Summary:
Context:
As mentioned in https://github.com/facebook/rocksdb/issues/11436, introducing `flush` option in `WaitForCompactOptions` to flush before waiting for compactions to finish. Must be set to true to ensure no immediate compactions (except perhaps periodic compactions) after closing and re-opening the DB.
1. `bool flush = false` added to `WaitForCompactOptions`
2. `DBImpl::FlushAllColumnFamilies()` is introduced and `DBImpl::FlushForGetLiveFiles()` is refactored to call it.
3. `DBImpl::FlushAllColumnFamilies()` gets called before waiting in `WaitForCompact()` if `flush` option is `true`
4. Some previous WaitForCompact tests were parameterized to include both cases for `abort_on_pause_` being true/false as well as `flush_` being true/false
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11483
Test Plan:
- `DBCompactionTest::WaitForCompactWithOptionToFlush` added
- Changed existing DBCompactionTest::WaitForCompact tests to `DBCompactionWaitForCompactTest` to include params
Reviewed By: pdillinger
Differential Revision: D46289770
Pulled By: jaykorean
fbshipit-source-id: 70d3f461d96a6e06390be60170dd7c4d0d38f8b0
Summary:
**Context:**
We prefetch the tail part of a SST file (i.e, the blocks after data blocks till the end of the file) during each SST file open in hope to prefetch all the stuff at once ahead of time for later read e.g, footer, meta index, filter/index etc. The existing approach to estimate the tail size to prefetch is through `TailPrefetchStats` heuristics introduced in https://github.com/facebook/rocksdb/pull/4156, which has caused small reads in unlucky case (e.g, small read into the tail buffer during table open in thread 1 under the same BlockBasedTableFactory object can make thread 2's tail prefetching use a small size that it shouldn't) and is hard to debug. Therefore we decide to record the exact tail size and use it directly to prefetch tail of the SST instead of relying heuristics.
**Summary:**
- Obtain and record in manifest the tail size in `BlockBasedTableBuilder::Finish()`
- For backward compatibility, we fall back to TailPrefetchStats and last to simple heuristics that the tail size is a linear portion of the file size - see PR conversation for more.
- Make`tail_start_offset` part of the table properties and deduct tail size to record in manifest for external files (e.g, file ingestion, import CF) and db repair (with no access to manifest).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11406
Test Plan:
1. New UT
2. db bench
Note: db bench on /tmp/ where direct read is supported is too slow to finish and the default pinning setting in db bench is not helpful to profile # sst read of Get. Therefore I hacked the following to obtain the following comparison.
```
diff --git a/table/block_based/block_based_table_reader.cc b/table/block_based/block_based_table_reader.cc
index bd5669f0f..791484c1f 100644
--- a/table/block_based/block_based_table_reader.cc
+++ b/table/block_based/block_based_table_reader.cc
@@ -838,7 +838,7 @@ Status BlockBasedTable::PrefetchTail(
&tail_prefetch_size);
// Try file system prefetch
- if (!file->use_direct_io() && !force_direct_prefetch) {
+ if (false && !file->use_direct_io() && !force_direct_prefetch) {
if (!file->Prefetch(prefetch_off, prefetch_len, ro.rate_limiter_priority)
.IsNotSupported()) {
prefetch_buffer->reset(new FilePrefetchBuffer(
diff --git a/tools/db_bench_tool.cc b/tools/db_bench_tool.cc
index ea40f5fa0..39a0ac385 100644
--- a/tools/db_bench_tool.cc
+++ b/tools/db_bench_tool.cc
@@ -4191,6 +4191,8 @@ class Benchmark {
std::shared_ptr<TableFactory>(NewCuckooTableFactory(table_options));
} else {
BlockBasedTableOptions block_based_options;
+ block_based_options.metadata_cache_options.partition_pinning =
+ PinningTier::kAll;
block_based_options.checksum =
static_cast<ChecksumType>(FLAGS_checksum_type);
if (FLAGS_use_hash_search) {
```
Create DB
```
./db_bench --bloom_bits=3 --use_existing_db=1 --seed=1682546046158958 --partition_index_and_filters=1 --statistics=1 -db=/dev/shm/testdb/ -benchmarks=readrandom -key_size=3200 -value_size=512 -num=1000000 -write_buffer_size=6550000 -disable_auto_compactions=false -target_file_size_base=6550000 -compression_type=none
```
ReadRandom
```
./db_bench --bloom_bits=3 --use_existing_db=1 --seed=1682546046158958 --partition_index_and_filters=1 --statistics=1 -db=/dev/shm/testdb/ -benchmarks=readrandom -key_size=3200 -value_size=512 -num=1000000 -write_buffer_size=6550000 -disable_auto_compactions=false -target_file_size_base=6550000 -compression_type=none
```
(a) Existing (Use TailPrefetchStats for tail size + use seperate prefetch buffer in PartitionedFilter/IndexReader::CacheDependencies())
```
rocksdb.table.open.prefetch.tail.hit COUNT : 3395
rocksdb.sst.read.micros P50 : 5.655570 P95 : 9.931396 P99 : 14.845454 P100 : 585.000000 COUNT : 999905 SUM : 6590614
```
(b) This PR (Record tail size + use the same tail buffer in PartitionedFilter/IndexReader::CacheDependencies())
```
rocksdb.table.open.prefetch.tail.hit COUNT : 14257
rocksdb.sst.read.micros P50 : 5.173347 P95 : 9.015017 P99 : 12.912610 P100 : 228.000000 COUNT : 998547 SUM : 5976540
```
As we can see, we increase the prefetch tail hit count and decrease SST read count with this PR
3. Test backward compatibility by stepping through reading with post-PR code on a db generated pre-PR.
Reviewed By: pdillinger
Differential Revision: D45413346
Pulled By: hx235
fbshipit-source-id: 7d5e36a60a72477218f79905168d688452a4c064
Summary:
**Context:**
The existing stat rocksdb.sst.read.micros does not reflect each of compaction and flush cases but aggregate them, which is not so helpful for us to understand IO read behavior of each of them.
**Summary**
- Update `StopWatch` and `RandomAccessFileReader` to record `rocksdb.sst.read.micros` and `rocksdb.file.{flush/compaction}.read.micros`
- Fixed the default histogram in `RandomAccessFileReader`
- New field `ReadOptions/IOOptions::io_activity`; Pass `ReadOptions` through paths under db open, flush and compaction to where we can prepare `IOOptions` and pass it to `RandomAccessFileReader`
- Use `thread_status_util` for assertion in `DbStressFSWrapper` for continuous testing on we are passing correct `io_activity` under db open, flush and compaction
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11288
Test Plan:
- **Stress test**
- **Db bench 1: rocksdb.sst.read.micros COUNT ≈ sum of rocksdb.file.read.flush.micros's and rocksdb.file.read.compaction.micros's.** (without blob)
- May not be exactly the same due to `HistogramStat::Add` only guarantees atomic not accuracy across threads.
```
./db_bench -db=/dev/shm/testdb/ -statistics=true -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -target_file_size_base=655 -disable_auto_compactions=false -compression_type=none -bloom_bits=3 (-use_plain_table=1 -prefix_size=10)
```
```
// BlockBasedTable
rocksdb.sst.read.micros P50 : 2.009374 P95 : 4.968548 P99 : 8.110362 P100 : 43.000000 COUNT : 40456 SUM : 114805
rocksdb.file.read.flush.micros P50 : 1.871841 P95 : 3.872407 P99 : 5.540541 P100 : 43.000000 COUNT : 2250 SUM : 6116
rocksdb.file.read.compaction.micros P50 : 2.023109 P95 : 5.029149 P99 : 8.196910 P100 : 26.000000 COUNT : 38206 SUM : 108689
// PlainTable
Does not apply
```
- **Db bench 2: performance**
**Read**
SETUP: db with 900 files
```
./db_bench -db=/dev/shm/testdb/ -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -disable_auto_compactions=true -target_file_size_base=655 -compression_type=none
```run till convergence
```
./db_bench -seed=1678564177044286 -use_existing_db=true -db=/dev/shm/testdb -benchmarks=readrandom[-X60] -statistics=true -num=1000000 -disable_auto_compactions=true -compression_type=none -bloom_bits=3
```
Pre-change
`readrandom [AVG 60 runs] : 21568 (± 248) ops/sec`
Post-change (no regression, -0.3%)
`readrandom [AVG 60 runs] : 21486 (± 236) ops/sec`
**Compaction/Flush**run till convergence
```
./db_bench -db=/dev/shm/testdb2/ -seed=1678564177044286 -benchmarks="fillseq[-X60]" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -disable_auto_compactions=false -target_file_size_base=655 -compression_type=none
rocksdb.sst.read.micros COUNT : 33820
rocksdb.sst.read.flush.micros COUNT : 1800
rocksdb.sst.read.compaction.micros COUNT : 32020
```
Pre-change
`fillseq [AVG 46 runs] : 1391 (± 214) ops/sec; 0.7 (± 0.1) MB/sec`
Post-change (no regression, ~-0.4%)
`fillseq [AVG 46 runs] : 1385 (± 216) ops/sec; 0.7 (± 0.1) MB/sec`
Reviewed By: ajkr
Differential Revision: D44007011
Pulled By: hx235
fbshipit-source-id: a54c89e4846dfc9a135389edf3f3eedfea257132
Summary:
We haven't been actively mantaining RocksDB LITE recently and the size must have been gone up significantly. We are removing the support.
Most of changes were done through following comments:
unifdef -m -UROCKSDB_LITE `git grep -l ROCKSDB_LITE | egrep '[.](cc|h)'`
by Peter Dillinger. Others changes were manually applied to build scripts, CircleCI manifests, ROCKSDB_LITE is used in an expression and file db_stress_test_base.cc.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11147
Test Plan: See CI
Reviewed By: pdillinger
Differential Revision: D42796341
fbshipit-source-id: 4920e15fc2060c2cd2221330a6d0e5e65d4b7fe2
Summary:
**Context:**
Concurrent flushes on the same CF can set on `ColumnFamilyData::flush_reason` before each other flush finishes. An symptom is one CF has different flush_reason with others though all of them are in an atomic flush `db_stress: db/db_impl/db_impl_compaction_flush.cc:423: rocksdb::Status rocksdb::DBImpl::AtomicFlushMemTablesToOutputFiles(const rocksdb::autovector<rocksdb::DBImpl::BGFlushArg>&, bool*, rocksdb::JobContext*, rocksdb::LogBuffer*, rocksdb::Env::Priority): Assertion cfd->GetFlushReason() == cfds[0]->GetFlushReason() failed. `
**Summary:**
Suggested by ltamasi, we now refactor and let FlushRequest/Job to own flush_reason as there is no good way to define `ColumnFamilyData::flush_reason` in face of concurrent flushes on the same CF (which wasn't the case a long time ago when `ColumnFamilyData::flush_reason ` first introduced`)
**Tets:**
- new unit test
- make check
- aggressive crash test rehearsal
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11111
Reviewed By: ajkr
Differential Revision: D42644600
Pulled By: hx235
fbshipit-source-id: 8589c8184869d3415e5b780c887f877818a5ebaf
Summary:
compensate file sizes in compaction picking so files with range tombstones are preferred, such that they get compacted down earlier as they tend to delete a lot of data. This PR adds a `compensated_range_deletion_size` field in FileMeta that is computed during Flush/Compaction and persisted in MANIFEST. This value is added to `compensated_file_size` which will be used for compaction picking. Currently, for a file in level L, `compensated_range_deletion_size` is set to the estimated bytes deleted by range tombstone of this file in all levels > L. This helps to reduce space amp when data in older levels are covered by range tombstones in level L.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10734
Test Plan:
- Added unit tests.
- benchmark to check if the above definition `compensated_range_deletion_size` is reducing space amp as intended, without affecting write amp too much. The experiment set up favorable for this optimization: large range tombstone issued infrequently. Command used:
```
./db_bench -benchmarks=fillrandom,waitforcompaction,stats,levelstats -use_existing_db=false -avoid_flush_during_recovery=true -write_buffer_size=33554432 -level_compaction_dynamic_level_bytes=true -max_background_jobs=8 -max_bytes_for_level_base=134217728 -target_file_size_base=33554432 -writes_per_range_tombstone=500000 -range_tombstone_width=5000000 -num=50000000 -benchmark_write_rate_limit=8388608 -threads=16 -duration=1800 --max_num_range_tombstones=1000000000
```
In this experiment, each thread wrote 16 range tombstones over the duration of 30 minutes, each range tombstone has width 5M that is the 10% of the key space width. Results shows this PR generates a smaller DB size.
Compaction stats from this PR:
```
Level Files Size Score Read(GB) Rn(GB) Rnp1(GB) Write(GB) Wnew(GB) Moved(GB) W-Amp Rd(MB/s) Wr(MB/s) Comp(sec) CompMergeCPU(sec) Comp(cnt) Avg(sec) KeyIn KeyDrop Rblob(GB) Wblob(GB)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
L0 2/0 31.54 MB 0.5 0.0 0.0 0.0 8.4 8.4 0.0 1.0 0.0 63.4 135.56 110.94 544 0.249 0 0 0.0 0.0
L4 3/0 96.55 MB 0.8 18.5 6.7 11.8 18.4 6.6 0.0 2.7 65.3 64.9 290.08 284.03 108 2.686 284M 1957K 0.0 0.0
L5 15/0 404.41 MB 1.0 19.1 7.7 11.4 18.8 7.4 0.3 2.5 66.6 65.7 292.93 285.34 220 1.332 293M 3808K 0.0 0.0
L6 143/0 4.12 GB 0.0 45.0 7.5 37.5 41.6 4.1 0.0 5.5 71.2 65.9 647.00 632.66 251 2.578 739M 47M 0.0 0.0
Sum 163/0 4.64 GB 0.0 82.6 21.9 60.7 87.2 26.5 0.3 10.4 61.9 65.4 1365.58 1312.97 1123 1.216 1318M 52M 0.0 0.0
```
Compaction stats from main:
```
Level Files Size Score Read(GB) Rn(GB) Rnp1(GB) Write(GB) Wnew(GB) Moved(GB) W-Amp Rd(MB/s) Wr(MB/s) Comp(sec) CompMergeCPU(sec) Comp(cnt) Avg(sec) KeyIn KeyDrop Rblob(GB) Wblob(GB)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
L0 0/0 0.00 KB 0.0 0.0 0.0 0.0 8.4 8.4 0.0 1.0 0.0 60.5 142.12 115.89 569 0.250 0 0 0.0 0.0
L4 3/0 85.68 MB 1.0 17.7 6.8 10.9 17.6 6.7 0.0 2.6 62.7 62.3 289.05 281.79 112 2.581 272M 2309K 0.0 0.0
L5 11/0 293.73 MB 1.0 18.8 7.5 11.2 18.5 7.2 0.5 2.5 64.9 63.9 296.07 288.50 220 1.346 288M 4365K 0.0 0.0
L6 130/0 3.94 GB 0.0 51.5 7.6 43.9 47.9 3.9 0.0 6.3 67.2 62.4 784.95 765.92 258 3.042 848M 51M 0.0 0.0
Sum 144/0 4.31 GB 0.0 88.0 21.9 66.0 92.3 26.3 0.5 11.0 59.6 62.5 1512.19 1452.09 1159 1.305 1409M 58M 0.0 0.0```
Reviewed By: ajkr
Differential Revision: D39834713
Pulled By: cbi42
fbshipit-source-id: fe9341040b8704a8fbb10cad5cf5c43e962c7e6b
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run 36a5686ec0 (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox`
- [Ongoing] normal db stress test
- [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761
Reviewed By: ajkr
Differential Revision: D41063187
Pulled By: hx235
fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
Summary:
Ran `find ./db/ -type f | xargs clang-format -i`. Excluded minor changes it tried to make on db/db_impl/. Everything else it changed was directly under db/ directory. Included minor manual touchups mentioned in PR commit history.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10910
Reviewed By: riversand963
Differential Revision: D40880683
Pulled By: ajkr
fbshipit-source-id: cfe26cda05b3fb9a72e3cb82c286e21d8c5c4174
Summary:
Add user-defined timestamp support for range deletion. The new API is `DeleteRange(opt, cf, begin_key, end_key, ts)`. Most of the change is to update the comparator to compare without timestamp. Other than that, major changes are
- internal range tombstone data structures (`FragmentedRangeTombstoneList`, `RangeTombstone`, etc.) to store timestamps.
- Garbage collection of range tombstones and range tombstone covered keys during compaction.
- Get()/MultiGet() to return the timestamp of a range tombstone when needed.
- Get/Iterator with range tombstones bounded by readoptions.timestamp.
- timestamp crash test now issues DeleteRange by default.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10661
Test Plan:
- Added unit test: `make check`
- Stress test: `python3 tools/db_crashtest.py --enable_ts whitebox --readpercent=57 --prefixpercent=4 --writepercent=25 -delpercent=5 --iterpercent=5 --delrangepercent=4`
- Ran `db_bench` to measure regression when timestamp is not enabled. The tests are for write (with some range deletion) and iterate with DB fitting in memory: `./db_bench--benchmarks=fillrandom,seekrandom --writes_per_range_tombstone=200 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=500000 --reads=500000 --seek_nexts=10 --disable_auto_compactions -disable_wal=true --max_num_range_tombstones=1000`. Did not see consistent regression in no timestamp case.
| micros/op | fillrandom | seekrandom |
| --- | --- | --- |
|main| 2.58 |10.96|
|PR 10661| 2.68 |10.63|
Reviewed By: riversand963
Differential Revision: D39441192
Pulled By: cbi42
fbshipit-source-id: f05aca3c41605caf110daf0ff405919f300ddec2
Summary:
The patch adds a new API `GetEntity` that can be used to perform
wide-column point lookups. It also extends the `Get` code path and
the `MemTable` / `MemTableList` and `Version` / `GetContext` logic
accordingly so that wide-column entities can be served from both
memtables and SSTs. If the result of a lookup is a wide-column entity
(`kTypeWideColumnEntity`), it is passed to the application in deserialized
form; if it is a plain old key-value (`kTypeValue`), it is presented as a
wide-column entity with a single default (anonymous) column.
(In contrast, regular `Get` returns plain old key-values as-is, and
returns the value of the default column for wide-column entities, see
https://github.com/facebook/rocksdb/issues/10483 .)
The result of `GetEntity` is a self-contained `PinnableWideColumns` object.
`PinnableWideColumns` contains a `PinnableSlice`, which either stores the
underlying data in its own buffer or holds on to a cache handle. It also contains
a `WideColumns` instance, which indexes the contents of the `PinnableSlice`,
so applications can access the values of columns efficiently.
There are several pieces of functionality which are currently not supported
for wide-column entities: there is currently no `MultiGetEntity` or wide-column
iterator; also, `Merge` and `GetMergeOperands` are not supported, and there
is no `GetEntity` implementation for read-only and secondary instances.
We plan to implement these in future PRs.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540
Test Plan: `make check`
Reviewed By: akankshamahajan15
Differential Revision: D38847474
Pulled By: ltamasi
fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
Summary:
- Right now each read fragments the memtable range tombstones https://github.com/facebook/rocksdb/issues/4808. This PR explores the idea of fragmenting memtable range tombstones in the write path and reads can just read this cached fragmented tombstone without any fragmenting cost. This PR only does the caching for immutable memtable, and does so right before a memtable is added to an immutable memtable list. The fragmentation is done without holding mutex to minimize its performance impact.
- db_bench is updated to print out the number of range deletions executed if there is any.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10380
Test Plan:
- CI, added asserts in various places to check whether a fragmented range tombstone list should have been constructed.
- Benchmark: as this PR only optimizes immutable memtable path, the number of writes in the benchmark is chosen such an immutable memtable is created and range tombstones are in that memtable.
```
single thread:
./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=500000 --reads=100000 --max_num_range_tombstones=100
multi_thread
./db_bench --benchmarks=fillrandom,readrandom --writes_per_range_tombstone=1 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=15000 --reads=20000 --threads=32 --max_num_range_tombstones=100
```
Commit 99cdf16464 is included in benchmark result. It was an earlier attempt where tombstones are fragmented for each write operation. Reader threads share it using a shared_ptr which would slow down multi-thread read performance as seen in benchmark results.
Results are averaged over 5 runs.
Single thread result:
| Max # tombstones | main fillrandom micros/op | 99cdf16464 | Post PR | main readrandom micros/op | 99cdf16464 | Post PR |
| ------------- | ------------- |------------- |------------- |------------- |------------- |------------- |
| 0 |6.68 |6.57 |6.72 |4.72 |4.79 |4.54 |
| 1 |6.67 |6.58 |6.62 |5.41 |4.74 |4.72 |
| 10 |6.59 |6.5 |6.56 |7.83 |4.69 |4.59 |
| 100 |6.62 |6.75 |6.58 |29.57 |5.04 |5.09 |
| 1000 |6.54 |6.82 |6.61 |320.33 |5.22 |5.21 |
32-thread result: note that "Max # tombstones" is per thread.
| Max # tombstones | main fillrandom micros/op | 99cdf16464 | Post PR | main readrandom micros/op | 99cdf16464 | Post PR |
| ------------- | ------------- |------------- |------------- |------------- |------------- |------------- |
| 0 |234.52 |260.25 |239.42 |5.06 |5.38 |5.09 |
| 1 |236.46 |262.0 |231.1 |19.57 |22.14 |5.45 |
| 10 |236.95 |263.84 |251.49 |151.73 |21.61 |5.73 |
| 100 |268.16 |296.8 |280.13 |2308.52 |22.27 |6.57 |
Reviewed By: ajkr
Differential Revision: D37916564
Pulled By: cbi42
fbshipit-source-id: 05d6d2e16df26c374c57ddcca13a5bfe9d5b731e
Summary:
FileMetaData::[min|max]_timestamp are not currently being used or
tracked by RocksDB, even when user-defined timestamp is enabled. Each of
them is a std::string which can occupy 32 bytes. Remove them for now.
They may be added back when we have a pressing need for them. When we do
add them back, consider store them in a more compact way, e.g. one
boolean flag and a byte array of size 16.
Per file min/max timestamp bounds are available as table properties.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10443
Test Plan: make check
Reviewed By: pdillinger
Differential Revision: D38292275
Pulled By: riversand963
fbshipit-source-id: 841dc4e855ad8f8481c80cb020603de9607c9c94
Summary:
Using the Sequence number to time mapping to decide if a key is hot or not in
compaction and place it in the corresponding level.
Note: the feature is not complete, level compaction will run indefinitely until
all penultimate level data is cold and small enough to not trigger compaction.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10370
Test Plan:
CI
* Run basic db_bench for universal compaction manually
Reviewed By: siying
Differential Revision: D37892338
Pulled By: jay-zhuang
fbshipit-source-id: 792bbd91b1ccc2f62b5d14c53118434bcaac4bbe
Summary:
Which will be used for tiered storage to preclude hot data from
compacting to the cold tier (the last level).
Internally, adding seqno to time mapping. A periodic_task is scheduled
to record the current_seqno -> current_time in certain cadence. When
memtable flush, the mapping informaiton is stored in sstable property.
During compaction, the mapping information are merged and get the
approximate time of sequence number, which is used to determine if a key
is recently inserted or not and preclude it from the last level if it's
recently inserted (within the `preclude_last_level_data_seconds`).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10338
Test Plan: CI
Reviewed By: siying
Differential Revision: D37810187
Pulled By: jay-zhuang
fbshipit-source-id: 6953be7a18a99de8b1cb3b162d712f79c2b4899f
Summary:
**Summary**
Make the mempurge option flag a Mutable Column Family option flag. Therefore, the mempurge feature can be dynamically toggled.
**Motivation**
RocksDB users prefer having the ability to switch features on and off without having to close and reopen the DB. This is particularly important if the feature causes issues and needs to be turned off. Dynamically changing a DB option flag does not seem currently possible.
Moreover, with this new change, the MemPurge feature can be toggled on or off independently between column families, which we see as a major improvement.
**Content of this PR**
This PR includes removal of the `experimental_mempurge_threshold` flag as a DB option flag, and its re-introduction as a `MutableCFOption` flag. I updated the code to handle dynamic changes of the flag (in particular inside the `FlushJob` file). Additionally, this PR includes a new test to demonstrate the capacity of the code to toggle the MemPurge feature on and off, as well as the addition in the `db_stress` module of 2 different mempurge threshold values (0.0 and 1.0) that can be randomly changed with the `set_option_one_in` flag. This is useful to stress test the dynamic changes.
**Benchmarking**
I will add numbers to prove that there is no performance impact within the next 12 hours.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10011
Reviewed By: pdillinger
Differential Revision: D36462357
Pulled By: bjlemaire
fbshipit-source-id: 5e3d63bdadf085c0572ecc2349e7dd9729ce1802
Summary:
As pointed out by [https://github.com/facebook/rocksdb/pull/8351#discussion_r645765422](https://github.com/facebook/rocksdb/pull/8351#discussion_r645765422), check `manual_compaction_paused` and `manual_compaction_canceled` can be reduced by setting `*canceled` to be true in `DisableManualCompaction()` and `*canceled` to be false in the last time calling `EnableManualCompaction()`.
Changed Tests: The origin `DBTest2.PausingManualCompaction1` uses a callback function to increase `manual_compaction_paused` and the origin CompactionJob/CompactionIterator with `manual_compaction_paused` can detect this. I changed the callback function so that it sets `*canceled` as true if `canceled` is not `nullptr` (to notify CompactionJob/CompactionIterator the compaction has been canceled).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10070
Test Plan: This change does not introduce new features, but some slight difference in compaction implementation. Run the same manual compaction unit tests as before (e.g., PausingManualCompaction[1-4], CancelManualCompaction[1-2], CancelManualCompactionWithListener in db_test2, and db_compaction_test).
Reviewed By: ajkr
Differential Revision: D36949133
Pulled By: littlepig2013
fbshipit-source-id: c5dc4c956fbf8f624003a0f5ad2690240063a821
Summary:
info logging with DB Mutex could potentially invoke I/O and cause performance issues. Move three of the cases to use log buffer.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10029
Test Plan: Run existing tests.
Reviewed By: jay-zhuang
Differential Revision: D36561694
fbshipit-source-id: cabb93fea299001a6b4c2802fcba3fde27fa062c
Summary:
Start tracking SST unique id in MANIFEST, which is used to verify with
SST properties to make sure the SST file is not overwritten or
misplaced. A DB option `try_verify_sst_unique_id` is introduced to
enable/disable the verification, if enabled, it opens all SST files
during DB-open to read the unique_id from table properties (default is
false), so it's recommended to use it with `max_open_files = -1` to
pre-open the files.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9990
Test Plan: unittests, format-compatible test, mini-crash
Reviewed By: anand1976
Differential Revision: D36381863
Pulled By: jay-zhuang
fbshipit-source-id: 89ea2eb6b35ed3e80ead9c724eb096083eaba63f
Summary:
### Context:
Background compactions and flush generate large reads and writes, and can be long running, especially for universal compaction. In some cases, this can impact foreground reads and writes by users.
From the RocksDB perspective, there can be two kinds of rate limiters, the internal (native) one and the external one.
- The internal (native) rate limiter is introduced in [the wiki](https://github.com/facebook/rocksdb/wiki/Rate-Limiter). Currently, only IO_LOW and IO_HIGH are used and they are set statically.
- For the external rate limiter, in FSWritableFile functions, IOOptions is open for end users to set and get rate_limiter_priority for their own rate limiter. Currently, RocksDB doesn’t pass the rate_limiter_priority through IOOptions to the file system.
### Solution
During the User Read, Flush write, Compaction read/write, the WriteController is used to determine whether DB writes are stalled or slowed down. The rate limiter priority (Env::IOPriority) can be determined accordingly. We decided to always pass the priority in IOOptions. What the file system does with it should be a contract between the user and the file system. We would like to set the rate limiter priority at file level, since the Flush/Compaction job level may be too coarse with multiple files and block IO level is too granular.
**This PR is for the Write path.** The **Write:** dynamic priority for different state are listed as follows:
| State | Normal | Delayed | Stalled |
| ----- | ------ | ------- | ------- |
| Flush | IO_HIGH | IO_USER | IO_USER |
| Compaction | IO_LOW | IO_USER | IO_USER |
Flush and Compaction writes share the same call path through BlockBaseTableWriter, WritableFileWriter, and FSWritableFile. When a new FSWritableFile object is created, its io_priority_ can be set dynamically based on the state of the WriteController. In WritableFileWriter, before the call sites of FSWritableFile functions, WritableFileWriter::DecideRateLimiterPriority() determines the rate_limiter_priority. The options (IOOptions) argument of FSWritableFile functions will be updated with the rate_limiter_priority.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9988
Test Plan: Add unit tests.
Reviewed By: anand1976
Differential Revision: D36395159
Pulled By: gitbw95
fbshipit-source-id: a7c82fc29759139a1a07ec46c37dbf7e753474cf
Summary:
PR https://github.com/facebook/rocksdb/issues/9888 started to enforce the contract of single delete described in https://github.com/facebook/rocksdb/wiki/Single-Delete.
For some of existing use cases, it is desirable to have a transition during which compaction will not fail
if the contract is violated. Therefore, we add a temporary option `enforce_single_del_contracts` to allow
application to opt out from this new strict behavior. Once transition completes, the flag can be set to `true` again.
In a future release, the option will be removed.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9983
Test Plan: make check
Reviewed By: ajkr
Differential Revision: D36333672
Pulled By: riversand963
fbshipit-source-id: dcb703ea0ed08076a1422f1bfb9914afe3c2caa2
Summary:
ToString() is created as some platform doesn't support std::to_string(). However, we've already used std::to_string() by mistake for 16 months (in db/db_info_dumper.cc). This commit just remove ToString().
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9955
Test Plan: Watch CI tests
Reviewed By: riversand963
Differential Revision: D36176799
fbshipit-source-id: bdb6dcd0e3a3ab96a1ac810f5d0188f684064471
Summary:
**This PR does not affect the functionality of `DB` and write-committed transactions.**
`CompactionIterator` uses `KeyCommitted(seq)` to determine if a key in the database is committed.
As the name 'write-committed' implies, if write-committed policy is used, a key exists in the database only if
it is committed. In fact, the implementation of `KeyCommitted()` is as follows:
```
inline bool KeyCommitted(SequenceNumber seq) {
// For non-txn-db and write-committed, snapshot_checker_ is always nullptr.
return snapshot_checker_ == nullptr ||
snapshot_checker_->CheckInSnapshot(seq, kMaxSequence) == SnapshotCheckerResult::kInSnapshot;
}
```
With that being said, we focus on write-prepared/write-unprepared transactions.
A few notes:
- A key can exist in the db even if it's uncommitted. Therefore, we rely on `snapshot_checker_` to determine data visibility. We also require that all writes go through transaction API instead of the raw `WriteBatch` + `Write`, thus at most one uncommitted version of one user key can exist in the database.
- `CompactionIterator` outputs a key as long as the key is uncommitted.
Due to the above reasons, it is possible that `CompactionIterator` decides to output an uncommitted key without
doing further checks on the key (`NextFromInput()`). By the time the key is being prepared for output, the key becomes
committed because the `snapshot_checker_(seq, kMaxSequence)` becomes true in the implementation of `KeyCommitted()`.
Then `CompactionIterator` will try to zero its sequence number and hit assertion error if the key is a tombstone.
To fix this issue, we should make the `CompactionIterator` see a consistent view of the input keys. Note that
for write-prepared/write-unprepared, the background flush/compaction jobs already take a "job snapshot" before starting
processing keys. The job snapshot is released only after the entire flush/compaction finishes. We can use this snapshot
to determine whether a key is committed or not with minor change to `KeyCommitted()`.
```
inline bool KeyCommitted(SequenceNumber sequence) {
// For non-txn-db and write-committed, snapshot_checker_ is always nullptr.
return snapshot_checker_ == nullptr ||
snapshot_checker_->CheckInSnapshot(sequence, job_snapshot_) ==
SnapshotCheckerResult::kInSnapshot;
}
```
As a result, whether a key is committed or not will remain a constant throughout compaction, causing no trouble
for `CompactionIterator`s assertions.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9830
Test Plan: make check
Reviewed By: ltamasi
Differential Revision: D35561162
Pulled By: riversand963
fbshipit-source-id: 0e00d200c195240341cfe6d34cbc86798b315b9f
Summary:
Options `preserve_deletes` and `iter_start_seqnum` have been removed since 7.0.
This PR removes dead code related to these two removed options.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9825
Test Plan: make check
Reviewed By: akankshamahajan15
Differential Revision: D35517950
Pulled By: riversand963
fbshipit-source-id: 86282ce5ec4087acb94a06a42a1b6d55b1715482
Summary:
Multiplier here should be 1e6 to get microseconds.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9695
Reviewed By: ajkr
Differential Revision: D34897086
Pulled By: jay-zhuang
fbshipit-source-id: 9c1d0811ea740ba0a007edc2da199edbd000b88b
Summary:
Fix and enhance the background error recovery logic to handle the
following situations -
1. Background read errors during flush/compaction (previously was
resulting in unrecoverable state)
2. Fix auto recovery failure on read/write errors during atomic flush.
It was failing due to a bug in setting the resuming_from_bg_err variable
in AtomicFlushMemTablesToOutputFiles.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9679
Test Plan: Add new unit tests in error_handler_fs_test
Reviewed By: riversand963
Differential Revision: D34770097
Pulled By: anand1976
fbshipit-source-id: 136da973a28d684b9c74bdf668519b0cbbbe1742
Summary:
Change the `MemPurge` code to address a failure during a crash test reported in https://github.com/facebook/rocksdb/issues/8958.
### Details and results of the crash investigation:
These failures happened in a specific scenario where the list of immutable tables was composed of 2 or more memtables, and the last memtable was the output of a previous `Mempurge` operation. Because the `PickMemtablesToFlush` function included a sorting of the memtables (previous PR related to the Mempurge project), and because the `VersionEdit` of the flush class is piggybacked onto a single one of these memtables, the `VersionEdit` was not properly selected and applied to the `VersionSet` of the DB. Since the `VersionSet` was not edited properly, the database was losing track of the SST file created during the flush process, which was subsequently deleted (and as you can expect, caused the tests to crash).
The following command consistently failed, which was quite convenient to investigate the issue:
`$ while rm -rf /dev/shm/single_stress && ./db_stress --clear_column_family_one_in=0 --column_families=1 --db=/dev/shm/single_stress --experimental_mempurge_threshold=5.493146827397074 --flush_one_in=10000 --reopen=0 --write_buffer_size=262144 --value_size_mult=33 --max_write_buffer_number=3 -ops_per_thread=10000; do : ; done`
### Solution proposed
The memtables are no longer sorted based on their `memtableID` in the `PickMemtablesToFlush` function. Additionally, the `next_log_number` of the memtable created as an output of the `Mempurge` function now takes in the correct value (the log number of the first memtable being mempurged). Finally, the VersionEdit object of the flush class now takes the maximum `next_log_number` of the stack of memtables being flushed, which doesnt change anything when Mempurge is `off` but becomes necessary when Mempurge is `on`.
### Testing of the solution
The following command no longer fails:
``$ while rm -rf /dev/shm/single_stress && ./db_stress --clear_column_family_one_in=0 --column_families=1 --db=/dev/shm/single_stress --experimental_mempurge_threshold=5.493146827397074 --flush_one_in=10000 --reopen=0 --write_buffer_size=262144 --value_size_mult=33 --max_write_buffer_number=3 -ops_per_thread=10000; do : ; done``
Additionally, I ran `db_crashtest` (`whitebox` and `blackbox`) for 2.5 hours with MemPurge on and did not observe any crash.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9671
Reviewed By: pdillinger
Differential Revision: D34697424
Pulled By: bjlemaire
fbshipit-source-id: d1ab675b361904351ac81a35c184030e52222874
Summary:
The patch replaces `std::map` with a sorted `std::vector` for
`VersionStorageInfo::blob_files_` and preallocates the space
for the `vector` before saving the `BlobFileMetaData` into the
new `VersionStorageInfo` in `VersionBuilder::Rep::SaveBlobFilesTo`.
These changes reduce the time the DB mutex is held while
saving new `Version`s, and using a sorted `vector` also makes
lookups faster thanks to better memory locality.
In addition, the patch introduces helper methods
`VersionStorageInfo::GetBlobFileMetaData` and
`VersionStorageInfo::GetBlobFileMetaDataLB` that can be used by
clients to perform lookups in the `vector`, and does some general
cleanup in the parts of code where blob file metadata are used.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9526
Test Plan:
Ran `make check` and the crash test script for a while.
Performance was tested using a load-optimized benchmark (`fillseq` with vector memtable, no WAL) and small file sizes so that a significant number of files are produced:
```
numactl --interleave=all ./db_bench --benchmarks=fillseq --allow_concurrent_memtable_write=false --level0_file_num_compaction_trigger=4 --level0_slowdown_writes_trigger=20 --level0_stop_writes_trigger=30 --max_background_jobs=8 --max_write_buffer_number=8 --db=/data/ltamasi-dbbench --wal_dir=/data/ltamasi-dbbench --num=800000000 --num_levels=8 --key_size=20 --value_size=400 --block_size=8192 --cache_size=51539607552 --cache_numshardbits=6 --compression_max_dict_bytes=0 --compression_ratio=0.5 --compression_type=lz4 --bytes_per_sync=8388608 --cache_index_and_filter_blocks=1 --cache_high_pri_pool_ratio=0.5 --benchmark_write_rate_limit=0 --write_buffer_size=16777216 --target_file_size_base=16777216 --max_bytes_for_level_base=67108864 --verify_checksum=1 --delete_obsolete_files_period_micros=62914560 --max_bytes_for_level_multiplier=8 --statistics=0 --stats_per_interval=1 --stats_interval_seconds=20 --histogram=1 --memtablerep=skip_list --bloom_bits=10 --open_files=-1 --subcompactions=1 --compaction_style=0 --min_level_to_compress=3 --level_compaction_dynamic_level_bytes=true --pin_l0_filter_and_index_blocks_in_cache=1 --soft_pending_compaction_bytes_limit=167503724544 --hard_pending_compaction_bytes_limit=335007449088 --min_level_to_compress=0 --use_existing_db=0 --sync=0 --threads=1 --memtablerep=vector --allow_concurrent_memtable_write=false --disable_wal=1 --enable_blob_files=1 --blob_file_size=16777216 --min_blob_size=0 --blob_compression_type=lz4 --enable_blob_garbage_collection=1 --seed=<some value>
```
Final statistics before the patch:
```
Cumulative writes: 0 writes, 700M keys, 0 commit groups, 0.0 writes per commit group, ingest: 284.62 GB, 121.27 MB/s
Interval writes: 0 writes, 334K keys, 0 commit groups, 0.0 writes per commit group, ingest: 139.28 MB, 72.46 MB/s
```
With the patch:
```
Cumulative writes: 0 writes, 760M keys, 0 commit groups, 0.0 writes per commit group, ingest: 308.66 GB, 131.52 MB/s
Interval writes: 0 writes, 445K keys, 0 commit groups, 0.0 writes per commit group, ingest: 185.35 MB, 93.15 MB/s
```
Total time to complete the benchmark is 2611 seconds with the patch, down from 2986 secs.
Reviewed By: riversand963
Differential Revision: D34082728
Pulled By: ltamasi
fbshipit-source-id: fc598abf676dce436734d06bb9d2d99a26a004fc
Summary:
Fix a bug that causes file temperature not preserved after DB is restarted, or options.max_manifest_file_size is hit.
Also, pass temperature information to NewRandomAccessFile() to allow users to hack a solution where they don't preserve tiering information.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9242
Test Plan: Add a unit test that would fail without the fix.
Reviewed By: jay-zhuang
Differential Revision: D32818150
fbshipit-source-id: 36aa3f148c60107f7b8e9d65b63b039f9e1a1eec
Summary:
Track per-SST user-defined timestamp information in MANIFEST https://github.com/facebook/rocksdb/issues/8957
Rockdb has supported user-defined timestamp feature. Application can specify a timestamp
when writing each k-v pair. When data flush from memory to disk file called SST files, file
creation activity will commit to MANIFEST. This commit is for tracking timestamp info in the
MANIFEST for each file. The changes involved are as follows:
1) Track max/min timestamp in FileMetaData, and fix invoved codes.
2) Add NewFileCustomTag::kMinTimestamp and NewFileCustomTag::kMinTimestamp in
NewFileCustomTag ( in the kNewFile4 part ), and support invoved codes such as
VersionEdit Encode and Decode etc.
3) Add unit test code for VersionEdit EncodeDecodeNewFile4, and fix invoved test codes.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9092
Reviewed By: ajkr, akankshamahajan15
Differential Revision: D32252323
Pulled By: riversand963
fbshipit-source-id: d2642898d6e3ad1fef0eb866b98045408bd4e162
Summary:
Directory fsync might be expensive on btrfs and it may not be needed.
Here are 4 directory fsync cases:
1. creating a new file: dir-fsync is not needed on btrfs, as long as the
new file itself is synced.
2. renaming a file: dir-fsync is not needed if the renamed file is
synced. So an API `FsyncAfterFileRename(filename, ...)` is provided
to sync the file on btrfs. By default, it just calls dir-fsync.
3. deleting files: dir-fsync is forced by set
`IOOptions.force_dir_fsync = true`
4. renaming multiple files (like backup and checkpoint): dir-fsync is
forced, the same as above.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8903
Test Plan: run tests on btrfs and non btrfs
Reviewed By: ajkr
Differential Revision: D30885059
Pulled By: jay-zhuang
fbshipit-source-id: dd2730b31580b0bcaedffc318a762d7dbf25de4a
Summary:
1. Extend FlushJobInfo and CompactionJobInfo with information about the blob files generated by flush/compaction jobs. This PR add two structures BlobFileInfo and BlobFileGarbageInfo that contains the required information of blob files.
2. Notify the creation and deletion of blob files through OnBlobFileCreationStarted, OnBlobFileCreated, and OnBlobFileDeleted.
3. Test OnFile*Finish operations notifications with Blob Files.
4. Log the blob file creation/deletion events through EventLogger in Log file.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8675
Test Plan: Add new unit tests in listener_test
Reviewed By: ltamasi
Differential Revision: D30412613
Pulled By: akankshamahajan15
fbshipit-source-id: ca51b63c6e8c8d0485a38c503572bc5a82bd5d07
Summary:
Previously, when a `FlushJob` was redirected to a MemPurge, the function `DBImpl::NotifyOnFlushComplete` was called, which created a series of issues because the JobInfo was not correctly collected from the memtables.
This diff aims at correcting these two issues (`FlushJobInfo` collection in `FlushJob::MemPurge` , no call to `DBImpl::NotifyOnFlushComplete` after successful mempurge).
Event listeners were added to the unit tests to handle these situations.
Surprisingly none of the crashtests caught this issue, I will try to add event listeners to crash tests in the future.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8672
Reviewed By: akankshamahajan15
Differential Revision: D30383109
Pulled By: bjlemaire
fbshipit-source-id: 35a8d4295886923ee4049a6447f00022cb221c73
Summary:
Previously, the `MemPurge` sampling function was assessing whether a random entry from a memtable was garbage or not by simply querying the given memtable (see https://github.com/facebook/rocksdb/issues/8628 for more details).
In this diff, I am updating the sampling function by querying not only the memtable the entry was drawn from, but also all subsequent memtables that have a greater memtable ID.
I also added the size of the value for KV entries in the payload/useful payload estimates (which was also one of the reasons why sampling was not as good as mempurging all the time in terms of L0 SST files reduction).
Once these changes were made, I was able to clean obsolete objects and functions from the `MemtableList` struct, and did a bit of cleanup everywhere.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8656
Reviewed By: pdillinger
Differential Revision: D30288583
Pulled By: bjlemaire
fbshipit-source-id: 7646a545ec56f4715949daa59ab5eee74540feb3
Summary:
Changes the API of the MemPurge process: the `bool experimental_allow_mempurge` and `experimental_mempurge_policy` flags have been replaced by a `double experimental_mempurge_threshold` option.
This change of API reflects another major change introduced in this PR: the MemPurgeDecider() function now works by sampling the memtables being flushed to estimate the overall amount of useful payload (payload minus the garbage), and then compare this useful payload estimate with the `double experimental_mempurge_threshold` value.
Therefore, when the value of this flag is `0.0` (default value), mempurge is simply deactivated. On the other hand, a value of `DBL_MAX` would be equivalent to always going through a mempurge regardless of the garbage ratio estimate.
At the moment, a `double experimental_mempurge_threshold` value else than 0.0 or `DBL_MAX` is opnly supported`with the `SkipList` memtable representation.
Regarding the sampling, this PR includes the introduction of a `MemTable::UniqueRandomSample` function that collects (approximately) random entries from the memtable by using the new `SkipList::Iterator::RandomSeek()` under the hood, or by iterating through each memtable entry, depending on the target sample size and the total number of entries.
The unit tests have been readapted to support this new API.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8628
Reviewed By: pdillinger
Differential Revision: D30149315
Pulled By: bjlemaire
fbshipit-source-id: 1feef5390c95db6f4480ab4434716533d3947f27
Summary:
The db_stress crash was caused by a call to `IsFlushPending()` made by a stats function which triggered an `assert([false])`, which I didn't plan when I created the `trigger_flush` bool. It turns out that this bool variable is not useful: I created it because I thought the `imm_flush_needed` atomic bool would actually trigger a flush.
It turns out that this bool is only checked in `IsFlushPending` - this is its only use - and a flush is triggered by either a background thread checking on the imm array, or by an explicit call to `SchedulePendingFlush` which creates a flush request, that is then added to a flush request queue.
In this PR, I reverted the MemtableList::Add function to what it was before my changes.
I tested the fix by running the exact command line that deterministically triggered the assert error (see below), which confirmed that this is where the error was coming from.
I also run `db_crashtest.py whitebox` and `blackbox` for a couple hours locally before committing this PR.
Experiment run:
```./db_stress --acquire_snapshot_one_in=0 --allow_concurrent_memtable_write=1 --avoid_flush_during_recovery=0 --avoid_unnecessary_blocking_io=1 --backup_max_size=104857600 --backup_one_in=100000 --batch_protection_bytes_per_key=0 --block_size=16384 --bloom_bits=76.90653425292307 --bottommost_compression_type=disable --cache_index_and_filter_blocks=1 --cache_size=1048576 --checkpoint_one_in=1000000 --checksum_type=kCRC32c --clear_column_family_one_in=0 --column_families=1 --compact_files_one_in=1000000 --compact_range_one_in=0 --compaction_ttl=2 --compression_max_dict_buffer_bytes=0 --compression_max_dict_bytes=0 --compression_parallel_threads=1 --compression_type=zstd --compression_zstd_max_train_bytes=0 --continuous_verification_interval=0 --db=/dev/shm/rocksdb/rocksdb_crashtest_blackbox --db_write_buffer_size=0 --delpercent=4 --delrangepercent=1 --destroy_db_initially=0 --enable_compaction_filter=1 --enable_pipelined_write=0 --expected_values_path=/dev/shm/rocksdb/rocksdb_crashtest_expected --experimental_allow_mempurge=1 --experimental_mempurge_policy=kAlternate --fail_if_options_file_error=1 --file_checksum_impl=none --flush_one_in=1000000 --format_version=2 --get_current_wal_file_one_in=0 --get_live_files_one_in=1000000 --get_property_one_in=1000000 --get_sorted_wal_files_one_in=0 --index_block_restart_interval=14 --index_type=0 --iterpercent=0 --key_len_percent_dist=1,30,69 --level_compaction_dynamic_level_bytes=False --long_running_snapshots=1 --mark_for_compaction_one_file_in=10 --max_background_compactions=1 --max_bytes_for_level_base=67108864 --max_key=100000000 --max_key_len=3 --max_manifest_file_size=1073741824 --max_write_batch_group_size_bytes=64 --max_write_buffer_number=3 --max_write_buffer_size_to_maintain=0 --memtablerep=skip_list --mmap_read=0 --mock_direct_io=True --nooverwritepercent=1 --open_files=-1 --open_metadata_write_fault_one_in=8 --open_read_fault_one_in=32 --open_write_fault_one_in=16 --ops_per_thread=100000000 --optimize_filters_for_memory=1 --paranoid_file_checks=0 --partition_filters=0 --partition_pinning=0 --pause_background_one_in=1000000 --periodic_compaction_seconds=1000 --prefix_size=-1 --prefixpercent=0 --progress_reports=0 --read_fault_one_in=0 --readpercent=60 --recycle_log_file_num=1 --reopen=20 --set_options_one_in=0 --snapshot_hold_ops=100000 --sst_file_manager_bytes_per_sec=104857600 --sst_file_manager_bytes_per_truncate=0 --subcompactions=3 --sync=1 --sync_fault_injection=False --target_file_size_base=16777216 --target_file_size_multiplier=1 --test_batches_snapshots=0 --top_level_index_pinning=1 --unpartitioned_pinning=3 --use_clock_cache=0 --use_direct_io_for_flush_and_compaction=1 --use_direct_reads=0 --use_full_merge_v1=1 --use_merge=0 --use_multiget=0 --use_ribbon_filter=1 --user_timestamp_size=0 --verify_checksum=1 --verify_checksum_one_in=1000000 --verify_db_one_in=100000 --write_buffer_size=33554432 --write_dbid_to_manifest=1 --writepercent=35```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8604
Reviewed By: pdillinger
Differential Revision: D30047295
Pulled By: bjlemaire
fbshipit-source-id: b9e379bfa3d6b9bd2b275725fb0bca4bd81a3dbe
Summary:
Add `experimental_mempurge_policy` option flag and introduce two new `MemPurge` (Memtable Garbage Collection) policies: 'ALWAYS' and 'ALTERNATE'. Default value: ALTERNATE.
`ALWAYS`: every flush will first go through a `MemPurge` process. If the output is too big to fit into a single memtable, then the mempurge is aborted and a regular flush process carries on. `ALWAYS` is designed for user that need to reduce the number of L0 SST file created to a strict minimum, and can afford a small dent in performance (possibly hits to CPU usage, read efficiency, and maximum burst write throughput).
`ALTERNATE`: a flush is transformed into a `MemPurge` except if one of the memtables being flushed is the product of a previous `MemPurge`. `ALTERNATE` is a good tradeoff between reduction in number of L0 SST files created and performance. `ALTERNATE` perform particularly well for completely random garbage ratios, or garbage ratios anywhere in (0%,50%], and even higher when there is a wild variability in garbage ratios.
This PR also includes support for `experimental_mempurge_policy` in `db_bench`.
Testing was done locally by replacing all the `MemPurge` policies of the unit tests with `ALTERNATE`, as well as local testing with `db_crashtest.py` `whitebox` and `blackbox`. Overall, if an `ALWAYS` mempurge policy passes the tests, there is no reasons why an `ALTERNATE` policy would fail, and therefore the mempurge policy was set to `ALWAYS` for all mempurge unit tests.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8583
Reviewed By: pdillinger
Differential Revision: D29888050
Pulled By: bjlemaire
fbshipit-source-id: e2cf26646d66679f6f5fb29842624615610759c1
Summary:
The main challenge to make the memtable garbage collection prototype (nicknamed `mempurge`) was to not get rid of WAL files that contain unflushed (but mempurged) data. That was successfully guaranteed by not writing the VersionEdit to the MANIFEST file after a successful mempurge.
By not writing VersionEdits to the `MANIFEST` file after a succesful mempurge operation, we do not change the earliest log file number that contains unflushed data: `cfd->GetLogNumber()` (`cfd->SetLogNumber()` is only called in `VersionSet::ProcessManifestWrites`). As a result, a number of functions introduced earlier just for the mempurge operation are not obscolete/redundant. (e.g.: `FlushJob::ExtractEarliestLogFileNumber`), and this PR aims at cleaning up all these now-unnecessary functions. In particular, we no longer need to store the earliest log file number in the `MemTable` struct itself. This PR therefore also reverts the `MemTable` struct to its original form.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8558
Test Plan: Already included in `db_flush_test.cc`.
Reviewed By: anand1976
Differential Revision: D29764351
Pulled By: bjlemaire
fbshipit-source-id: 0f43b260fa270251862512f397d3f24ee62e8437
Summary:
In this PR, `mempurge` is made compatible with the Write Ahead Log: in case of recovery, the DB is now capable of recovering the data that was "mempurged" and kept in the `imm()` list of immutable memtables.
The twist was to add a uint64_t to the `memtable` struct to store the number of the earliest log file containing entries from the `memtable`. When a `Flush` operation is replaced with a `MemPurge`, the `VersionEdit` (which usually contains the new min log file number to pick up for recovery and the level 0 file path of the newly created SST file) is no longer appended to the manifest log, and every time the `deleteWal` method is called, a check is made on the list of immutable memtables.
This PR also includes a unit test that verifies that no data is lost upon Reopening of the database when the mempurge feature is activated. This extensive unit test includes two column families, with valid data contained in the imm() at time of "crash"/reopening (recovery).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8528
Reviewed By: pdillinger
Differential Revision: D29701097
Pulled By: bjlemaire
fbshipit-source-id: 072a900fb6ccc1edcf5eef6caf88f3060238edf9
Summary:
The MemPurge output status can either be an Abort if the mempurge is aborted due to the new_mem memtable reaching more than the target capacity (currently 60%), or for other reasons. As a result, in the log, we want to differentiate between an abort status, which in this PR only leads to a ROCKS_LOG_INFO, and any other status, which in this PR leads to a ROCKS_LOG_WARN.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8514
Reviewed By: pdillinger
Differential Revision: D29662446
Pulled By: bjlemaire
fbshipit-source-id: c9bec8e238ebc7ecb14fbbddf580e6887e281c16
Summary:
In https://github.com/facebook/rocksdb/issues/8454, I introduced a new process baptized `MemPurge` (memtable garbage collection). This new PR is built upon this past mempurge prototype.
In this PR, I made the `mempurge` process a background task, which provides superior performance since the mempurge process does not cling on the db_mutex anymore, and addresses severe restrictions from the past iteration (including a scenario where the past mempurge was failling, when a memtable was mempurged but was still referred to by an iterator/snapshot/...).
Now the mempurge process ressembles an in-memory compaction process: the stack of immutable memtables is filtered out, and the useful payload is used to populate an output memtable. If the output memtable is filled at more than 60% capacity (arbitrary heuristic) the mempurge process is aborted and a regular flush process takes place, else the output memtable is kept in the immutable memtable stack. Note that adding this output memtable to the `imm()` memtable stack does not trigger another flush process, so that the flush thread can go to sleep at the end of a successful mempurge.
MemPurge is activated by making the `experimental_allow_mempurge` flag `true`. When activated, the `MemPurge` process will always happen when the flush reason is `kWriteBufferFull`.
The 3 unit tests confirm that this process supports `Put`, `Get`, `Delete`, `DeleteRange` operators and is compatible with `Iterators` and `CompactionFilters`.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8505
Reviewed By: pdillinger
Differential Revision: D29619283
Pulled By: bjlemaire
fbshipit-source-id: 8a99bee76b63a8211bff1a00e0ae32360aaece95
Summary:
Implement an experimental feature called "MemPurge", which consists in purging "garbage" bytes out of a memtable and reuse the memtable struct instead of making it immutable and eventually flushing its content to storage.
The prototype is by default deactivated and is not intended for use. It is intended for correctness and validation testing. At the moment, the "MemPurge" feature can be switched on by using the `options.experimental_allow_mempurge` flag. For this early stage, when the allow_mempurge flag is set to `true`, all the flush operations will be rerouted to perform a MemPurge. This is a temporary design decision that will give us the time to explore meaningful heuristics to use MemPurge at the right time for relevant workloads . Moreover, the current MemPurge operation only supports `Puts`, `Deletes`, `DeleteRange` operations, and handles `Iterators` as well as `CompactionFilter`s that are invoked at flush time .
Three unit tests are added to `db_flush_test.cc` to test if MemPurge works correctly (and checks that the previously mentioned operations are fully supported thoroughly tested).
One noticeable design decision is the timing of the MemPurge operation in the memtable workflow: for this prototype, the mempurge happens when the memtable is switched (and usually made immutable). This is an inefficient process because it implies that the entirety of the MemPurge operation happens while holding the db_mutex. Future commits will make the MemPurge operation a background task (akin to the regular flush operation) and aim at drastically enhancing the performance of this operation. The MemPurge is also not fully "WAL-compatible" yet, but when the WAL is full, or when the regular MemPurge operation fails (or when the purged memtable still needs to be flushed), a regular flush operation takes place. Later commits will also correct these behaviors.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8454
Reviewed By: anand1976
Differential Revision: D29433971
Pulled By: bjlemaire
fbshipit-source-id: 6af48213554e35048a7e03816955100a80a26dc5
Summary:
**Summary**:
2 new statistics counters are added to RocksDB: `MEMTABLE_PAYLOAD_BYTES_AT_FLUSH` and `MEMTABLE_GARBAGE_BYTES_AT_FLUSH`. The former tracks how many raw bytes of useful data are present on the memtable at flush time, whereas the latter is tracks how many of these raw bytes are considered garbage, meaning that they ended up not being imported on the SSTables resulting from the flush operations.
**Unit test**: run `make db_flush_test -j$(nproc); ./db_flush_test` to run the unit test.
This executable includes 3 tests, that test support and correct stat calculations for workloads with inserts, deletes, and DeleteRanges. The parameters are set such that the workloads are performed on a single memtable, and a single SSTable is created as a result of the flush operation. The flush operation is manually called in the test file. The tests verify that the values of these 2 statistics counters introduced in this PR can be exactly predicted, showing that we have a full understanding of the underlying operations.
**Performance testing**:
`./db_bench -statistics -benchmarks=fillrandom -num=10000000` repeated 10 times.
Timing done using "date" function in a bash script.
_Results_:
Original Rocksdb fork: mean 66.6 sec, std 1.18 sec.
This feature branch: mean 67.4 sec, std 1.35 sec.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8411
Reviewed By: akankshamahajan15
Differential Revision: D29150629
Pulled By: bjlemaire
fbshipit-source-id: 7b3c2e86d50c6aa34fa50fd134282eacb543a5b1
Summary:
Currently, we either use the file system inode or a monotonically incrementing runtime ID as the block cache key prefix. However, if we use a monotonically incrementing runtime ID (in the case that the file system does not support inode id generation), in some cases, it cannot ensure uniqueness (e.g., we have secondary cache migrated from host to host). We use DbSessionID (20 bytes) + current file number (at most 10 bytes) as the new cache block key prefix when the secondary cache is enabled. So can accommodate scenarios such as transfer of cache state across hosts.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8360
Test Plan: add the test to lru_cache_test
Reviewed By: pdillinger
Differential Revision: D29006215
Pulled By: zhichao-cao
fbshipit-source-id: 6cff686b38d83904667a2bd39923cd030df16814
Summary:
When a memtable is flushed, it will validate number of entries it reads, and compare the number with how many entries inserted into memtable. This serves as one sanity c\
heck against memory corruption. This change will also allow more counters to be added in the future for better validation.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8288
Test Plan: Pass all existing tests
Reviewed By: ajkr
Differential Revision: D28369194
fbshipit-source-id: 7ff870380c41eab7f99eee508550dcdce32838ad
Summary:
Add `num_levels`, `is_bottommost`, and table file creation
`reason` to `FilterBuildingContext`, in anticipation of more powerful
Bloom-like filter support.
To support this, added `is_bottommost` and `reason` to
`TableBuilderOptions`, which allowed removing `reason` parameter from
`rocksdb::BuildTable`.
I attempted to remove `skip_filters` from `TableBuilderOptions`, because
filter construction decisions should arise from options, not one-off
parameters. I could not completely remove it because the public API for
SstFileWriter takes a `skip_filters` parameter, and translating this
into an option change would mean awkwardly replacing the table_factory
if it is BlockBasedTableFactory with new filter_policy=nullptr option.
I marked this public skip_filters option as deprecated because of this
oddity. (skip_filters on the read side probably makes sense.)
At least `skip_filters` is now largely hidden for users of
`TableBuilderOptions` and is no longer used for implementing the
optimize_filters_for_hits option. Bringing the logic for that option
closer to handling of FilterBuildingContext makes it more obvious that
hese two are using the same notion of "bottommost." (Planned:
configuration options for Bloom-like filters that generalize
`optimize_filters_for_hits`)
Recommended follow-up: Try to get away from "bottommost level" naming of
things, which is inaccurate (see
VersionStorageInfo::RangeMightExistAfterSortedRun), and move to
"bottommost run" or just "bottommost."
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8246
Test Plan:
extended an existing unit test to exercise and check various
filter building contexts. Also, existing tests for
optimize_filters_for_hits validate some of the "bottommost" handling,
which is now closely connected to FilterBuildingContext::is_bottommost
through TableBuilderOptions::is_bottommost
Reviewed By: mrambacher
Differential Revision: D28099346
Pulled By: pdillinger
fbshipit-source-id: 2c1072e29c24d4ac404c761a7b7663292372600a
Summary:
Greatly reduced the not-quite-copy-paste giant parameter lists
of rocksdb::NewTableBuilder, rocksdb::BuildTable,
BlockBasedTableBuilder::Rep ctor, and BlockBasedTableBuilder ctor.
Moved weird separate parameter `uint32_t column_family_id` of
TableFactory::NewTableBuilder into TableBuilderOptions.
Re-ordered parameters to TableBuilderOptions ctor, so that `uint64_t
target_file_size` is not randomly placed between uint64_t timestamps
(was easy to mix up).
Replaced a couple of fields of BlockBasedTableBuilder::Rep with a
FilterBuildingContext. The motivation for this change is making it
easier to pass along more data into new fields in FilterBuildingContext
(follow-up PR).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8240
Test Plan: ASAN make check
Reviewed By: mrambacher
Differential Revision: D28075891
Pulled By: pdillinger
fbshipit-source-id: fddb3dbb8260a0e8bdcbb51b877ebabf9a690d4f
Summary:
Current flush reason attribution is misleading or incorrect (depending on what the original intention was):
- Flush due to WAL reaching its maximum size is attributed to `kWriteBufferManager`
- Flushes due to full write buffer and write buffer manager are not distinguishable, both are attributed to `kWriteBufferFull`
This changes the first to a new flush reason `kWALFull`, and splits the second between `kWriteBufferManager` and `kWriteBufferFull`.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8150
Reviewed By: zhichao-cao
Differential Revision: D27569645
Pulled By: ot
fbshipit-source-id: 7e3c8ca186a6e71976e6b8e937297eebd4b769cc
Summary:
Previously it only applied to block-based tables generated by flush. This restriction
was undocumented and blocked a new use case. Now compression sampling
applies to all block-based tables we generate when it is enabled.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8105
Test Plan: new unit test
Reviewed By: riversand963
Differential Revision: D27317275
Pulled By: ajkr
fbshipit-source-id: cd9fcc5178d6515e8cb59c6facb5ac01893cb5b0
Summary:
Extend support to track blob files in SST File manager.
This PR notifies SstFileManager whenever a new blob file is created,
via OnAddFile and an obsolete blob file deleted via OnDeleteFile
and delete file via ScheduleFileDeletion.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8037
Test Plan: Add new unit tests
Reviewed By: ltamasi
Differential Revision: D26891237
Pulled By: akankshamahajan15
fbshipit-source-id: 04c69ccfda2a73782fd5c51982dae58dd11979b6