https://github.com/facebook/rocksdb/issues/3921 lands. Eventually we may want to change the default value of option level_compaction_dynamic_level_bytes to true.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11321

Test Plan:
1. Added unit tests.
2. Crash test: ran a variation of db_crashtest.py (like 32516507e77521ae887e45091b69139e32e8efb7) that turns level_compaction_dynamic_level_bytes on and off and switches between LC and UC for the same DB.

TODO: Update `OptionChangeMigration`, either after this PR or https://github.com/facebook/rocksdb/issues/3921.

Reviewed By: ajkr

Differential Revision: D44341930

Pulled By: cbi42

fbshipit-source-id: 013de19a915c6a0502be569f07c4cc8f1c3c6be2
2023-03-27 14:55:16 -07:00
anand76 eac6b6d0cd Ignore async_io ReadOption if FileSystem doesn't support it (#11296)
Summary:
In PosixFileSystem, IO uring support is opt-in. If the support is not enabled by the user, then ignore the async_io ReadOption in MultiGet and iteration at the top, rather than follow the async_io codepath and transparently switch to sync IO at the FileSystem layer.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11296

Test Plan: Add new unit tests

Reviewed By: akankshamahajan15

Differential Revision: D44045776

Pulled By: anand1976

fbshipit-source-id: a0881bf763ca2fde50b84063d0068bb521edd8b9
2023-03-17 14:57:09 -07:00
Levi Tamasi 9794acb597 Add a new MultiGetEntity API (#11222)
Summary:
The new `MultiGetEntity` API can be used to get a consistent view of
a batch of keys, with the results presented as wide-column entities.
Similarly to `GetEntity` and the iterator's `columns` API, if the entry
corresponding to the key is a wide-column entity to start with, it is
returned as-is, and if it is a plain key-value, it is wrapped into an entity
with a single default column.

Implementation-wise, the new API shares the logic of the batched `MultiGet`
API (via the `MultiGetCommon` methods). Both single-CF and multi-CF
`MultiGetEntity` APIs are provided, and blobs are also supported.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11222

Test Plan: `make check`

Reviewed By: akankshamahajan15

Differential Revision: D43256950

Pulled By: ltamasi

fbshipit-source-id: 47fb2cb7e2d0470e3580f43fdb2fe9e51f0e7005
2023-02-15 09:34:17 -08:00
sdong 4720ba4391 Remove RocksDB LITE (#11147)
Summary:
We haven't been actively mantaining RocksDB LITE recently and the size must have been gone up significantly. We are removing the support.

Most of changes were done through following comments:

unifdef -m -UROCKSDB_LITE `git grep -l ROCKSDB_LITE | egrep '[.](cc|h)'`

by Peter Dillinger. Others changes were manually applied to build scripts, CircleCI manifests, ROCKSDB_LITE is used in an expression and file db_stress_test_base.cc.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11147

Test Plan: See CI

Reviewed By: pdillinger

Differential Revision: D42796341

fbshipit-source-id: 4920e15fc2060c2cd2221330a6d0e5e65d4b7fe2
2023-01-27 13:14:19 -08:00
Peter Dillinger 9f7801c5f1 Major Cache refactoring, CPU efficiency improvement (#10975)
Summary:
This is several refactorings bundled into one to avoid having to incrementally re-modify uses of Cache several times. Overall, there are breaking changes to Cache class, and it becomes more of low-level interface for implementing caches, especially block cache. New internal APIs make using Cache cleaner than before, and more insulated from block cache evolution. Hopefully, this is the last really big block cache refactoring, because of rather effectively decoupling the implementations from the uses. This change also removes the EXPERIMENTAL designation on the SecondaryCache support in Cache. It seems reasonably mature at this point but still subject to change/evolution (as I warn in the API docs for Cache).

The high-level motivation for this refactoring is to minimize code duplication / compounding complexity in adding SecondaryCache support to HyperClockCache (in a later PR). Other benefits listed below.

* static_cast lines of code +29 -35 (net removed 6)
* reinterpret_cast lines of code +6 -32 (net removed 26)

## cache.h and secondary_cache.h
* Always use CacheItemHelper with entries instead of just a Deleter. There are several motivations / justifications:
  * Simpler for implementations to deal with just one Insert and one Lookup.
  * Simpler and more efficient implementation because we don't have to track which entries are using helpers and which are using deleters
  * Gets rid of hack to classify cache entries by their deleter. Instead, the CacheItemHelper includes a CacheEntryRole. This simplifies a lot of code (cache_entry_roles.h almost eliminated). Fixes https://github.com/facebook/rocksdb/issues/9428.
  * Makes it trivial to adjust SecondaryCache behavior based on kind of block (e.g. don't re-compress filter blocks).
  * It is arguably less convenient for many direct users of Cache, but direct users of Cache are now rare with introduction of typed_cache.h (below).
  * I considered and rejected an alternative approach in which we reduce customizability by assuming each secondary cache compatible value starts with a Slice referencing the uncompressed block contents (already true or mostly true), but we apparently intend to stack secondary caches. Saving an entry from a compressed secondary to a lower tier requires custom handling offered by SaveToCallback, etc.
* Make CreateCallback part of the helper and introduce CreateContext to work with it (alternative to https://github.com/facebook/rocksdb/issues/10562). This cleans up the interface while still allowing context to be provided for loading/parsing values into primary cache. This model works for async lookup in BlockBasedTable reader (reader owns a CreateContext) under the assumption that it always waits on secondary cache operations to finish. (Otherwise, the CreateContext could be destroyed while async operation depending on it continues.) This likely contributes most to the observed performance improvement because it saves an std::function backed by a heap allocation.
* Use char* for serialized data, e.g. in SaveToCallback, where void* was confusingly used. (We use `char*` for serialized byte data all over RocksDB, with many advantages over `void*`. `memcpy` etc. are legacy APIs that should not be mimicked.)
* Add a type alias Cache::ObjectPtr = void*, so that we can better indicate the intent of the void* when it is to be the object associated with a Cache entry. Related: started (but did not complete) a refactoring to move away from "value" of a cache entry toward "object" or "obj". (It is confusing to call Cache a key-value store (like DB) when it is really storing arbitrary in-memory objects, not byte strings.)
* Remove unnecessary key param from DeleterFn. This is good for efficiency in HyperClockCache, which does not directly store the cache key in memory. (Alternative to https://github.com/facebook/rocksdb/issues/10774)
* Add allocator to Cache DeleterFn. This is a kind of future-proofing change in case we get more serious about using the Cache allocator for memory tracked by the Cache. Right now, only the uncompressed block contents are allocated using the allocator, and a pointer to that allocator is saved as part of the cached object so that the deleter can use it. (See CacheAllocationPtr.) If in the future we are able to "flatten out" our Cache objects some more, it would be good not to have to track the allocator as part of each object.
* Removes legacy `ApplyToAllCacheEntries` and changes `ApplyToAllEntries` signature for Deleter->CacheItemHelper change.

## typed_cache.h
Adds various "typed" interfaces to the Cache as internal APIs, so that most uses of Cache can use simple type safe code without casting and without explicit deleters, etc. Almost all of the non-test, non-glue code uses of Cache have been migrated. (Follow-up work: CompressedSecondaryCache deserves deeper attention to migrate.) This change expands RocksDB's internal usage of metaprogramming and SFINAE (https://en.cppreference.com/w/cpp/language/sfinae).

The existing usages of Cache are divided up at a high level into these new interfaces. See updated existing uses of Cache for examples of how these are used.
* PlaceholderCacheInterface - Used for making cache reservations, with entries that have a charge but no value.
* BasicTypedCacheInterface<TValue> - Used for primary cache storage of objects of type TValue, which can be cleaned up with std::default_delete<TValue>. The role is provided by TValue::kCacheEntryRole or given in an optional template parameter.
* FullTypedCacheInterface<TValue, TCreateContext> - Used for secondary cache compatible storage of objects of type TValue. In addition to BasicTypedCacheInterface constraints, we require TValue::ContentSlice() to return persistable data. This simplifies usage for the normal case of simple secondary cache compatibility (can give you a Slice to the data already in memory). In addition to TCreateContext performing the role of Cache::CreateContext, it is also expected to provide a factory function for creating TValue.
* For each of these, there's a "Shared" version (e.g. FullTypedSharedCacheInterface) that holds a shared_ptr to the Cache, rather than assuming external ownership by holding only a raw `Cache*`.

These interfaces introduce specific handle types for each interface instantiation, so that it's easy to see what kind of object is controlled by a handle. (Ultimately, this might not be worth the extra complexity, but it seems OK so far.)

Note: I attempted to make the cache 'charge' automatically inferred from the cache object type, such as by expecting an ApproximateMemoryUsage() function, but this is not so clean because there are cases where we need to compute the charge ahead of time and don't want to re-compute it.

## block_cache.h
This header is essentially the replacement for the old block_like_traits.h. It includes various things to support block cache access with typed_cache.h for block-based table.

## block_based_table_reader.cc
Before this change, accessing the block cache here was an awkward mix of static polymorphism (template TBlocklike) and switch-case on a dynamic BlockType value. This change mostly unifies on static polymorphism, relying on minor hacks in block_cache.h to distinguish variants of Block. We still check BlockType in some places (especially for stats, which could be improved in follow-up work) but at least the BlockType is a static constant from the template parameter. (No more awkward partial redundancy between static and dynamic info.) This likely contributes to the overall performance improvement, but hasn't been tested in isolation.

The other key source of simplification here is a more unified system of creating block cache objects: for directly populating from primary cache and for promotion from secondary cache. Both use BlockCreateContext, for context and for factory functions.

## block_based_table_builder.cc, cache_dump_load_impl.cc
Before this change, warming caches was super ugly code. Both of these source files had switch statements to basically transition from the dynamic BlockType world to the static TBlocklike world. None of that mess is needed anymore as there's a new, untyped WarmInCache function that handles all the details just as promotion from SecondaryCache would. (Fixes `TODO akanksha: Dedup below code` in block_based_table_builder.cc.)

## Everything else
Mostly just updating Cache users to use new typed APIs when reasonably possible, or changed Cache APIs when not.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10975

Test Plan:
tests updated

Performance test setup similar to https://github.com/facebook/rocksdb/issues/10626 (by cache size, LRUCache when not "hyper" for HyperClockCache):

34MB 1thread base.hyper -> kops/s: 0.745 io_bytes/op: 2.52504e+06 miss_ratio: 0.140906 max_rss_mb: 76.4844
34MB 1thread new.hyper -> kops/s: 0.751 io_bytes/op: 2.5123e+06 miss_ratio: 0.140161 max_rss_mb: 79.3594
34MB 1thread base -> kops/s: 0.254 io_bytes/op: 1.36073e+07 miss_ratio: 0.918818 max_rss_mb: 45.9297
34MB 1thread new -> kops/s: 0.252 io_bytes/op: 1.36157e+07 miss_ratio: 0.918999 max_rss_mb: 44.1523
34MB 32thread base.hyper -> kops/s: 7.272 io_bytes/op: 2.88323e+06 miss_ratio: 0.162532 max_rss_mb: 516.602
34MB 32thread new.hyper -> kops/s: 7.214 io_bytes/op: 2.99046e+06 miss_ratio: 0.168818 max_rss_mb: 518.293
34MB 32thread base -> kops/s: 3.528 io_bytes/op: 1.35722e+07 miss_ratio: 0.914691 max_rss_mb: 264.926
34MB 32thread new -> kops/s: 3.604 io_bytes/op: 1.35744e+07 miss_ratio: 0.915054 max_rss_mb: 264.488
233MB 1thread base.hyper -> kops/s: 53.909 io_bytes/op: 2552.35 miss_ratio: 0.0440566 max_rss_mb: 241.984
233MB 1thread new.hyper -> kops/s: 62.792 io_bytes/op: 2549.79 miss_ratio: 0.044043 max_rss_mb: 241.922
233MB 1thread base -> kops/s: 1.197 io_bytes/op: 2.75173e+06 miss_ratio: 0.103093 max_rss_mb: 241.559
233MB 1thread new -> kops/s: 1.199 io_bytes/op: 2.73723e+06 miss_ratio: 0.10305 max_rss_mb: 240.93
233MB 32thread base.hyper -> kops/s: 1298.69 io_bytes/op: 2539.12 miss_ratio: 0.0440307 max_rss_mb: 371.418
233MB 32thread new.hyper -> kops/s: 1421.35 io_bytes/op: 2538.75 miss_ratio: 0.0440307 max_rss_mb: 347.273
233MB 32thread base -> kops/s: 9.693 io_bytes/op: 2.77304e+06 miss_ratio: 0.103745 max_rss_mb: 569.691
233MB 32thread new -> kops/s: 9.75 io_bytes/op: 2.77559e+06 miss_ratio: 0.103798 max_rss_mb: 552.82
1597MB 1thread base.hyper -> kops/s: 58.607 io_bytes/op: 1449.14 miss_ratio: 0.0249324 max_rss_mb: 1583.55
1597MB 1thread new.hyper -> kops/s: 69.6 io_bytes/op: 1434.89 miss_ratio: 0.0247167 max_rss_mb: 1584.02
1597MB 1thread base -> kops/s: 60.478 io_bytes/op: 1421.28 miss_ratio: 0.024452 max_rss_mb: 1589.45
1597MB 1thread new -> kops/s: 63.973 io_bytes/op: 1416.07 miss_ratio: 0.0243766 max_rss_mb: 1589.24
1597MB 32thread base.hyper -> kops/s: 1436.2 io_bytes/op: 1357.93 miss_ratio: 0.0235353 max_rss_mb: 1692.92
1597MB 32thread new.hyper -> kops/s: 1605.03 io_bytes/op: 1358.04 miss_ratio: 0.023538 max_rss_mb: 1702.78
1597MB 32thread base -> kops/s: 280.059 io_bytes/op: 1350.34 miss_ratio: 0.023289 max_rss_mb: 1675.36
1597MB 32thread new -> kops/s: 283.125 io_bytes/op: 1351.05 miss_ratio: 0.0232797 max_rss_mb: 1703.83

Almost uniformly improving over base revision, especially for hot paths with HyperClockCache, up to 12% higher throughput seen (1597MB, 32thread, hyper). The improvement for that is likely coming from much simplified code for providing context for secondary cache promotion (CreateCallback/CreateContext), and possibly from less branching in block_based_table_reader. And likely a small improvement from not reconstituting key for DeleterFn.

Reviewed By: anand1976

Differential Revision: D42417818

Pulled By: pdillinger

fbshipit-source-id: f86bfdd584dce27c028b151ba56818ad14f7a432
2023-01-11 14:20:40 -08:00
Hui Xiao 98d5db5c2e Sort L0 files by newly introduced epoch_num (#10922)
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
-  File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
    - For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
       - insert k1@1 to memtable m1
       - ingest file s1 with k2@2, ingest file s2 with k3@3
        - insert k4@4 to m1
       - compact files s1, s2 and  result in new file s3 of seqno range [2, 3]
       - flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
    - However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
    - For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr  for this example)
        - an existing SST s1 contains only k1@1
        - insert k1@2 to memtable m1
        - ingest file s2 with k3@3, ingest file s3 with k4@4
        - insert single delete k5@5 in m1
        - flush m1 and result in new file s4 of seqno range [2, 5]
        - compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
        - compact s4 and result in new file s6 of seqno range [2] due to single delete
    - By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`

Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number`  ordering check. This will result in file ordering s1 <  s2 <  s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.

**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
  - `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
  - Compaction output file  is assigned with the minimum `epoch_number` among input files'
      - Refit level: reuse refitted file's epoch_number
  -  Other paths needing `epoch_number` treatment:
     - Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
     - Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
  -  Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or  by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
  - Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
   - Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
   - Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
   - Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
   - update existing tests with `epoch_number` so make check will pass
   - update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
   - assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922

Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run 36a5686ec0 (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox`
- [Ongoing] normal db stress test
- [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761

Reviewed By: ajkr

Differential Revision: D41063187

Pulled By: hx235

fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 13:29:37 -08:00
Yanqin Jin 3d0d6b8140 Make best-efforts recovery verify SST unique ID before Version construction (#10962)
Summary:
The check for SST unique IDs added to best-efforts recovery (`Options::best_efforts_recovery` is true).

With best_efforts_recovery being true, RocksDB will recover to the latest point in
MANIFEST such that all valid SST files included up to this point pass unique ID checks as well.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10962

Test Plan: make check

Reviewed By: pdillinger

Differential Revision: D41378241

Pulled By: riversand963

fbshipit-source-id: a036064e2c17dec13d080a24ef2a9f85d607b16c
2022-11-22 22:53:31 -08:00
Andrew Kryczka 5cf6ab6f31 Ran clang-format on db/ directory (#10910)
Summary:
Ran `find ./db/ -type f | xargs clang-format -i`. Excluded minor changes it tried to make on db/db_impl/. Everything else it changed was directly under db/ directory. Included minor manual touchups mentioned in PR commit history.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10910

Reviewed By: riversand963

Differential Revision: D40880683

Pulled By: ajkr

fbshipit-source-id: cfe26cda05b3fb9a72e3cb82c286e21d8c5c4174
2022-11-02 14:34:24 -07:00
Peter Dillinger 2d0380adbe Allow manifest fix-up without requiring prior state (#10796)
Summary:
This change is motivated by ensuring that `ldb update_manifest` or `UpdateManifestForFilesState` can run without expecting files to open when the old temperature is provided (in case the FileSystem strictly interprets non-kUnknown), but ended up fixing a problem in `OfflineManifestWriter` (used by `ldb unsafe_remove_sst_file`) where it would open some SST files during recovery and expect them to match the prior manifest state, even if not required by the intended new state.

Also update BackupEngine to retry with Temperature kUnknown when reading file with potentially "wrong" temperature.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10796

Test Plan: tests added/updated, that fail before the change(s) and now pass

Reviewed By: jay-zhuang

Differential Revision: D40232645

Pulled By: jay-zhuang

fbshipit-source-id: b5aa2688aecfe0c320b80a7da689b315414c20be
2022-10-10 17:59:17 -07:00
anand76 37b75e1364 Fix some MultiGet stats (#10673)
Summary:
The stats were not accurate for the coroutine version of MultiGet. This PR fixes it.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10673

Reviewed By: akankshamahajan15

Differential Revision: D39492615

Pulled By: anand1976

fbshipit-source-id: b46c04e15ea27e66f4c31f00c66497aa283bf9d3
2022-09-15 22:48:06 -07:00
Peter Dillinger 6de7081cf3 Always verify SST unique IDs on SST file open (#10532)
Summary:
Although we've been tracking SST unique IDs in the DB manifest
unconditionally, checking has been opt-in and with an extra pass at DB::Open
time. This changes the behavior of `verify_sst_unique_id_in_manifest` to
check unique ID against manifest every time an SST file is opened through
table cache (normal DB operations), replacing the explicit pass over files
at DB::Open time. This change also enables the option by default and
removes the "EXPERIMENTAL" designation.

One possible criticism is that the option no longer ensures the integrity
of a DB at Open time. This is far from an all-or-nothing issue. Verifying
the IDs of all SST files hardly ensures all the data in the DB is readable.
(VerifyChecksum is supposed to do that.) Also, with
max_open_files=-1 (default, extremely common), all SST files are
opened at DB::Open time anyway.

Implementation details:
* `VerifySstUniqueIdInManifest()` functions are the extra/explicit pass
that is now removed.
* Unit tests that manipulate/corrupt table properties have to opt out of
this check, because that corrupts the "actual" unique id. (And even for
testing we don't currently have a mechanism to set "no unique id"
in the in-memory file metadata for new files.)
* A lot of other unit test churn relates to (a) default checking on, and
(b) checking on SST open even without DB::Open (e.g. on flush)
* Use `FileMetaData` for more `TableCache` operations (in place of
`FileDescriptor`) so that we have access to the unique_id whenever
we might need to open an SST file. **There is the possibility of
performance impact because we can no longer use the more
localized `fd` part of an `FdWithKeyRange` but instead follow the
`file_metadata` pointer. However, this change (possible regression)
is only done for `GetMemoryUsageByTableReaders`.**
* Removed a completely unnecessary constructor overload of
`TableReaderOptions`

Possible follow-up:
* Verification only happens when opening through table cache. Are there
more places where this should happen?
* Improve error message when there is a file size mismatch vs. manifest
(FIXME added in the appropriate place).
* I'm not sure there's a justification for `FileDescriptor` to be distinct from
`FileMetaData`.
* I'm skeptical that `FdWithKeyRange` really still makes sense for
optimizing some data locality by duplicating some data in memory, but I
could be wrong.
* An unnecessary overload of NewTableReader was recently added, in
the public API nonetheless (though unusable there). It should be cleaned
up to put most things under `TableReaderOptions`.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10532

Test Plan:
updated unit tests

Performance test showing no significant difference (just noise I think):
`./db_bench -benchmarks=readwhilewriting[-X10] -num=3000000 -disable_wal=1 -bloom_bits=8 -write_buffer_size=1000000 -target_file_size_base=1000000`
Before: readwhilewriting [AVG 10 runs] : 68702 (± 6932) ops/sec
After: readwhilewriting [AVG 10 runs] : 68239 (± 7198) ops/sec

Reviewed By: jay-zhuang

Differential Revision: D38765551

Pulled By: pdillinger

fbshipit-source-id: a827a708155f12344ab2a5c16e7701c7636da4c2
2022-09-07 22:52:42 -07:00
Changyu Bi 30bc495c03 Skip swaths of range tombstone covered keys in merging iterator (2022 edition) (#10449)
Summary:
Delete range logic is moved from `DBIter` to `MergingIterator`, and `MergingIterator` will seek to the end of a range deletion if possible instead of scanning through each key and check with `RangeDelAggregator`.

With the invariant that a key in level L (consider memtable as the first level, each immutable and L0 as a separate level) has a larger sequence number than all keys in any level >L, a range tombstone `[start, end)` from level L covers all keys in its range in any level >L. This property motivates optimizations in iterator:
- in `Seek(target)`, if level L has a range tombstone `[start, end)` that covers `target.UserKey`, then for all levels > L, we can do Seek() on `end` instead of `target` to skip some range tombstone covered keys.
- in `Next()/Prev()`, if the current key is covered by a range tombstone `[start, end)` from level L, we can do `Seek` to `end` for all levels > L.

This PR implements the above optimizations in `MergingIterator`. As all range tombstone covered keys are now skipped in `MergingIterator`, the range tombstone logic is removed from `DBIter`. The idea in this PR is similar to https://github.com/facebook/rocksdb/issues/7317, but this PR leaves `InternalIterator` interface mostly unchanged. **Credit**: the cascading seek optimization and the sentinel key (discussed below) are inspired by [Pebble](https://github.com/cockroachdb/pebble/blob/master/merging_iter.go) and suggested by ajkr in https://github.com/facebook/rocksdb/issues/7317. The two optimizations are mostly implemented in `SeekImpl()/SeekForPrevImpl()` and `IsNextDeleted()/IsPrevDeleted()` in `merging_iterator.cc`. See comments for each method for more detail.

One notable change is that the minHeap/maxHeap used by `MergingIterator` now contains range tombstone end keys besides point key iterators. This helps to reduce the number of key comparisons. For example, for a range tombstone `[start, end)`, a `start` and an `end` `HeapItem` are inserted into the heap. When a `HeapItem` for range tombstone start key is popped from the minHeap, we know this range tombstone becomes "active" in the sense that, before the range tombstone's end key is popped from the minHeap, all the keys popped from this heap is covered by the range tombstone's internal key range `[start, end)`.

Another major change, *delete range sentinel key*, is made to `LevelIterator`. Before this PR, when all point keys in an SST file are iterated through in `MergingIterator`, a level iterator would advance to the next SST file in its level. In the case when an SST file has a range tombstone that covers keys beyond the SST file's last point key, advancing to the next SST file would lose this range tombstone. Consequently, `MergingIterator` could return keys that should have been deleted by some range tombstone. We prevent this by pretending that file boundaries in each SST file are sentinel keys. A `LevelIterator` now only advance the file iterator once the sentinel key is processed.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10449

Test Plan:
- Added many unit tests in db_range_del_test
- Stress test: `./db_stress --readpercent=5 --prefixpercent=19 --writepercent=20 -delpercent=10 --iterpercent=44 --delrangepercent=2`
- Additional iterator stress test is added to verify against iterators against expected state: https://github.com/facebook/rocksdb/issues/10538. This is based on ajkr's previous attempt https://github.com/facebook/rocksdb/pull/5506#issuecomment-506021913.

```
python3 ./tools/db_crashtest.py blackbox --simple --write_buffer_size=524288 --target_file_size_base=524288 --max_bytes_for_level_base=2097152 --compression_type=none --max_background_compactions=8 --value_size_mult=33 --max_key=5000000 --interval=10 --duration=7200 --delrangepercent=3 --delpercent=9 --iterpercent=25 --writepercent=60 --readpercent=3 --prefixpercent=0 --num_iterations=1000 --range_deletion_width=100 --verify_iterator_with_expected_state_one_in=1
```

- Performance benchmark: I used a similar setup as in the blog [post](http://rocksdb.org/blog/2018/11/21/delete-range.html) that introduced DeleteRange, "a database with 5 million data keys, and 10000 range tombstones (ignoring those dropped during compaction) that were written in regular intervals after 4.5 million data keys were written".  As expected, the performance with this PR depends on the range tombstone width.
```
# Setup:
TEST_TMPDIR=/dev/shm ./db_bench_main --benchmarks=fillrandom --writes=4500000 --num=5000000
TEST_TMPDIR=/dev/shm ./db_bench_main --benchmarks=overwrite --writes=500000 --num=5000000 --use_existing_db=true --writes_per_range_tombstone=50

# Scan entire DB
TEST_TMPDIR=/dev/shm ./db_bench_main --benchmarks=readseq[-X5] --use_existing_db=true --num=5000000 --disable_auto_compactions=true

# Short range scan (10 Next())
TEST_TMPDIR=/dev/shm/width-100/ ./db_bench_main --benchmarks=seekrandom[-X5] --use_existing_db=true --num=500000 --reads=100000 --seek_nexts=10 --disable_auto_compactions=true

# Long range scan(1000 Next())
TEST_TMPDIR=/dev/shm/width-100/ ./db_bench_main --benchmarks=seekrandom[-X5] --use_existing_db=true --num=500000 --reads=2500 --seek_nexts=1000 --disable_auto_compactions=true
```
Avg over of 10 runs (some slower tests had fews runs):

For the first column (tombstone), 0 means no range tombstone, 100-10000 means width of the 10k range tombstones, and 1 means there is a single range tombstone in the entire DB (width is 1000). The 1 tombstone case is to test regression when there's very few range tombstones in the DB, as no range tombstone is likely to take a different code path than with range tombstones.

- Scan entire DB

| tombstone width | Pre-PR ops/sec | Post-PR ops/sec | ±% |
| ------------- | ------------- | ------------- |  ------------- |
| 0 range tombstone    |2525600 (± 43564)    |2486917 (± 33698)    |-1.53%               |
| 100   |1853835 (± 24736)    |2073884 (± 32176)    |+11.87%              |
| 1000  |422415 (± 7466)      |1115801 (± 22781)    |+164.15%             |
| 10000 |22384 (± 227)        |227919 (± 6647)      |+918.22%             |
| 1 range tombstone      |2176540 (± 39050)    |2434954 (± 24563)    |+11.87%              |
- Short range scan

| tombstone width | Pre-PR ops/sec | Post-PR ops/sec | ±% |
| ------------- | ------------- | ------------- |  ------------- |
| 0  range tombstone   |35398 (± 533)        |35338 (± 569)        |-0.17%               |
| 100   |28276 (± 664)        |31684 (± 331)        |+12.05%              |
| 1000  |7637 (± 77)          |25422 (± 277)        |+232.88%             |
| 10000 |1367                 |28667                |+1997.07%            |
| 1 range tombstone      |32618 (± 581)        |32748 (± 506)        |+0.4%                |

- Long range scan

| tombstone width | Pre-PR ops/sec | Post-PR ops/sec | ±% |
| ------------- | ------------- | ------------- |  ------------- |
| 0 range tombstone     |2262 (± 33)          |2353 (± 20)          |+4.02%               |
| 100   |1696 (± 26)          |1926 (± 18)          |+13.56%              |
| 1000  |410 (± 6)            |1255 (± 29)          |+206.1%              |
| 10000 |25                   |414                  |+1556.0%             |
| 1 range tombstone   |1957 (± 30)          |2185 (± 44)          |+11.65%              |

- Microbench does not show significant regression: https://gist.github.com/cbi42/59f280f85a59b678e7e5d8561e693b61

Reviewed By: ajkr

Differential Revision: D38450331

Pulled By: cbi42

fbshipit-source-id: b5ef12e8d8c289ed2e163ccdf277f5039b511fca
2022-09-02 09:51:19 -07:00
Hui Xiao e484b81eee Sync dir containing CURRENT after RenameFile on CURRENT as much as possible (#10573)
Summary:
**Context:**
Below crash test revealed a bug that directory containing CURRENT file (short for `dir_contains_current_file` below) was not always get synced after a new CURRENT is created and being called with `RenameFile` as part of the creation.

This bug exposes a risk that such un-synced directory containing the updated CURRENT can’t survive a host crash (e.g, power loss) hence get corrupted. This then will be followed by a recovery from a corrupted CURRENT that we don't want.

The root-cause is that a nullptr `FSDirectory* dir_contains_current_file` sometimes gets passed-down to `SetCurrentFile()` hence in those case `dir_contains_current_file->FSDirectory::FsyncWithDirOptions()` will be skipped  (which otherwise will internally call`Env/FS::SyncDic()` )
```
./db_stress --acquire_snapshot_one_in=10000 --adaptive_readahead=1 --allow_data_in_errors=True --avoid_unnecessary_blocking_io=0 --backup_max_size=104857600 --backup_one_in=100000 --batch_protection_bytes_per_key=8 --block_size=16384 --bloom_bits=134.8015470676662 --bottommost_compression_type=disable --cache_size=8388608 --checkpoint_one_in=1000000 --checksum_type=kCRC32c --clear_column_family_one_in=0 --compact_files_one_in=1000000 --compact_range_one_in=1000000 --compaction_pri=2 --compaction_ttl=100 --compression_max_dict_buffer_bytes=511 --compression_max_dict_bytes=16384 --compression_type=zstd --compression_use_zstd_dict_trainer=1 --compression_zstd_max_train_bytes=65536 --continuous_verification_interval=0 --data_block_index_type=0 --db=$db --db_write_buffer_size=1048576 --delpercent=5 --delrangepercent=0 --destroy_db_initially=0 --disable_wal=0 --enable_compaction_filter=0 --enable_pipelined_write=1 --expected_values_dir=$exp --fail_if_options_file_error=1 --file_checksum_impl=none --flush_one_in=1000000 --get_current_wal_file_one_in=0 --get_live_files_one_in=1000000 --get_property_one_in=1000000 --get_sorted_wal_files_one_in=0 --index_block_restart_interval=4 --ingest_external_file_one_in=0 --iterpercent=10 --key_len_percent_dist=1,30,69 --level_compaction_dynamic_level_bytes=True --mark_for_compaction_one_file_in=10 --max_background_compactions=20 --max_bytes_for_level_base=10485760 --max_key=10000 --max_key_len=3 --max_manifest_file_size=16384 --max_write_batch_group_size_bytes=64 --max_write_buffer_number=3 --max_write_buffer_size_to_maintain=0 --memtable_prefix_bloom_size_ratio=0.001 --memtable_protection_bytes_per_key=1 --memtable_whole_key_filtering=1 --mmap_read=1 --nooverwritepercent=1 --open_metadata_write_fault_one_in=0 --open_read_fault_one_in=0 --open_write_fault_one_in=0 --ops_per_thread=100000000 --optimize_filters_for_memory=1 --paranoid_file_checks=1 --partition_pinning=2 --pause_background_one_in=1000000 --periodic_compaction_seconds=0 --prefix_size=5 --prefixpercent=5 --prepopulate_block_cache=1 --progress_reports=0 --read_fault_one_in=1000 --readpercent=45 --recycle_log_file_num=0 --reopen=0 --ribbon_starting_level=999 --secondary_cache_fault_one_in=32 --secondary_cache_uri=compressed_secondary_cache://capacity=8388608 --set_options_one_in=10000 --snapshot_hold_ops=100000 --sst_file_manager_bytes_per_sec=0 --sst_file_manager_bytes_per_truncate=0 --subcompactions=3 --sync_fault_injection=1 --target_file_size_base=2097 --target_file_size_multiplier=2 --test_batches_snapshots=1 --top_level_index_pinning=1 --use_full_merge_v1=1 --use_merge=1 --value_size_mult=32 --verify_checksum=1 --verify_checksum_one_in=1000000 --verify_db_one_in=100000 --verify_sst_unique_id_in_manifest=1 --wal_bytes_per_sync=524288 --write_buffer_size=4194 --writepercent=35
```

```
stderr:
WARNING: prefix_size is non-zero but memtablerep != prefix_hash
db_stress: utilities/fault_injection_fs.cc:748: virtual rocksdb::IOStatus rocksdb::FaultInjectionTestFS::RenameFile(const std::string &, const std::string &, const rocksdb::IOOptions &, rocksdb::IODebugContext *): Assertion `tlist.find(tdn.second) == tlist.end()' failed.`
```

**Summary:**
The PR ensured the non-test path pass down a non-null dir containing CURRENT (which is by current RocksDB assumption just db_dir) by doing the following:
- Renamed `directory_to_fsync` as `dir_contains_current_file` in `SetCurrentFile()` to tighten the association between this directory and CURRENT file
- Changed `SetCurrentFile()` API to require `dir_contains_current_file` being passed-in, instead of making it by default nullptr.
    -  Because `SetCurrentFile()`'s `dir_contains_current_file` is passed down from `VersionSet::LogAndApply()` then `VersionSet::ProcessManifestWrites()` (i.e, think about this as a chain of 3 functions related to MANIFEST update), these 2 functions also got refactored to require `dir_contains_current_file`
- Updated the non-test-path callers of these 3 functions to obtain and pass in non-nullptr `dir_contains_current_file`, which by current assumption of RocksDB, is the `FSDirectory* db_dir`.
    - `db_impl` path will obtain `DBImpl::directories_.getDbDir()` while others with no access to such `directories_` are obtained on the fly by creating such object `FileSystem::NewDirectory(..)` and manage it by unique pointers to ensure short life time.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10573

Test Plan:
- `make check`
- Passed the repro db_stress command
- For future improvement, since we currently don't assert dir containing CURRENT to be non-nullptr due to https://github.com/facebook/rocksdb/pull/10573#pullrequestreview-1087698899, there is still chances that future developers mistakenly pass down nullptr dir containing CURRENT thus resulting skipped sync dir and cause the bug again. Therefore a smarter test (e.g, such as quoted from ajkr  "(make) unsynced data loss to be dropping files corresponding to unsynced directory entries") is still needed.

Reviewed By: ajkr

Differential Revision: D39005886

Pulled By: hx235

fbshipit-source-id: 336fb9090d0cfa6ca3dd580db86268007dde7f5a
2022-08-29 17:35:21 -07:00
anand76 35cdd3e71e MultiGet async IO across multiple levels (#10535)
Summary:
This PR exploits parallelism in MultiGet across levels. It applies only to the coroutine version of MultiGet. Previously, MultiGet file reads from SST files in the same level were parallelized. With this PR, MultiGet batches with keys distributed across multiple levels are read in parallel. This is accomplished by splitting the keys not present in a level (determined by bloom filtering) into a separate batch, and processing the new batch in parallel with the original batch.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10535

Test Plan:
1. Ensure existing MultiGet unit tests pass, updating them as necessary
2. New unit tests - TODO
3. Run stress test - TODO

No noticeable regression (<1%) without async IO -
Without PR: `multireadrandom :       7.261 micros/op 1101724 ops/sec 60.007 seconds 66110936 operations;  571.6 MB/s (8168992 of 8168992 found)`
With PR: `multireadrandom :       7.305 micros/op 1095167 ops/sec 60.007 seconds 65717936 operations;  568.2 MB/s (8271992 of 8271992 found)`

For a fully cached DB, but with async IO option on, no regression observed (<1%) -
Without PR: `multireadrandom :       5.201 micros/op 1538027 ops/sec 60.005 seconds 92288936 operations;  797.9 MB/s (11540992 of 11540992 found) `
With PR: `multireadrandom :       5.249 micros/op 1524097 ops/sec 60.005 seconds 91452936 operations;  790.7 MB/s (11649992 of 11649992 found) `

Reviewed By: akankshamahajan15

Differential Revision: D38774009

Pulled By: anand1976

fbshipit-source-id: c955e259749f1c091590ade73105b3ee46cd0007
2022-08-19 16:52:52 -07:00
Levi Tamasi 81388b36e0 Add support for wide-column point lookups (#10540)
Summary:
The patch adds a new API `GetEntity` that can be used to perform
wide-column point lookups. It also extends the `Get` code path and
the `MemTable` / `MemTableList` and `Version` / `GetContext` logic
accordingly so that wide-column entities can be served from both
memtables and SSTs. If the result of a lookup is a wide-column entity
(`kTypeWideColumnEntity`), it is passed to the application in deserialized
form; if it is a plain old key-value (`kTypeValue`), it is presented as a
wide-column entity with a single default (anonymous) column.
(In contrast, regular `Get` returns plain old key-values as-is, and
returns the value of the default column for wide-column entities, see
https://github.com/facebook/rocksdb/issues/10483 .)

The result of `GetEntity` is a self-contained `PinnableWideColumns` object.
`PinnableWideColumns` contains a `PinnableSlice`, which either stores the
underlying data in its own buffer or holds on to a cache handle. It also contains
a `WideColumns` instance, which indexes the contents of the `PinnableSlice`,
so applications can access the values of columns efficiently.

There are several pieces of functionality which are currently not supported
for wide-column entities: there is currently no `MultiGetEntity` or wide-column
iterator; also, `Merge` and `GetMergeOperands` are not supported, and there
is no `GetEntity` implementation for read-only and secondary instances.
We plan to implement these in future PRs.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540

Test Plan: `make check`

Reviewed By: akankshamahajan15

Differential Revision: D38847474

Pulled By: ltamasi

fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2022-08-19 11:51:12 -07:00
anand76 65814a4ae6 Fix range deletion handling in async MultiGet (#10534)
Summary:
The fix in https://github.com/facebook/rocksdb/issues/10513 was not complete w.r.t range deletion handling. It didn't handle the case where a file with a range tombstone covering a key also overlapped another key in the batch. In that case, ```mget_range``` would be non-empty. However, ```mget_range``` would only have the second key and, therefore, the first key would be skipped when iterating through the range tombstones in ```TableCache::MultiGet```.

Test plan -
1. Add a unit test
2. Run stress tests

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10534

Reviewed By: akankshamahajan15

Differential Revision: D38773880

Pulled By: anand1976

fbshipit-source-id: dae491dbe52e18bbce5179b77b63f20771a66c00
2022-08-17 13:51:39 -07:00
anand76 bf4532eb5c Break TableReader MultiGet into filter and lookup stages (#10432)
Summary:
This PR is the first step in enhancing the coroutines MultiGet to be able to lookup a batch in parallel across levels. By having a separate TableReader function for probing the bloom filters, we can quickly figure out which overlapping keys from a batch are definitely not in the file and can move on to the next level.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10432

Reviewed By: akankshamahajan15

Differential Revision: D38245910

Pulled By: anand1976

fbshipit-source-id: 3d20db2350378c3fe6f086f0c7ba5ff01d7f04de
2022-08-04 12:51:57 -07:00
Zichen Zhu 8860fc902a Support subcmpct using reserved resources for round-robin priority (#10341)
Summary:
Earlier implementation of round-robin priority can only pick one file at a time and disallows parallel compactions within the same level. In this PR, round-robin compaction policy will expand towards more input files with respecting some additional constraints, which are summarized as follows:
 * Constraint 1: We can only pick consecutive files
   - Constraint 1a: When a file is being compacted (or some input files are being compacted after expanding), we cannot choose it and have to stop choosing more files
   - Constraint 1b: When we reach the last file (with the largest keys), we cannot choose more files (the next file will be the first one with small keys)
 * Constraint 2: We should ensure the total compaction bytes (including the overlapped files from the next level) is no more than `mutable_cf_options_.max_compaction_bytes`
 * Constraint 3: We try our best to pick as many files as possible so that the post-compaction level size can be just less than `MaxBytesForLevel(start_level_)`
 * Constraint 4: If trivial move is allowed, we reuse the logic of `TryNonL0TrivialMove()` instead of expanding files with Constraint 3

More details can be found in `LevelCompactionBuilder::SetupOtherFilesWithRoundRobinExpansion()`.

The above optimization accelerates the process of moving the compaction cursor, in which the write-amp can be further reduced. While a large compaction may lead to high write stall, we break this large compaction into several subcompactions **regardless of** the `max_subcompactions` limit.  The number of subcompactions for round-robin compaction priority is determined through the following steps:
* Step 1: Initialized against `max_output_file_limit`, the number of input files in the start level, and also the range size limit `ranges.size()`
* Step 2: Call `AcquireSubcompactionResources()`when max subcompactions is not sufficient, but we may or may not obtain desired resources, additional number of resources is stored in `extra_num_subcompaction_threads_reserved_`). Subcompaction limit is changed and update `num_planned_subcompactions` with `GetSubcompactionLimit()`
* Step 3: Call `ShrinkSubcompactionResources()` to ensure extra resources can be released (extra resources may exist for round-robin compaction when the number of actual number of subcompactions is less than the number of planned subcompactions)

More details can be found in `CompactionJob::AcquireSubcompactionResources()`,`CompactionJob::ShrinkSubcompactionResources()`, and `CompactionJob::ReleaseSubcompactionResources()`.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10341

Test Plan: Add `CompactionPriMultipleFilesRoundRobin[1-3]` unit test in `compaction_picker_test.cc` and `RoundRobinSubcompactionsAgainstResources.SubcompactionsUsingResources/[0-4]`, `RoundRobinSubcompactionsAgainstPressureToken.PressureTokenTest/[0-1]` in `db_compaction_test.cc`

Reviewed By: ajkr, hx235

Differential Revision: D37792644

Pulled By: littlepig2013

fbshipit-source-id: 7fecb7c4ffd97b34bbf6e3b760b2c35a772a0657
2022-07-24 11:12:44 -07:00
Gang Liao 056e08d6c4 Enable blob caching for MultiGetBlob in RocksDB (#10272)
Summary:
- [x] Enabled blob caching for MultiGetBlob in RocksDB
- [x] Refactored MultiGetBlob logic and interface in RocksDB
- [x] Cleaned up Version::MultiGetBlob() and moved 'blob'-related code snippets into BlobSource
- [x] Add End-to-end test cases in db_blob_basic_test and also add unit tests in blob_source_test

This task is a part of https://github.com/facebook/rocksdb/issues/10156

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10272

Reviewed By: ltamasi

Differential Revision: D37558112

Pulled By: gangliao

fbshipit-source-id: a73a6a94ffdee0024d5b2a39e6d1c1a7d38664db
2022-06-30 13:24:35 -07:00
zczhu 30141461f9 Add basic kRoundRobin compaction policy (#10107)
Summary:
Add `kRoundRobin` as a compaction priority. The implementation is as follows.

- Define a cursor as the smallest Internal key in the successor of the selected file. Add `vector<InternalKey> compact_cursor_` into `VersionStorageInfo` where each element (`InternalKey`) in `compact_cursor_` represents a cursor. In round-robin compaction policy, we just need to select the first file (assuming files are sorted) and also has the smallest InternalKey larger than/equal to the cursor. After a file is chosen, we create a new `Fsize` vector which puts the selected file is placed at the first position in `temp`, the next cursor is then updated as the smallest InternalKey in successor of the selected file (the above logic is implemented in `SortFileByRoundRobin`).
- After a compaction succeeds, typically `InstallCompactionResults()`, we choose the next cursor for the input level and save it to `edit`. When calling `LogAndApply`, we save the next cursor with its level into some local variable and finally apply the change to `vstorage` in `SaveTo` function.
- Cursors are persist pair by pair (<level, InternalKey>) in `EncodeTo` so that they can be reconstructed when reopening. An empty cursor will not be encoded to MANIFEST

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10107

Test Plan: add unit test (`CompactionPriRoundRobin`) in `compaction_picker_test`, add `kRoundRobin` priority in `CompactionPriTest` from `db_compaction_test`, and add `PersistRoundRobinCompactCursor` in `db_compaction_test`

Reviewed By: ajkr

Differential Revision: D37316037

Pulled By: littlepig2013

fbshipit-source-id: 9f481748190ace416079139044e00df2968fb1ee
2022-06-21 11:56:53 -07:00
Gang Liao deff48bcef Add blob source to retrieve blobs in RocksDB (#10198)
Summary:
There is currently no caching mechanism for blobs, which is not ideal especially when the database resides on remote storage (where we cannot rely on the OS page cache). As part of this task, we would like to make it possible for the application to configure a blob cache.
In this task, we formally introduced the blob source to RocksDB.  BlobSource is a new abstraction layer that provides universal access to blobs, regardless of whether they are in the blob cache, secondary cache, or (remote) storage. Depending on user settings, it always fetch blobs from multi-tier cache and storage with minimal cost.

Note: The new `MultiGetBlob()` implementation is not included in the current PR. To go faster, we aim to create a separate PR for it in parallel!

This PR is a part of https://github.com/facebook/rocksdb/issues/10156

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10198

Reviewed By: ltamasi

Differential Revision: D37294735

Pulled By: gangliao

fbshipit-source-id: 9cb50422d9dd1bc03798501c2778b6c7520c7a1e
2022-06-20 20:58:11 -07:00
anand76 a6691d0f65 Update stats to help users estimate MultiGet async IO impact (#10182)
Summary:
Add a couple of stats to help users estimate the impact of potential MultiGet perf improvements -
1. NUM_LEVEL_READ_PER_MULTIGET - A histogram stat for number of levels that required MultiGet to read from a file
2. MULTIGET_COROUTINE_COUNT - A ticker stat to count the number of times the coroutine version of MultiGetFromSST was used

The NUM_DATA_BLOCKS_READ_PER_LEVEL stat is obsoleted as it doesn't provide useful information for MultiGet optimization.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10182

Reviewed By: akankshamahajan15

Differential Revision: D37213296

Pulled By: anand1976

fbshipit-source-id: 5d2b7708017c0e278578ae4bffac3926f6530efb
2022-06-16 12:12:43 -07:00
Hui Xiao d665afdbf3 Account memory of FileMetaData in global memory limit (#9924)
Summary:
**Context/Summary:**
As revealed by heap profiling, allocation of `FileMetaData` for [newly created file added to a Version](https://github.com/facebook/rocksdb/pull/9924/files#diff-a6aa385940793f95a2c5b39cc670bd440c4547fa54fd44622f756382d5e47e43R774) can consume significant heap memory. This PR is to account that toward our global memory limit based on block cache capacity.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9924

Test Plan:
- Previous `make check` verified there are only 2 places where the memory of  the allocated `FileMetaData` can be released
- New unit test `TEST_P(ChargeFileMetadataTestWithParam, Basic)`
- db bench (CPU cost of `charge_file_metadata` in write and compact)
   - **write micros/op: -0.24%** : `TEST_TMPDIR=/dev/shm/testdb ./db_bench -benchmarks=fillseq -db=$TEST_TMPDIR -charge_file_metadata=1 (remove this option for pre-PR) -disable_auto_compactions=1 -write_buffer_size=100000 -num=4000000 | egrep 'fillseq'`
   - **compact micros/op -0.87%** : `TEST_TMPDIR=/dev/shm/testdb ./db_bench -benchmarks=fillseq -db=$TEST_TMPDIR -charge_file_metadata=1 -disable_auto_compactions=1 -write_buffer_size=100000 -num=4000000 -numdistinct=1000 && ./db_bench -benchmarks=compact -db=$TEST_TMPDIR -use_existing_db=1 -charge_file_metadata=1 -disable_auto_compactions=1 | egrep 'compact'`

table 1 - write

#-run | (pre-PR) avg micros/op | std micros/op | (post-PR)  micros/op | std micros/op | change (%)
-- | -- | -- | -- | -- | --
10 | 3.9711 | 0.264408 | 3.9914 | 0.254563 | 0.5111933721
20 | 3.83905 | 0.0664488 | 3.8251 | 0.0695456 | -0.3633711465
40 | 3.86625 | 0.136669 | 3.8867 | 0.143765 | 0.5289363078
80 | 3.87828 | 0.119007 | 3.86791 | 0.115674 | **-0.2673865734**
160 | 3.87677 | 0.162231 | 3.86739 | 0.16663 | **-0.2419539978**

table 2 - compact

#-run | (pre-PR) avg micros/op | std micros/op | (post-PR)  micros/op | std micros/op | change (%)
-- | -- | -- | -- | -- | --
10 | 2,399,650.00 | 96,375.80 | 2,359,537.00 | 53,243.60 | -1.67
20 | 2,410,480.00 | 89,988.00 | 2,433,580.00 | 91,121.20 | 0.96
40 | 2.41E+06 | 121811 | 2.39E+06 | 131525 | **-0.96**
80 | 2.40E+06 | 134503 | 2.39E+06 | 108799 | **-0.78**

- stress test: `python3 tools/db_crashtest.py blackbox --charge_file_metadata=1  --cache_size=1` killed as normal

Reviewed By: ajkr

Differential Revision: D36055583

Pulled By: hx235

fbshipit-source-id: b60eab94707103cb1322cf815f05810ef0232625
2022-06-14 13:06:40 -07:00
sdong 356f8c5d81 FindObsoleteFiles() to directly check whether candidate files are live (#10040)
Summary:
Right now, in FindObsoleteFiles() we build a list of all live SST files from all existing Versions. This is all done in DB mutex, and is O(m*n) where m is number of versions and n is number of files. In some extereme cases, it can take very long. The list is used to see whether a candidate file still shows up in a version. With this commit, every candidate file is directly check against all the versions for file existance. This operation would be O(m*k) where k is number of candidate files. Since is usually small (except perhaps full compaction in universal compaction), this is usually much faster than the previous solution.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10040

Test Plan: TBD

Reviewed By: riversand963

Differential Revision: D36613391

fbshipit-source-id: 3f13b090f755d9b3ae417faec62cd6e798bac1eb
2022-05-25 12:43:48 -07:00
anand76 57997ddaaf Multi file concurrency in MultiGet using coroutines and async IO (#9968)
Summary:
This PR implements a coroutine version of batched MultiGet in order to concurrently read from multiple SST files in a level using async IO, thus reducing the latency of the MultiGet. The API from the user perspective is still synchronous and single threaded, with the RocksDB part of the processing happening in the context of the caller's thread. In Version::MultiGet, the decision is made whether to call synchronous or coroutine code.

A good way to review this PR is to review the first 4 commits in order - de773b3, 70c2f70, 10b50e1, and 377a597 - before reviewing the rest.

TODO:
1. Figure out how to build it in CircleCI (requires some dependencies to be installed)
2. Do some stress testing with coroutines enabled

No regression in synchronous MultiGet between this branch and main -
```
./db_bench -use_existing_db=true --db=/data/mysql/rocksdb/prefix_scan -benchmarks="readseq,multireadrandom" -key_size=32 -value_size=512 -num=5000000 -batch_size=64 -multiread_batched=true -use_direct_reads=false -duration=60 -ops_between_duration_checks=1 -readonly=true -adaptive_readahead=true -threads=16 -cache_size=10485760000 -async_io=false -multiread_stride=40000 -statistics
```
Branch - ```multireadrandom :       4.025 micros/op 3975111 ops/sec 60.001 seconds 238509056 operations; 2062.3 MB/s (14767808 of 14767808 found)```

Main - ```multireadrandom :       3.987 micros/op 4013216 ops/sec 60.001 seconds 240795392 operations; 2082.1 MB/s (15231040 of 15231040 found)```

More benchmarks in various scenarios are given below. The measurements were taken with ```async_io=false``` (no coroutines) and ```async_io=true``` (use coroutines). For an IO bound workload (with every key requiring an IO), the coroutines version shows a clear benefit, being ~2.6X faster. For CPU bound workloads, the coroutines version has ~6-15% higher CPU utilization, depending on how many keys overlap an SST file.

1. Single thread IO bound workload on remote storage with sparse MultiGet batch keys (~1 key overlap/file) -
No coroutines - ```multireadrandom :     831.774 micros/op 1202 ops/sec 60.001 seconds 72136 operations;    0.6 MB/s (72136 of 72136 found)```
Using coroutines - ```multireadrandom :     318.742 micros/op 3137 ops/sec 60.003 seconds 188248 operations;    1.6 MB/s (188248 of 188248 found)```

2. Single thread CPU bound workload (all data cached) with ~1 key overlap/file -
No coroutines - ```multireadrandom :       4.127 micros/op 242322 ops/sec 60.000 seconds 14539384 operations;  125.7 MB/s (14539384 of 14539384 found)```
Using coroutines - ```multireadrandom :       4.741 micros/op 210935 ops/sec 60.000 seconds 12656176 operations;  109.4 MB/s (12656176 of 12656176 found)```

3. Single thread CPU bound workload with ~2 key overlap/file -
No coroutines - ```multireadrandom :       3.717 micros/op 269000 ops/sec 60.000 seconds 16140024 operations;  139.6 MB/s (16140024 of 16140024 found)```
Using coroutines - ```multireadrandom :       4.146 micros/op 241204 ops/sec 60.000 seconds 14472296 operations;  125.1 MB/s (14472296 of 14472296 found)```

4. CPU bound multi-threaded (16 threads) with ~4 key overlap/file -
No coroutines - ```multireadrandom :       4.534 micros/op 3528792 ops/sec 60.000 seconds 211728728 operations; 1830.7 MB/s (12737024 of 12737024 found) ```
Using coroutines - ```multireadrandom :       4.872 micros/op 3283812 ops/sec 60.000 seconds 197030096 operations; 1703.6 MB/s (12548032 of 12548032 found) ```

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9968

Reviewed By: akankshamahajan15

Differential Revision: D36348563

Pulled By: anand1976

fbshipit-source-id: c0ce85a505fd26ebfbb09786cbd7f25202038696
2022-05-19 15:36:27 -07:00
Jay Zhuang c6d326d3d7 Track SST unique id in MANIFEST and verify (#9990)
Summary:
Start tracking SST unique id in MANIFEST, which is used to verify with
SST properties to make sure the SST file is not overwritten or
misplaced. A DB option `try_verify_sst_unique_id` is introduced to
enable/disable the verification, if enabled, it opens all SST files
during DB-open to read the unique_id from table properties (default is
false), so it's recommended to use it with `max_open_files = -1` to
pre-open the files.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9990

Test Plan: unittests, format-compatible test, mini-crash

Reviewed By: anand1976

Differential Revision: D36381863

Pulled By: jay-zhuang

fbshipit-source-id: 89ea2eb6b35ed3e80ead9c724eb096083eaba63f
2022-05-19 11:04:21 -07:00
sdong 49628c9a83 Use std::numeric_limits<> (#9954)
Summary:
Right now we still don't fully use std::numeric_limits but use a macro, mainly for supporting VS 2013. Right now we only support VS 2017 and up so it is not a problem. The code comment claims that MinGW still needs it. We don't have a CI running MinGW so it's hard to validate. since we now require C++17, it's hard to imagine MinGW would still build RocksDB but doesn't support std::numeric_limits<>.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9954

Test Plan: See CI Runs.

Reviewed By: riversand963

Differential Revision: D36173954

fbshipit-source-id: a35a73af17cdcae20e258cdef57fcf29a50b49e0
2022-05-05 13:08:21 -07:00
Peter Dillinger efd035164b Meta-internal folly integration with F14FastMap (#9546)
Summary:
Especially after updating to C++17, I don't see a compelling case for
*requiring* any folly components in RocksDB. I was able to purge the existing
hard dependencies, and it can be quite difficult to strip out non-trivial components
from folly for use in RocksDB. (The prospect of doing that on F14 has changed
my mind on the best approach here.)

But this change creates an optional integration where we can plug in
components from folly at compile time, starting here with F14FastMap to replace
std::unordered_map when possible (probably no public APIs for example). I have
replaced the biggest CPU users of std::unordered_map with compile-time
pluggable UnorderedMap which will use F14FastMap when USE_FOLLY is set.
USE_FOLLY is always set in the Meta-internal buck build, and a simulation of
that is in the Makefile for public CI testing. A full folly build is not needed, but
checking out the full folly repo is much simpler for getting the dependency,
and anything else we might want to optionally integrate in the future.

Some picky details:
* I don't think the distributed mutex stuff is actually used, so it was easy to remove.
* I implemented an alternative to `folly::constexpr_log2` (which is much easier
in C++17 than C++11) so that I could pull out the hard dependencies on
`ConstexprMath.h`
* I had to add noexcept move constructors/operators to some types to make
F14's complainUnlessNothrowMoveAndDestroy check happy, and I added a
macro to make that easier in some common cases.
* Updated Meta-internal buck build to use folly F14Map (always)

No updates to HISTORY.md nor INSTALL.md as this is not (yet?) considered a
production integration for open source users.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9546

Test Plan:
CircleCI tests updated so that a couple of them use folly.

Most internal unit & stress/crash tests updated to use Meta-internal latest folly.
(Note: they should probably use buck but they currently use Makefile.)

Example performance improvement: when filter partitions are pinned in cache,
they are tracked by PartitionedFilterBlockReader::filter_map_ and we can build
a test that exercises that heavily. Build DB with

```
TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=30000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -partition_index_and_filters
```

and test with (simultaneous runs with & without folly, ~20 times each to see
convergence)

```
TEST_TMPDIR=/dev/shm/rocksdb ./db_bench_folly -readonly -use_existing_db -benchmarks=readrandom -num=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -partition_index_and_filters -duration=40 -pin_l0_filter_and_index_blocks_in_cache
```

Average ops/s no folly: 26229.2
Average ops/s with folly: 26853.3 (+2.4%)

Reviewed By: ajkr

Differential Revision: D34181736

Pulled By: pdillinger

fbshipit-source-id: ffa6ad5104c2880321d8a1aa7187e00ab0d02e94
2022-04-13 07:34:01 -07:00
sdong e03f8a0c12 L0 Subcompaction to trim input files (#9802)
Summary:
When sub compaction is decided for L0->L1 compaction, most of the cases, all L0 files will be involved in all sub compactions. However, it is not always the case. When files are generally (but not strictly) inserted in sequential order, there can be a subset of L0 files invovled. Yet RocksDB always open all those L0 files, and build an iterator, read many of the files' first of last block with expensive readahead. We trim some input files to reduce overhead a little bit.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9802

Test Plan: Add a unit test to cover this case and manually validate the behavior while running the test.

Reviewed By: ajkr

Differential Revision: D35371031

fbshipit-source-id: 701ed7375b5cbe41672e93b38fe8a1503dad08b6
2022-04-06 18:19:19 -07:00
Peter Dillinger cad809978a Fix heap use-after-free race with DropColumnFamily (#9730)
Summary:
Although ColumnFamilySet comments say that DB mutex can be
freed during iteration, as long as you hold a ref while releasing DB
mutex, this is not quite true because UnrefAndTryDelete might delete cfd
right before it is needed to get ->next_ for the next iteration of the
loop.

This change solves the problem by making a wrapper class that makes such
iteration easier while handling the tricky details of UnrefAndTryDelete
on the previous cfd only after getting next_ in operator++.

FreeDeadColumnFamilies should already have been obsolete; this removes
it for good. Similarly, ColumnFamilySet::iterator doesn't need to check
for cfd with 0 refs, because those are immediately deleted.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9730

Test Plan:
was reported with ASAN on unit tests like
DBLogicalBlockSizeCacheTest.CreateColumnFamily (very rare); keep watching

Reviewed By: ltamasi

Differential Revision: D35038143

Pulled By: pdillinger

fbshipit-source-id: 0a5478d5be96c135343a00603711b7df43ae19c9
2022-03-24 13:05:17 -07:00
Yanqin Jin e0c84aa0dc Fix a race condition in WAL tracking causing DB open failure (#9715)
Summary:
There is a race condition if WAL tracking in the MANIFEST is enabled in a database that disables 2PC.

The race condition is between two background flush threads trying to install flush results to the MANIFEST.

Consider an example database with two column families: "default" (cfd0) and "cf1" (cfd1). Initially,
both column families have one mutable (active) memtable whose data backed by 6.log.

1. Trigger a manual flush for "cf1", creating a 7.log
2. Insert another key to "default", and trigger flush for "default", creating 8.log
3. BgFlushThread1 finishes writing 9.sst
4. BgFlushThread2 finishes writing 10.sst

```
Time  BgFlushThread1                                    BgFlushThread2
 |    mutex_.Lock()
 |    precompute min_wal_to_keep as 6
 |    mutex_.Unlock()
 |                                                     mutex_.Lock()
 |                                                     precompute min_wal_to_keep as 6
 |                                                     join MANIFEST write queue and mutex_.Unlock()
 |    write to MANIFEST
 |    mutex_.Lock()
 |    cfd1->log_number = 7
 |    Signal bg_flush_2 and mutex_.Unlock()
 |                                                     wake up and mutex_.Lock()
 |                                                     cfd0->log_number = 8
 |                                                     FindObsoleteFiles() with job_context->log_number == 7
 |                                                     mutex_.Unlock()
 |                                                     PurgeObsoleteFiles() deletes 6.log
 V
```

As shown in the above, BgFlushThread2 thinks that the min wal to keep is 6.log because "cf1" has unflushed data in 6.log (cf1.log_number=6).
Similarly, BgThread1 thinks that min wal to keep is also 6.log because "default" has unflushed data (default.log_number=6).
No WAL deletion will be written to MANIFEST because 6 is equal to `versions_->wals_.min_wal_number_to_keep`,
due to https://github.com/facebook/rocksdb/blob/7.1.fb/db/memtable_list.cc#L513:L514.
The bg flush thread that finishes last will perform file purging. `job_context.log_number` will be evaluated as 7, i.e.
the min wal that contains unflushed data, causing 6.log to be deleted. However, MANIFEST thinks 6.log should still exist.
If you close the db at this point, you won't be able to re-open it if `track_and_verify_wal_in_manifest` is true.

We must handle the case of multiple bg flush threads, and it is difficult for one bg flush thread to know
the correct min wal number until the other bg flush threads have finished committing to the manifest and updated
the `cfd::log_number`.
To fix this issue, we rename an existing variable `min_log_number_to_keep_2pc` to `min_log_number_to_keep`,
and use it to track WAL file deletion in non-2pc mode as well.
This variable is updated only 1) during recovery with mutex held, or 2) in the MANIFEST write thread.
`min_log_number_to_keep` means RocksDB will delete WALs below it, although there may be WALs
above it which are also obsolete. Formally, we will have [min_wal_to_keep, max_obsolete_wal]. During recovery, we
make sure that only WALs above max_obsolete_wal are checked and added back to `alive_log_files_`.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9715

Test Plan:
```
make check
```
Also ran stress test below (with asan) to make sure it completes successfully.
```
TEST_TMPDIR=/dev/shm/rocksdb OPT=-g ASAN_OPTIONS=disable_coredump=0 \
CRASH_TEST_EXT_ARGS=--compression_type=zstd SKIP_FORMAT_BUCK_CHECKS=1 \
make J=52 -j52 blackbox_asan_crash_test
```

Reviewed By: ltamasi

Differential Revision: D34984412

Pulled By: riversand963

fbshipit-source-id: c7b21a8d84751bb55ea79c9f387103d21b231005
2022-03-23 19:41:31 -07:00
Yanqin Jin 3bd150c442 Print information about all column families when using ldb (#9719)
Summary:
Before this PR, the following command prints only the default column
family's information in the end:
```
ldb --db=. --hex manifest_dump --verbose
```

We should print all column families instead.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9719

Test Plan:
`make check` makes sure nothing breaks.

Generate a DB, use the above command to verify all column families are
printed.

Reviewed By: akankshamahajan15

Differential Revision: D34992453

Pulled By: riversand963

fbshipit-source-id: de1d38c4539cd89f74e1a6240ad7a6e2416bf198
2022-03-22 20:29:01 -07:00
Hui Xiao 443d8ef094 Fix PinSelf() read-after-free in DB::GetMergeOperands() (#9507)
Summary:
**Context:**
Running the new test `DBMergeOperandTest.MergeOperandReadAfterFreeBug` prior to this fix surfaces the read-after-free bug of PinSef() as below:
```
READ of size 8 at 0x60400002529d thread T0
    https://github.com/facebook/rocksdb/issues/5 0x7f199a in rocksdb::PinnableSlice::PinSelf(rocksdb::Slice const&) include/rocksdb/slice.h:171
    https://github.com/facebook/rocksdb/issues/6 0x7f199a in rocksdb::DBImpl::GetImpl(rocksdb::ReadOptions const&, rocksdb::Slice const&, rocksdb::DBImpl::GetImplOptions&) db/db_impl/db_impl.cc:1919
    https://github.com/facebook/rocksdb/issues/7 0x540d63 in rocksdb::DBImpl::GetMergeOperands(rocksdb::ReadOptions const&, rocksdb::ColumnFamilyHandle*, rocksdb::Slice const&, rocksdb::PinnableSlice*, rocksdb::GetMergeOperandsOptions*, int*) db/db_impl/db_impl.h:203

freed by thread T0 here:
    https://github.com/facebook/rocksdb/issues/3 0x1191399 in rocksdb::cache_entry_roles_detail::RegisteredDeleter<rocksdb::Block, (rocksdb::CacheEntryRole)0>::Delete(rocksdb::Slice const&, void*) cache/cache_entry_roles.h:99
    https://github.com/facebook/rocksdb/issues/4 0x719348 in rocksdb::LRUHandle::Free() cache/lru_cache.h:205
    https://github.com/facebook/rocksdb/issues/5 0x71047f in rocksdb::LRUCacheShard::Release(rocksdb::Cache::Handle*, bool) cache/lru_cache.cc:547
    https://github.com/facebook/rocksdb/issues/6 0xa78f0a in rocksdb::Cleanable::DoCleanup() include/rocksdb/cleanable.h:60
    https://github.com/facebook/rocksdb/issues/7 0xa78f0a in rocksdb::Cleanable::Reset() include/rocksdb/cleanable.h:38
    https://github.com/facebook/rocksdb/issues/8 0xa78f0a in rocksdb::PinnedIteratorsManager::ReleasePinnedData() db/pinned_iterators_manager.h:71
    https://github.com/facebook/rocksdb/issues/9 0xd0c21b in rocksdb::PinnedIteratorsManager::~PinnedIteratorsManager() db/pinned_iterators_manager.h:24
    https://github.com/facebook/rocksdb/issues/10 0xd0c21b in rocksdb::Version::Get(rocksdb::ReadOptions const&, rocksdb::LookupKey const&, rocksdb::PinnableSlice*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >*, rocksdb::Status*, rocksdb::MergeContext*, unsigned long*, bool*, bool*, unsigned long*, rocksdb::ReadCallback*, bool*, bool) db/pinned_iterators_manager.h:22
    https://github.com/facebook/rocksdb/issues/11 0x7f0fdf in rocksdb::DBImpl::GetImpl(rocksdb::ReadOptions const&, rocksdb::Slice const&, rocksdb::DBImpl::GetImplOptions&) db/db_impl/db_impl.cc:1886
    https://github.com/facebook/rocksdb/issues/12 0x540d63 in rocksdb::DBImpl::GetMergeOperands(rocksdb::ReadOptions const&, rocksdb::ColumnFamilyHandle*, rocksdb::Slice const&, rocksdb::PinnableSlice*, rocksdb::GetMergeOperandsOptions*, int*) db/db_impl/db_impl.h:203

previously allocated by thread T0 here:
    https://github.com/facebook/rocksdb/issues/1 0x1239896 in rocksdb::AllocateBlock(unsigned long, **rocksdb::MemoryAllocator*)** memory/memory_allocator.h:35
    https://github.com/facebook/rocksdb/issues/2 0x1239896 in rocksdb::BlockFetcher::CopyBufferToHeapBuf() table/block_fetcher.cc:171
    https://github.com/facebook/rocksdb/issues/3 0x1239896 in rocksdb::BlockFetcher::GetBlockContents() table/block_fetcher.cc:206
    https://github.com/facebook/rocksdb/issues/4 0x122eae5 in rocksdb::BlockFetcher::ReadBlockContents() table/block_fetcher.cc:325
    https://github.com/facebook/rocksdb/issues/5 0x11b1f45 in rocksdb::Status rocksdb::BlockBasedTable::MaybeReadBlockAndLoadToCache<rocksdb::Block>(rocksdb::FilePrefetchBuffer*, rocksdb::ReadOptions const&, rocksdb::BlockHandle const&, rocksdb::UncompressionDict const&, bool, rocksdb::CachableEntry<rocksdb::Block>*, rocksdb::BlockType, rocksdb::GetContext*, rocksdb::BlockCacheLookupContext*, rocksdb::BlockContents*) const table/block_based/block_based_table_reader.cc:1503
```
Here is the analysis:
- We have [PinnedIteratorsManager](https://github.com/facebook/rocksdb/blob/6.28.fb/db/version_set.cc#L1980) with `Cleanable` capability in our `Version::Get()` path. It's responsible for managing the life-time of pinned iterator and invoking registered cleanup functions during its own destruction.
  - For example in case above, the merge operands's clean-up gets associated with this manger in [GetContext::push_operand](https://github.com/facebook/rocksdb/blob/6.28.fb/table/get_context.cc#L405). During PinnedIteratorsManager's [destruction](https://github.com/facebook/rocksdb/blob/6.28.fb/db/pinned_iterators_manager.h#L67), the release function associated with those merge operand data is invoked.
**And that's what we see in "freed by thread T955 here" in ASAN.**
- Bug 🐛: `PinnedIteratorsManager` is local to `Version::Get()`  while the data of merge operands need to outlive `Version::Get` and stay till they get [PinSelf()](https://github.com/facebook/rocksdb/blob/6.28.fb/db/db_impl/db_impl.cc#L1905), **which is the read-after-free in ASAN.**
  - This bug is likely to be an overlook of `PinnedIteratorsManager` when developing the API `DB::GetMergeOperands` cuz the current logic works fine with the existing case of getting the *merged value* where the operands do not need to live that long.
- This bug was not surfaced much (even in its unit test) due to the release function associated with the merge operands (which are actually blocks put in cache as you can see in `BlockBasedTable::MaybeReadBlockAndLoadToCache` **in "previously allocated by" in ASAN report**) is a cache entry deleter.
The deleter will call `Cache::Release()` which, for LRU cache, won't immediately deallocate the block based on LRU policy [unless the cache is full or being instructed to force erase](https://github.com/facebook/rocksdb/blob/6.28.fb/cache/lru_cache.cc#L521-L531)
  - `DBMergeOperandTest.MergeOperandReadAfterFreeBug` makes the cache extremely small to force cache full.

**Summary:**
- Fix the bug by align `PinnedIteratorsManager`'s lifetime with the merge operands

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9507

Test Plan:
- New test `DBMergeOperandTest.MergeOperandReadAfterFreeBug`
- db bench on read path
  - Setup (LSM tree with several levels, cache the whole db to avoid read IO, warm cache with readseq to avoid read IO): `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks="fillrandom,readseq  -num=1000000 -cache_size=100000000  -write_buffer_size=10000 -statistics=1 -max_bytes_for_level_base=10000 -level0_file_num_compaction_trigger=1``TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks="readrandom" -num=1000000 -cache_size=100000000 `
  - Actual command run (run 20-run for 20 times and then average the 20-run's average micros/op)
     - `for j in {1..20}; do (for i in {1..20}; do rm -rf /dev/shm/rocksdb/ && TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks="fillrandom,readseq,readrandom" -num=1000000 -cache_size=100000000  -write_buffer_size=10000 -statistics=1 -max_bytes_for_level_base=10000 -level0_file_num_compaction_trigger=1 | egrep 'readrandom'; done > rr_output_pre.txt && (awk '{sum+=$3; sum_sqrt+=$3^2}END{print sum/20, sqrt(sum_sqrt/20-(sum/20)^2)}' rr_output_pre.txt) >> rr_output_pre_2.txt); done`
  - **Result: Pre-change: 3.79193 micros/op;   Post-change: 3.79528 micros/op (+0.09%)**

(pre-change)sorted avg micros/op of each 20-run | std of micros/op of each 20-run | (post-change) sorted avg micros/op of each 20-run | std of micros/op of each 20-run
-- | -- | -- | --
3.58355 | 0.265209 | 3.48715 | 0.382076
3.58845 | 0.519927 | 3.5832 | 0.382726
3.66415 | 0.452097 | 3.677 | 0.563831
3.68495 | 0.430897 | 3.68405 | 0.495355
3.70295 | 0.482893 | 3.68465 | 0.431438
3.719 | 0.463806 | 3.71945 | 0.457157
3.7393 | 0.453423 | 3.72795 | 0.538604
3.7806 | 0.527613 | 3.75075 | 0.444509
3.7817 | 0.426704 | 3.7683 | 0.468065
3.809 | 0.381033 | 3.8086 | 0.557378
3.80985 | 0.466011 | 3.81805 | 0.524833
3.8165 | 0.500351 | 3.83405 | 0.529339
3.8479 | 0.430326 | 3.86285 | 0.44831
3.85125 | 0.434108 | 3.8717 | 0.544098
3.8556 | 0.524602 | 3.895 | 0.411679
3.8656 | 0.476383 | 3.90965 | 0.566636
3.8911 | 0.488477 | 3.92735 | 0.608038
3.898 | 0.493978 | 3.9439 | 0.524511
3.97235 | 0.515008 | 3.9623 | 0.477416
3.9768 | 0.519993 | 3.98965 | 0.521481

- CI

Reviewed By: ajkr

Differential Revision: D34030519

Pulled By: hx235

fbshipit-source-id: a99ac585c11704c5ed93af033cb29ba0a7b16ae8
2022-02-15 12:25:18 -08:00