Summary:
Changes the API of the MemPurge process: the `bool experimental_allow_mempurge` and `experimental_mempurge_policy` flags have been replaced by a `double experimental_mempurge_threshold` option.
This change of API reflects another major change introduced in this PR: the MemPurgeDecider() function now works by sampling the memtables being flushed to estimate the overall amount of useful payload (payload minus the garbage), and then compare this useful payload estimate with the `double experimental_mempurge_threshold` value.
Therefore, when the value of this flag is `0.0` (default value), mempurge is simply deactivated. On the other hand, a value of `DBL_MAX` would be equivalent to always going through a mempurge regardless of the garbage ratio estimate.
At the moment, a `double experimental_mempurge_threshold` value else than 0.0 or `DBL_MAX` is opnly supported`with the `SkipList` memtable representation.
Regarding the sampling, this PR includes the introduction of a `MemTable::UniqueRandomSample` function that collects (approximately) random entries from the memtable by using the new `SkipList::Iterator::RandomSeek()` under the hood, or by iterating through each memtable entry, depending on the target sample size and the total number of entries.
The unit tests have been readapted to support this new API.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8628
Reviewed By: pdillinger
Differential Revision: D30149315
Pulled By: bjlemaire
fbshipit-source-id: 1feef5390c95db6f4480ab4434716533d3947f27
Summary:
`GenericRateLimiter` slow path handles requests that cannot be satisfied
immediately. Such requests enter a queue, and their thread stays in `Request()`
until they are granted or the rate limiter is stopped. These threads are
responsible for unblocking themselves. The work to do so is split into two main
duties.
(1) Waiting for the next refill time.
(2) Refilling the bytes and granting requests.
Prior to this PR, the slow path logic involved a leader election algorithm to
pick one thread to perform (1) followed by (2). It elected the thread whose
request was at the front of the highest priority non-empty queue since that
request was most likely to be granted. This algorithm was efficient in terms of
reducing intermediate wakeups, which is a thread waking up only to resume
waiting after finding its request is not granted. However, the conceptual
complexity of this algorithm was too high. It took me a long time to draw a
timeline to understand how it works for just one edge case yet there were so
many.
This PR drops the leader election to reduce conceptual complexity. Now, the two
duties can be performed by whichever thread acquires the lock first. The risk
of this change is increasing the number of intermediate wakeups, however, we
took steps to mitigate that.
- `wait_until_refill_pending_` flag ensures only one thread performs (1). This\
prevents the thundering herd problem at the next refill time. The remaining\
threads wait on their condition variable with an unbounded duration -- thus we\
must remember to notify them to ensure forward progress.
- (1) is typically done by a thread at the front of a queue. This is trivial\
when the queues are initially empty as the first choice that arrives must be\
the only entry in its queue. When queues are initially non-empty, we achieve\
this by having (2) notify a thread at the front of a queue (preferring higher\
priority) to perform the next duty.
- We do not require any additional wakeup for (2). Typically it will just be\
done by the thread that finished (1).
Combined, the second and third bullet points above suggest the refill/granting
will typically be done by a request at the front of its queue. This is
important because one wakeup is saved when a granted request happens to be in an
already running thread.
Note there are a few cases that still lead to intermediate wakeup, however. The
first two are existing issues that also apply to the old algorithm, however, the
third (including both subpoints) is new.
- No request may be granted (only possible when rate limit dynamically\
decreases).
- Requests from a different queue may be granted.
- (2) may be run by a non-front request thread causing it to not be granted even\
if some requests in that same queue are granted. It can happen for a couple\
(unlikely) reasons.
- A new request may sneak in and grab the lock at the refill time, before the\
thread finishing (1) can wake up and grab it.
- A new request may sneak in and grab the lock and execute (1) before (2)'s\
chosen candidate can wake up and grab the lock. Then that non-front request\
thread performing (1) can carry over to perform (2).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8602
Test Plan:
- Use existing tests. The edge cases listed in the comment are all performance\
related; I could not really think of any related to correctness. The logic\
looks the same whether a thread wakes up/finishes its work early/on-time/late,\
or whether the thread is chosen vs. "steals" the work.
- Verified write throughput and CPU overhead are basically the same with and\
without this change, even in a rate limiter heavy workload:
Test command:
```
$ rm -rf /dev/shm/dbbench/ && TEST_TMPDIR=/dev/shm /usr/bin/time ./db_bench -benchmarks=fillrandom -num_multi_db=64 -num_low_pri_threads=64 -num_high_pri_threads=64 -write_buffer_size=262144 -target_file_size_base=262144 -max_bytes_for_level_base=1048576 -rate_limiter_bytes_per_sec=16777216 -key_size=24 -value_size=1000 -num=10000 -compression_type=none -rate_limiter_refill_period_us=1000
```
Results before this PR:
```
fillrandom : 108.463 micros/op 9219 ops/sec; 9.0 MB/s
7.40user 8.84system 1:26.20elapsed 18%CPU (0avgtext+0avgdata 256140maxresident)k
```
Results after this PR:
```
fillrandom : 108.108 micros/op 9250 ops/sec; 9.0 MB/s
7.45user 8.23system 1:26.68elapsed 18%CPU (0avgtext+0avgdata 255688maxresident)k
```
Reviewed By: hx235
Differential Revision: D30048013
Pulled By: ajkr
fbshipit-source-id: 6741bba9d9dfbccab359806d725105817fef818b
Summary:
Some FIFO users want to keep the data for longer, but the old data is rarely accessed. This feature allows users to configure FIFO compaction so that data older than a threshold is moved to a warm storage tier.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8310
Test Plan: Add several unit tests.
Reviewed By: ajkr
Differential Revision: D28493792
fbshipit-source-id: c14824ea634814dee5278b449ab5c98b6e0b5501
Summary:
- Changed MergeOperator, CompactionFilter, and CompactionFilterFactory into Customizable classes.
- Added Options/Configurable/Object Registration for TTL and Cassandra variants
- Changed the StringAppend MergeOperators to accept a string delimiter rather than a simple char. Made the delimiter into a configurable option
- Added tests for new functionality
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8481
Reviewed By: zhichao-cao
Differential Revision: D30136050
Pulled By: mrambacher
fbshipit-source-id: 271d1772835935b6773abaf018ee71e42f9491af
Summary:
Introduction of a new `fillanddeleteuniquerandom` benchmark (`db_bench`) with 5 new option flags to simulate a benchmark where the following sequence is repeated multiple times:
"A set of keys S1 is inserted ('`disposable entries`'), then after some delay another set of keys S2 is inserted ('`persistent entries`') and the first set of keys S1 is deleted. S2 artificially represents the insertion of hypothetical results from some undefined computation done on the first set of keys S1. The next sequence can start as soon as the last disposable entry in the set S1 of this sequence is inserted, if the `delay` is non negligible."
New flags:
- `disposable_entries_delete_delay`: minimum delay in microseconds between insertion of the last `disposable` entry, and the start of the insertion of the first `persistent` entry.
- `disposable_entries_batch_size`: number of `disposable` entries inserted at the beginning of each sequence.
- `disposable_entries_value_size`: size of the random `value` string for the `disposable` entries.
- `persistent_entries_batch_size`: number of `persistent` entries inserted at the end of each sequence, right before the deletion of the `disposable` entries starts.
- `persistent_entries_value_size`: size of the random value string for the `persistent` entries.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8593
Reviewed By: pdillinger
Differential Revision: D29974436
Pulled By: bjlemaire
fbshipit-source-id: f578033e5b45e8268ba6fa6f38f4770c2e6e801d
Summary:
- Added Type/CreateFromString
- Added ability to load EventListeners to DBOptions
- Since EventListeners did not previously have a Name(), defaulted to "". If there is no name, the listener cannot be loaded from the ObjectRegistry.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8473
Reviewed By: zhichao-cao
Differential Revision: D29901488
Pulled By: mrambacher
fbshipit-source-id: 2d3a4aa6db1562ac03e7ad41b360e3521d486254
Summary:
Add `experimental_mempurge_policy` option flag and introduce two new `MemPurge` (Memtable Garbage Collection) policies: 'ALWAYS' and 'ALTERNATE'. Default value: ALTERNATE.
`ALWAYS`: every flush will first go through a `MemPurge` process. If the output is too big to fit into a single memtable, then the mempurge is aborted and a regular flush process carries on. `ALWAYS` is designed for user that need to reduce the number of L0 SST file created to a strict minimum, and can afford a small dent in performance (possibly hits to CPU usage, read efficiency, and maximum burst write throughput).
`ALTERNATE`: a flush is transformed into a `MemPurge` except if one of the memtables being flushed is the product of a previous `MemPurge`. `ALTERNATE` is a good tradeoff between reduction in number of L0 SST files created and performance. `ALTERNATE` perform particularly well for completely random garbage ratios, or garbage ratios anywhere in (0%,50%], and even higher when there is a wild variability in garbage ratios.
This PR also includes support for `experimental_mempurge_policy` in `db_bench`.
Testing was done locally by replacing all the `MemPurge` policies of the unit tests with `ALTERNATE`, as well as local testing with `db_crashtest.py` `whitebox` and `blackbox`. Overall, if an `ALWAYS` mempurge policy passes the tests, there is no reasons why an `ALTERNATE` policy would fail, and therefore the mempurge policy was set to `ALWAYS` for all mempurge unit tests.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8583
Reviewed By: pdillinger
Differential Revision: D29888050
Pulled By: bjlemaire
fbshipit-source-id: e2cf26646d66679f6f5fb29842624615610759c1
Summary:
PR https://github.com/facebook/rocksdb/issues/8519 fix db_bench_tool.cc for MSVC build errors by simply copy-paste, this PR fix the copy-paste while also works for MSVC.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8553
Reviewed By: ajkr
Differential Revision: D29838056
Pulled By: jay-zhuang
fbshipit-source-id: 0cd60c146b87a355c3dc1061dfe813169d75cea4
Summary:
Add flags `overwrite_probability` and `overwrite_window_size` flag to `db_bench`.
Add the possibility of performing a `filluniquerandom` benchmark with an overwrite probability.
For each write operation, there is a probability _p_ that the write is an overwrite (_p_=`overwrite_probability`).
When an overwrite is decided, the key is randomly chosen from the last _N_ keys previously inserted into the DB (with _N_=`overwrite_window_size`).
When a pure write is decided, the key inserted into the DB is unique and therefore will not be an overwrite.
The `overwrite_window_size` is used so that the user can decide if the overwrite are mostly targeting recently inserted keys (when `overwrite_window_size` is small compared to the total number of writes), or can also target keys inserted "a long time ago" (when `overwrite_window_size` is comparable to total number of writes).
Note that total number of writes = # of unique insertions + # of overwrites.
No unit test specifically added.
Local testing show the following **throughputs** for `filluniquerandom` with 1M total writes:
- bypass the code inserts (no `overwrite_probability` flag specified): ~14.0MB/s
- `overwrite_probability=0.99`, `overwrite_window_size=10`: ~17.0MB/s
- `overwrite_probability=0.10`, `overwrite_window_size=10`: ~14.0MB/s
- `overwrite_probability=0.99`, `overwrite_window_size=1M`: ~14.5MB/s
- `overwrite_probability=0.10`, `overwrite_window_size=1M`: ~14.0MB/s
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8569
Reviewed By: pdillinger
Differential Revision: D29818631
Pulled By: bjlemaire
fbshipit-source-id: d472b4ea4e457a4da7c4ee4f14b40cccd6a4587a
Summary:
Tiny PR to add the `experimental_allow_mempurge` to the `db_bench` tool (`Mempurge` is the current prototype for memtable garbage collection).
This is useful to benchmark the prototype of this new feature, stress test it and help find new meaningful heuristics for GC.
By default, the flag to allow `mempurge` is set to `false`.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8546
Reviewed By: anand1976
Differential Revision: D29738338
Pulled By: bjlemaire
fbshipit-source-id: 01892883a2f1c714c110718674da05992d6e2dd6
Summary:
Right now, db_bench with seekrandom and multiple DB setup creates iterator for all DBs just to query one of them. It's different from most real workloads. Fix it by only creating iterators that will be queried.
Also fix a bug that DBs are not destroyed in multi-DB mode.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7818
Test Plan: Run db_bench with single/multiDB X using/not using tailing iterator with ASAN build, and validate the behavior is expected.
Reviewed By: ajkr
Differential Revision: D25720226
fbshipit-source-id: c2ff7ff7120e5ba64287a30b057c5d29b2cbe20b
Summary:
Fixed a few MSVC (VCToolsVersion=14.0) build errors and warnings
* `DEFINE_string` is a macro and VC compiler complains that it cannot put [ifdef-inside-define](https://stackoverflow.com/questions/5586429/ifdef-inside-define)
* `sleep()` is not a recognizable function. Use `FLAGS_env->SleepForMicroseconds` instead
* Define precise type in comparison to avoid mismatch warning
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8519
Reviewed By: jay-zhuang
Differential Revision: D29683086
fbshipit-source-id: 8c80941472089f8daba84ae29597e75e603850e4
Summary:
1. Fix printing of stats when there are no writes (wamp=0). Previously had a div0 error
2. Added multireadrandom command as a valid target
3. Added ability to pass additional command line options to db_bench. Now can say things like benchmark.sh readrandom --mmap_read and the option will be passed to db_bench.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8346
Reviewed By: zhichao-cao
Differential Revision: D29500436
Pulled By: mrambacher
fbshipit-source-id: 54e90708aae9133be3a903e35efdf8f8abbd86fa
Summary:
Hello and thanks for RocksDB,
Here is a PR to add file deletes, renames and ```Flush()```, ```Sync()```, ```Fsync()``` and ```Close()``` to file ops report.
The reason is to help tune RocksDB options when using an env/filesystem with high latencies for file level ("metadata") operations, typically seen during ```DB::Open``` (```db_bench -num 0``` also see https://github.com/facebook/rocksdb/pull/7203 where IOTracing does not trace ```DB::Open```).
Before:
```
> db_bench -benchmarks updaterandom -num 0 -report_file_operations true
...
Entries: 0
...
Num files opened: 12
Num Read(): 6
Num Append(): 8
Num bytes read: 6216
Num bytes written: 6289
```
After:
```
> db_bench -benchmarks updaterandom -num 0 -report_file_operations true
...
Entries: 0
...
Num files opened: 12
Num files deleted: 3
Num files renamed: 4
Num Flush(): 10
Num Sync(): 5
Num Fsync(): 1
Num Close(): 2
Num Read(): 6
Num Append(): 8
Num bytes read: 6216
Num bytes written: 6289
```
Before:
```
> db_bench -benchmarks updaterandom -report_file_operations true
...
Entries: 1000000
...
Num files opened: 18
Num Read(): 396339
Num Append(): 1000058
Num bytes read: 892030224
Num bytes written: 187569238
```
After:
```
> db_bench -benchmarks updaterandom -report_file_operations true
...
Entries: 1000000
...
Num files opened: 18
Num files deleted: 5
Num files renamed: 4
Num Flush(): 1000068
Num Sync(): 9
Num Fsync(): 1
Num Close(): 6
Num Read(): 396339
Num Append(): 1000058
Num bytes read: 892030224
Num bytes written: 187569238
```
Another example showing how using ```DB::OpenForReadOnly``` reduces file operations compared to ```((Optimistic)Transaction)DB::Open```:
```
> db_bench -benchmarks updaterandom -num 1
> db_bench -benchmarks updaterandom -num 0 -use_existing_db true -readonly true -report_file_operations true
...
Entries: 0
...
Num files opened: 8
Num files deleted: 0
Num files renamed: 0
Num Flush(): 0
Num Sync(): 0
Num Fsync(): 0
Num Close(): 0
Num Read(): 13
Num Append(): 0
Num bytes read: 374
Num bytes written: 0
```
```
> db_bench -benchmarks updaterandom -num 1
> db_bench -benchmarks updaterandom -num 0 -use_existing_db true -report_file_operations true
...
Entries: 0
...
Num files opened: 14
Num files deleted: 3
Num files renamed: 4
Num Flush(): 14
Num Sync(): 5
Num Fsync(): 1
Num Close(): 3
Num Read(): 11
Num Append(): 10
Num bytes read: 7291
Num bytes written: 7357
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8448
Reviewed By: anand1976
Differential Revision: D29333818
Pulled By: zhichao-cao
fbshipit-source-id: a06a8c87f799806462319115195b3e94faf5f542
Summary:
This PR prepopulates warm/hot data blocks which are already in memory
into block cache at the time of flush. On a flush, the data block that is
in memory (in memtables) get flushed to the device. If using Direct IO,
additional IO is incurred to read this data back into memory again, which
is avoided by enabling newly added option.
Right now, this is enabled only for flush for data blocks. We plan to
expand this option to cover compactions in the future and for other types
of blocks.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8242
Test Plan: Add new unit test
Reviewed By: anand1976
Differential Revision: D28521703
Pulled By: akankshamahajan15
fbshipit-source-id: 7219d6958821cedce689a219c3963a6f1a9d5f05
Summary:
Marked the Ribbon filter and optimize_filters_for_memory features
as production-ready, each enabling memory savings for Bloom-like filters.
Use `NewRibbonFilterPolicy` in place of `NewBloomFilterPolicy` to use
Ribbon filters instead of Bloom, or `ribbonfilter` in place of
`bloomfilter` in configuration string.
Some small refactoring in db_stress.
Removed/refactored unused code in db_bench, in part preparing for future
default possibly being different from "disabled."
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8408
Test Plan:
Lots of prior automated, ad-hoc, and "real world" testing.
Updated tests for new API names. Quick db_bench test:
bloom fillrandom
77730 ops/sec
rocksdb.block.cache.filter.bytes.insert COUNT : 89929384
ribbon fillrandom
71492 ops/sec
rocksdb.block.cache.filter.bytes.insert COUNT : 64531384
Reviewed By: mrambacher
Differential Revision: D29140805
Pulled By: pdillinger
fbshipit-source-id: d742c922722421678f95ad85eeb0aaebc9f5e49a
Summary:
- Added CreateFromString method to Env and FilesSystem to replace LoadEnv/Load. This method/signature is a precursor to making these classes extend Customizable.
- Added CreateFromSystem to Env. This method standardizes creating an Env from the environment variables. Previously, some places would check TEST_ENV_URI and others would also check TEST_FS_URI. Now the code is more command/standardized.
- Added CreateFromFlags to Env. These method allows Env to be create from string options (such as GFLAGS options) in a more standard way.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8174
Reviewed By: zhichao-cao
Differential Revision: D28999603
Pulled By: mrambacher
fbshipit-source-id: 88e6911e7e91f908458a7fe10a20e93ecbc275fb
Summary:
This change gathers and publishes statistics about the
kinds of items in block cache. This is especially important for
profiling relative usage of cache by index vs. filter vs. data blocks.
It works by iterating over the cache during periodic stats dump
(InternalStats, stats_dump_period_sec) or on demand when
DB::Get(Map)Property(kBlockCacheEntryStats), except that for
efficiency and sharing among column families, saved data from
the last scan is used when the data is not considered too old.
The new information can be seen in info LOG, for example:
Block cache LRUCache@0x7fca62229330 capacity: 95.37 MB collections: 8 last_copies: 0 last_secs: 0.00178 secs_since: 0
Block cache entry stats(count,size,portion): DataBlock(7092,28.24 MB,29.6136%) FilterBlock(215,867.90 KB,0.888728%) FilterMetaBlock(2,5.31 KB,0.00544%) IndexBlock(217,180.11 KB,0.184432%) WriteBuffer(1,256.00 KB,0.262144%) Misc(1,0.00 KB,0%)
And also through DB::GetProperty and GetMapProperty (here using
ldb just for demonstration):
$ ./ldb --db=/dev/shm/dbbench/ get_property rocksdb.block-cache-entry-stats
rocksdb.block-cache-entry-stats.bytes.data-block: 0
rocksdb.block-cache-entry-stats.bytes.deprecated-filter-block: 0
rocksdb.block-cache-entry-stats.bytes.filter-block: 0
rocksdb.block-cache-entry-stats.bytes.filter-meta-block: 0
rocksdb.block-cache-entry-stats.bytes.index-block: 178992
rocksdb.block-cache-entry-stats.bytes.misc: 0
rocksdb.block-cache-entry-stats.bytes.other-block: 0
rocksdb.block-cache-entry-stats.bytes.write-buffer: 0
rocksdb.block-cache-entry-stats.capacity: 8388608
rocksdb.block-cache-entry-stats.count.data-block: 0
rocksdb.block-cache-entry-stats.count.deprecated-filter-block: 0
rocksdb.block-cache-entry-stats.count.filter-block: 0
rocksdb.block-cache-entry-stats.count.filter-meta-block: 0
rocksdb.block-cache-entry-stats.count.index-block: 215
rocksdb.block-cache-entry-stats.count.misc: 1
rocksdb.block-cache-entry-stats.count.other-block: 0
rocksdb.block-cache-entry-stats.count.write-buffer: 0
rocksdb.block-cache-entry-stats.id: LRUCache@0x7f3636661290
rocksdb.block-cache-entry-stats.percent.data-block: 0.000000
rocksdb.block-cache-entry-stats.percent.deprecated-filter-block: 0.000000
rocksdb.block-cache-entry-stats.percent.filter-block: 0.000000
rocksdb.block-cache-entry-stats.percent.filter-meta-block: 0.000000
rocksdb.block-cache-entry-stats.percent.index-block: 2.133751
rocksdb.block-cache-entry-stats.percent.misc: 0.000000
rocksdb.block-cache-entry-stats.percent.other-block: 0.000000
rocksdb.block-cache-entry-stats.percent.write-buffer: 0.000000
rocksdb.block-cache-entry-stats.secs_for_last_collection: 0.000052
rocksdb.block-cache-entry-stats.secs_since_last_collection: 0
Solution detail - We need some way to flag what kind of blocks each
entry belongs to, preferably without changing the Cache API.
One of the complications is that Cache is a general interface that could
have other users that don't adhere to whichever convention we decide
on for keys and values. Or we would pay for an extra field in the Handle
that would only be used for this purpose.
This change uses a back-door approach, the deleter, to indicate the
"role" of a Cache entry (in addition to the value type, implicitly).
This has the added benefit of ensuring proper code origin whenever we
recognize a particular role for a cache entry; if the entry came from
some other part of the code, it will use an unrecognized deleter, which
we simply attribute to the "Misc" role.
An internal API makes for simple instantiation and automatic
registration of Cache deleters for a given value type and "role".
Another internal API, CacheEntryStatsCollector, solves the problem of
caching the results of a scan and sharing them, to ensure scans are
neither excessive nor redundant so as not to harm Cache performance.
Because code is added to BlocklikeTraits, it is pulled out of
block_based_table_reader.cc into its own file.
This is a reformulation of https://github.com/facebook/rocksdb/issues/8276, without the type checking option
(could still be added), and with actual stat gathering.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8297
Test Plan: manual testing with db_bench, and a couple of basic unit tests
Reviewed By: ltamasi
Differential Revision: D28488721
Pulled By: pdillinger
fbshipit-source-id: 472f524a9691b5afb107934be2d41d84f2b129fb
Summary:
This PR adds a ```-secondary_cache_uri``` option to the cache_bench and db_bench tools to allow the user to specify a custom secondary cache URI. The object registry is used to create an instance of the ```SecondaryCache``` object of the type specified in the URI.
The main cache_bench code is packaged into a separate library, similar to db_bench.
An example invocation of db_bench with a secondary cache URI -
```db_bench --env_uri=ws://ws.flash_sandbox.vll1_2/ -db=anand/nvm_cache_2 -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=67108864 -cache_index_and_filter_blocks=true -secondary_cache_uri='cachelibwrapper://filename=/home/anand76/nvm_cache/cache_file;size=2147483648;regionSize=16777216;admPolicy=random;admProbability=1.0;volatileSize=8388608;bktPower=20;lockPower=12' -partition_index_and_filters=true -duration=1800```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8312
Reviewed By: zhichao-cao
Differential Revision: D28544325
Pulled By: anand1976
fbshipit-source-id: 8f209b9af900c459dc42daa7a610d5f00176eeed
Summary:
As the first part of the effort of having placing different files on different storage types, this change introduces several things:
(1) An experimental interface in FileSystem that specify temperature to a new file created.
(2) A test FileSystemWrapper, SimulatedHybridFileSystem, that simulates HDD for a file of "warm" temperature.
(3) A simple experimental feature ColumnFamilyOptions.bottommost_temperature. RocksDB would pass this value to FileSystem when creating any bottommost file.
(4) A db_bench parameter that applies the (2) and (3) to db_bench.
The motivation of the change is to introduce minimal changes that allow us to evolve tiered storage development.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8222
Test Plan:
./db_bench --benchmarks=fillrandom --write_buffer_size=2000000 -max_bytes_for_level_base=20000000 -level_compaction_dynamic_level_bytes --reads=100 -compaction_readahead_size=20000000 --reads=100000 -num=10000000
followed by
./db_bench --benchmarks=readrandom,stats --write_buffer_size=2000000 -max_bytes_for_level_base=20000000 -simulate_hybrid_fs_file=/tmp/warm_file_list -level_compaction_dynamic_level_bytes -compaction_readahead_size=20000000 --reads=500 --threads=16 -use_existing_db --num=10000000
and see results as expected.
Reviewed By: ajkr
Differential Revision: D28003028
fbshipit-source-id: 4724896d5205730227ba2f17c3fecb11261744ce
Summary:
Fixes https://github.com/facebook/rocksdb/issues/6548.
If we do not reset the pinnable slice before calling get, we will see the following assertion failure
while running the test with multiple column families.
```
db_bench: ./include/rocksdb/slice.h:168: void rocksdb::PinnableSlice::PinSlice(const rocksdb::Slice&, rocksdb::Cleanable*): Assertion `!pinned_' failed.
```
This happens in `BlockBasedTable::Get()`.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8154
Test Plan:
./db_bench --benchmarks=fillseq -num_column_families=3
./db_bench --benchmarks=readrandom -use_existing_db=1 -num_column_families=3
Reviewed By: ajkr
Differential Revision: D27587589
Pulled By: riversand963
fbshipit-source-id: 7379e7649ba40f046d6a4014c9ad629cb3f9a786
Summary:
The check in db_bench for table_cache_numshardbits was 0 < bits <= 20, whereas the check in LRUCache was 0 < bits < 20. Changed the two values to match to avoid a crash in db_bench on a null cache.
Fixes https://github.com/facebook/rocksdb/issues/7393
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8110
Reviewed By: zhichao-cao
Differential Revision: D27353522
Pulled By: mrambacher
fbshipit-source-id: a414bd23b5bde1f071146b34cfca5e35c02de869
Summary:
Add the new Append and PositionedAppend API to env WritableFile. User is able to benefit from the write checksum handoff API when using the legacy Env classes. FileSystem already implemented the checksum handoff API.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8071
Test Plan: make check, added new unit test.
Reviewed By: anand1976
Differential Revision: D27177043
Pulled By: zhichao-cao
fbshipit-source-id: 430c8331fc81099fa6d00f4fff703b68b9e8080e
Summary:
The new options are:
* compact0 - compact L0 into L1 using one thread
* compact1 - compact L1 into L2 using one thread
* flush - flush memtable
* waitforcompaction - wait for compaction to finish
These are useful for reproducible benchmarks to help get the LSM tree shape
into a deterministic state. I wrote about this at:
http://smalldatum.blogspot.com/2021/02/read-only-benchmarks-with-lsm-are.html
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8027
Reviewed By: riversand963
Differential Revision: D27053861
Pulled By: ajkr
fbshipit-source-id: 1646f35584a3db03740fbeb47d91c3f00fb35d6e
Summary:
For performance purposes, the lower level routines were changed to use a SystemClock* instead of a std::shared_ptr<SystemClock>. The shared ptr has some performance degradation on certain hardware classes.
For most of the system, there is no risk of the pointer being deleted/invalid because the shared_ptr will be stored elsewhere. For example, the ImmutableDBOptions stores the Env which has a std::shared_ptr<SystemClock> in it. The SystemClock* within the ImmutableDBOptions is essentially a "short cut" to gain access to this constant resource.
There were a few classes (PeriodicWorkScheduler?) where the "short cut" property did not hold. In those cases, the shared pointer was preserved.
Using db_bench readrandom perf_level=3 on my EC2 box, this change performed as well or better than 6.17:
6.17: readrandom : 28.046 micros/op 854902 ops/sec; 61.3 MB/s (355999 of 355999 found)
6.18: readrandom : 32.615 micros/op 735306 ops/sec; 52.7 MB/s (290999 of 290999 found)
PR: readrandom : 27.500 micros/op 871909 ops/sec; 62.5 MB/s (367999 of 367999 found)
(Note that the times for 6.18 are prior to revert of the SystemClock).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8033
Reviewed By: pdillinger
Differential Revision: D27014563
Pulled By: mrambacher
fbshipit-source-id: ad0459eba03182e454391b5926bf5cdd45657b67
Summary:
For dictionary compression, we need to collect some representative samples of the data to be compressed, which we use to either generate or train (when `CompressionOptions::zstd_max_train_bytes > 0`) a dictionary. Previously, the strategy was to buffer all the data blocks during flush, and up to the target file size during compaction. That strategy allowed us to randomly pick samples from as wide a range as possible that'd be guaranteed to land in a single output file.
However, some users try to make huge files in memory-constrained environments, where this strategy can cause OOM. This PR introduces an option, `CompressionOptions::max_dict_buffer_bytes`, that limits how much data blocks are buffered before we switch to unbuffered mode (which means creating the per-SST dictionary, writing out the buffered data, and compressing/writing new blocks as soon as they are built). It is not strict as we currently buffer more than just data blocks -- also keys are buffered. But it does make a step towards giving users predictable memory usage.
Related changes include:
- Changed sampling for dictionary compression to select unique data blocks when there is limited availability of data blocks
- Made use of `BlockBuilder::SwapAndReset()` to save an allocation+memcpy when buffering data blocks for building a dictionary
- Changed `ParseBoolean()` to accept an input containing characters after the boolean. This is necessary since, with this PR, a value for `CompressionOptions::enabled` is no longer necessarily the final component in the `CompressionOptions` string.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7970
Test Plan:
- updated `CompressionOptions` unit tests to verify limit is respected (to the extent expected in the current implementation) in various scenarios of flush/compaction to bottommost/non-bottommost level
- looked at jemalloc heap profiles right before and after switching to unbuffered mode during flush/compaction. Verified memory usage in buffering is proportional to the limit set.
Reviewed By: pdillinger
Differential Revision: D26467994
Pulled By: ajkr
fbshipit-source-id: 3da4ef9fba59974e4ef40e40c01611002c861465
Summary:
The patch adds the configuration options of the new BlobDB implementation
to `db_bench` and adjusts the help messages of the old (`StackableDB`-based)
BlobDB's options to make it clear which implementation they pertain to.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7956
Test Plan: Ran `make check` and `db_bench` with the new options.
Reviewed By: jay-zhuang
Differential Revision: D26384808
Pulled By: ltamasi
fbshipit-source-id: b4405bb2c56cfd3506d4c32e3329c08dfdf69c94
Summary:
Currently, db_bench cleanup only deletes the main DB, if there's one.
Multiple DBs that are opened when --num_multi_db is specified are not
deleted, which can lead to crashes due to running compaction threads on
process exit.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7891
Test Plan: Run regression test
Reviewed By: jay-zhuang
Differential Revision: D26049914
Pulled By: anand1976
fbshipit-source-id: acef2821001ca5e208a96a6a273c724e56353316
Summary:
The multireadrandom benchmark, when run for a specific number of reads (--reads argument), should base the duration on the actual number of keys read rather than number of batches.
Tests:
Run db_bench multireadrandom benchmark
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7817
Reviewed By: zhichao-cao
Differential Revision: D25717230
Pulled By: anand1976
fbshipit-source-id: 13f4d8162268cf9a34918655e60302d0aba3864b
Summary:
Primarily this change refactors the optimize_filters_for_memory
code for Bloom filters, based on malloc_usable_size, to also work for
Ribbon filters.
This change also replaces the somewhat slow but general
BuiltinFilterBitsBuilder::ApproximateNumEntries with
implementation-specific versions for Ribbon (new) and Legacy Bloom
(based on a recently deleted version). The reason is to emphasize
speed in ApproximateNumEntries rather than 100% accuracy.
Justification: ApproximateNumEntries (formerly CalculateNumEntry) is
only used by RocksDB for range-partitioned filters, called each time we
start to construct one. (In theory, it should be possible to reuse the
estimate, but the abstractions provided by FilterPolicy don't really
make that workable.) But this is only used as a heuristic estimate for
hitting a desired partitioned filter size because of alignment to data
blocks, which have various numbers of unique keys or prefixes. The two
factors lead us to prioritize reasonable speed over 100% accuracy.
optimize_filters_for_memory adds extra complication, because precisely
calculating num_entries for some allowed number of bytes depends on state
with optimize_filters_for_memory enabled. And the allocator-agnostic
implementation of optimize_filters_for_memory, using malloc_usable_size,
means we would have to actually allocate memory, many times, just to
precisely determine how many entries (keys) could be added and stay below
some size budget, for the current state. (In a draft, I got this
working, and then realized the balance of speed vs. accuracy was all
wrong.)
So related to that, I have made CalculateSpace, an internal-only API
only used for testing, non-authoritative also if
optimize_filters_for_memory is enabled. This simplifies some code.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7774
Test Plan:
unit test updated, and for FilterSize test, range of tested
values is greatly expanded (still super fast)
Also tested `db_bench -benchmarks=fillrandom,stats -bloom_bits=10 -num=1000000 -partition_index_and_filters -format_version=5 [-optimize_filters_for_memory] [-use_ribbon_filter]` with temporary debug output of generated filter sizes.
Bloom+optimize_filters_for_memory:
1 Filter size: 197 (224 in memory)
134 Filter size: 3525 (3584 in memory)
107 Filter size: 4037 (4096 in memory)
Total on disk: 904,506
Total in memory: 918,752
Ribbon+optimize_filters_for_memory:
1 Filter size: 3061 (3072 in memory)
110 Filter size: 3573 (3584 in memory)
58 Filter size: 4085 (4096 in memory)
Total on disk: 633,021 (-30.0%)
Total in memory: 634,880 (-30.9%)
Bloom (no offm):
1 Filter size: 261 (320 in memory)
1 Filter size: 3333 (3584 in memory)
240 Filter size: 3717 (4096 in memory)
Total on disk: 895,674 (-1% on disk vs. +offm; known tolerable overhead of offm)
Total in memory: 986,944 (+7.4% vs. +offm)
Ribbon (no offm):
1 Filter size: 2949 (3072 in memory)
1 Filter size: 3381 (3584 in memory)
167 Filter size: 3701 (4096 in memory)
Total on disk: 624,397 (-30.3% vs. Bloom)
Total in memory: 690,688 (-30.0% vs. Bloom)
Note that optimize_filters_for_memory is even more effective for Ribbon filter than for cache-local Bloom, because it can close the unused memory gap even tighter than Bloom filter, because of 16 byte increments for Ribbon vs. 64 byte increments for Bloom.
Reviewed By: jay-zhuang
Differential Revision: D25592970
Pulled By: pdillinger
fbshipit-source-id: 606fdaa025bb790d7e9c21601e8ea86e10541912
Summary:
db_bench currently does not allow overriding the default `arena_block_size `calculation ([memtable size/8](https://github.com/facebook/rocksdb/blob/master/db/column_family.cc#L216)). For memtables whose size is in gigabytes, the `arena_block_size` defaults to hundreds of megabytes (affecting performance).
Exposing this option in db_bench would allow us to test the workloads with various `arena_block_size` values.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7654
Reviewed By: jay-zhuang
Differential Revision: D24996812
Pulled By: ajkr
fbshipit-source-id: a5e3d2c83d9f89e1bb8382f2e8dd476c79e33bef
Summary:
This is a PR generated **semi-automatically** by an internal tool to remove unused includes and `using` statements.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7604
Test Plan: make check
Reviewed By: ajkr
Differential Revision: D24579392
Pulled By: riversand963
fbshipit-source-id: c4bfa6c6b08da1de186690d37eb73d8fff45aecd
Summary:
The patch introduces a helper method in `util/compression.h` called `UncompressData`
that dispatches calls to the correct uncompression method based on type, and changes
`UncompressBlockContentsForCompressionType` and `Benchmark::Uncompress` in
`db_bench` so they are implemented in terms of the new method. This eliminates
some code duplication. (`Benchmark::Compress` is also updated to use the previously
introduced `CompressData` helper.)
In addition, the patch brings the implementation of `Snappy_Uncompress` into sync with
the other uncompression methods by making the method compute the buffer size and allocate
the buffer itself. Finally, the patch eliminates some potentially risky back-and-forth conversions
between various unsigned and signed integer types by exposing the size of the allocated buffer
as a `size_t` instead of an `int`.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7434
Test Plan:
`make check`
`./db_bench -benchmarks=compress,uncompress --compression_type ...`
Reviewed By: riversand963
Differential Revision: D23900011
Pulled By: ltamasi
fbshipit-source-id: b25df63ceec4639889be94acb22eb53e530c54e0
Summary:
Update db_bench so that we can run it with user-defined timestamp.
Currently, only 64-bit timestamp is supported, while others are disabled by assertion.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7389
Test Plan: ./db_bench -benchmarks=fillseq,fillrandom,readrandom,readsequential,....., -user_timestamp_size=8
Reviewed By: ltamasi
Differential Revision: D23720830
Pulled By: riversand963
fbshipit-source-id: 486eacbb82de9a5441e79a61bfa9beef6581608a
Summary:
This PR merges the functionality of making the ColumnFamilyOptions, TableFactory, and DBOptions into Configurable into a single PR, resolving any merge conflicts
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5753
Reviewed By: ajkr
Differential Revision: D23385030
Pulled By: zhichao-cao
fbshipit-source-id: 8b977a7731556230b9b8c5a081b98e49ee4f160a
Summary:
Also enables a pull request to trigger all the Travis
configurations by writing FULL_CI in the commit message. (See what I did
there?)
First issue
make: *** No rule to make target 'jl/util/crc32c_ppc_asm.o', needed by 'rocksdbjava'. Stop.
Second issue
tools/db_bench_tool.cc:5514:38: error: ‘gen_exp.rocksdb::Benchmark::GenerateTwoTermExpKeys::keyrange_size_’ may be used uninitialized in this function
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7359
Test Plan: CI
Reviewed By: zhichao-cao
Differential Revision: D23582132
Pulled By: pdillinger
fbshipit-source-id: 06d794673fd522ba11cf6398385387e6bd97ef89
Summary:
Delete database instances to make sure there are no loose threads
running before exit(). This fixes segfaults seen when running
workloads through CompositeEnvs with custom file systems.
For further background on the issues arising when using CompositeEnvs, see the discussion in:
https://github.com/facebook/rocksdb/pull/6878
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7327
Reviewed By: cheng-chang
Differential Revision: D23433244
Pulled By: ajkr
fbshipit-source-id: 4e19cf2067e3fe68c2a3fe1823f24b4091336bbe
Summary:
This pull request adds the parameter --fs_uri to db_bench and db_stress, creating a composite env combining the default env with a specified registered rocksdb file system.
This makes it easier to develop and test new RocksDB FileSystems.
The pull request also registers the posix file system for testing purposes.
Examples:
```
$./db_bench --fs_uri=posix:// --benchmarks=fillseq
$./db_stress --fs_uri=zenfs://nullb1
```
zenfs is a RocksDB FileSystem I'm developing to add support for zoned block devices, and in that case the zoned block device is specified in the uri (a zoned null block device in the above example).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6878
Reviewed By: siying
Differential Revision: D23023063
Pulled By: ajkr
fbshipit-source-id: 8b3fe7193ce45e683043b021779b7a4d547af247
Summary:
Adds compaction statistics (total bytes read and written) for compactions that occur for delete-triggered, periodic, and TTL compaction reasons.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7165
Test Plan:
TTL and periodic can be checked by runnning db_bench with the options activated:
/db_bench --benchmarks="fillrandom,stats" --statistics --num=10000000 -base_background_compactions=16 -periodic_compaction_seconds=1
./db_bench --benchmarks="fillrandom,stats" --statistics --num=10000000 -base_background_compactions=16 -fifo_compaction_ttl=1
Setting the time to one second causes non-zero bytes read/written for those compaction reasons. Disabling them or setting them to times longer than the test run length causes the stats to return to zero as expected.
Delete-triggered compaction counting is tested in DBTablePropertiesTest.DeletionTriggeredCompactionMarking
Reviewed By: ajkr
Differential Revision: D22693050
Pulled By: akabcenell
fbshipit-source-id: d15cef4d94576f703015c8942d5f0d492f69401d
Summary:
New experimental option BBTO::optimize_filters_for_memory builds
filters that maximize their use of "usable size" from malloc_usable_size,
which is also used to compute block cache charges.
Rather than always "rounding up," we track state in the
BloomFilterPolicy object to mix essentially "rounding down" and
"rounding up" so that the average FP rate of all generated filters is
the same as without the option. (YMMV as heavily accessed filters might
be unluckily lower accuracy.)
Thus, the option near-minimizes what the block cache considers as
"memory used" for a given target Bloom filter false positive rate and
Bloom filter implementation. There are no forward or backward
compatibility issues with this change, though it only works on the
format_version=5 Bloom filter.
With Jemalloc, we see about 10% reduction in memory footprint (and block
cache charge) for Bloom filters, but 1-2% increase in storage footprint,
due to encoding efficiency losses (FP rate is non-linear with bits/key).
Why not weighted random round up/down rather than state tracking? By
only requiring malloc_usable_size, we don't actually know what the next
larger and next smaller usable sizes for the allocator are. We pick a
requested size, accept and use whatever usable size it has, and use the
difference to inform our next choice. This allows us to narrow in on the
right balance without tracking/predicting usable sizes.
Why not weight history of generated filter false positive rates by
number of keys? This could lead to excess skew in small filters after
generating a large filter.
Results from filter_bench with jemalloc (irrelevant details omitted):
(normal keys/filter, but high variance)
$ ./filter_bench -quick -impl=2 -average_keys_per_filter=30000 -vary_key_count_ratio=0.9
Build avg ns/key: 29.6278
Number of filters: 5516
Total size (MB): 200.046
Reported total allocated memory (MB): 220.597
Reported internal fragmentation: 10.2732%
Bits/key stored: 10.0097
Average FP rate %: 0.965228
$ ./filter_bench -quick -impl=2 -average_keys_per_filter=30000 -vary_key_count_ratio=0.9 -optimize_filters_for_memory
Build avg ns/key: 30.5104
Number of filters: 5464
Total size (MB): 200.015
Reported total allocated memory (MB): 200.322
Reported internal fragmentation: 0.153709%
Bits/key stored: 10.1011
Average FP rate %: 0.966313
(very few keys / filter, optimization not as effective due to ~59 byte
internal fragmentation in blocked Bloom filter representation)
$ ./filter_bench -quick -impl=2 -average_keys_per_filter=1000 -vary_key_count_ratio=0.9
Build avg ns/key: 29.5649
Number of filters: 162950
Total size (MB): 200.001
Reported total allocated memory (MB): 224.624
Reported internal fragmentation: 12.3117%
Bits/key stored: 10.2951
Average FP rate %: 0.821534
$ ./filter_bench -quick -impl=2 -average_keys_per_filter=1000 -vary_key_count_ratio=0.9 -optimize_filters_for_memory
Build avg ns/key: 31.8057
Number of filters: 159849
Total size (MB): 200
Reported total allocated memory (MB): 208.846
Reported internal fragmentation: 4.42297%
Bits/key stored: 10.4948
Average FP rate %: 0.811006
(high keys/filter)
$ ./filter_bench -quick -impl=2 -average_keys_per_filter=1000000 -vary_key_count_ratio=0.9
Build avg ns/key: 29.7017
Number of filters: 164
Total size (MB): 200.352
Reported total allocated memory (MB): 221.5
Reported internal fragmentation: 10.5552%
Bits/key stored: 10.0003
Average FP rate %: 0.969358
$ ./filter_bench -quick -impl=2 -average_keys_per_filter=1000000 -vary_key_count_ratio=0.9 -optimize_filters_for_memory
Build avg ns/key: 30.7131
Number of filters: 160
Total size (MB): 200.928
Reported total allocated memory (MB): 200.938
Reported internal fragmentation: 0.00448054%
Bits/key stored: 10.1852
Average FP rate %: 0.963387
And from db_bench (block cache) with jemalloc:
$ ./db_bench -db=/dev/shm/dbbench.no_optimize -benchmarks=fillrandom -format_version=5 -value_size=90 -bloom_bits=10 -num=2000000 -threads=8 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=false
$ ./db_bench -db=/dev/shm/dbbench -benchmarks=fillrandom -format_version=5 -value_size=90 -bloom_bits=10 -num=2000000 -threads=8 -optimize_filters_for_memory -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=false
$ (for FILE in /dev/shm/dbbench.no_optimize/*.sst; do ./sst_dump --file=$FILE --show_properties | grep 'filter block' ; done) | awk '{ t += $4; } END { print t; }'
17063835
$ (for FILE in /dev/shm/dbbench/*.sst; do ./sst_dump --file=$FILE --show_properties | grep 'filter block' ; done) | awk '{ t += $4; } END { print t; }'
17430747
$ #^ 2.1% additional filter storage
$ ./db_bench -db=/dev/shm/dbbench.no_optimize -use_existing_db -benchmarks=readrandom,stats -statistics -bloom_bits=10 -num=2000000 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=false -duration=10 -cache_index_and_filter_blocks -cache_size=1000000000
rocksdb.block.cache.index.add COUNT : 33
rocksdb.block.cache.index.bytes.insert COUNT : 8440400
rocksdb.block.cache.filter.add COUNT : 33
rocksdb.block.cache.filter.bytes.insert COUNT : 21087528
rocksdb.bloom.filter.useful COUNT : 4963889
rocksdb.bloom.filter.full.positive COUNT : 1214081
rocksdb.bloom.filter.full.true.positive COUNT : 1161999
$ #^ 1.04 % observed FP rate
$ ./db_bench -db=/dev/shm/dbbench -use_existing_db -benchmarks=readrandom,stats -statistics -bloom_bits=10 -num=2000000 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=false -optimize_filters_for_memory -duration=10 -cache_index_and_filter_blocks -cache_size=1000000000
rocksdb.block.cache.index.add COUNT : 33
rocksdb.block.cache.index.bytes.insert COUNT : 8448592
rocksdb.block.cache.filter.add COUNT : 33
rocksdb.block.cache.filter.bytes.insert COUNT : 18220328
rocksdb.bloom.filter.useful COUNT : 5360933
rocksdb.bloom.filter.full.positive COUNT : 1321315
rocksdb.bloom.filter.full.true.positive COUNT : 1262999
$ #^ 1.08 % observed FP rate, 13.6% less memory usage for filters
(Due to specific key density, this example tends to generate filters that are "worse than average" for internal fragmentation. "Better than average" cases can show little or no improvement.)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6427
Test Plan: unit test added, 'make check' with gcc, clang and valgrind
Reviewed By: siying
Differential Revision: D22124374
Pulled By: pdillinger
fbshipit-source-id: f3e3aa152f9043ddf4fae25799e76341d0d8714e
Summary:
Mostly uninitialized values: some probably written before use, but some seem like bugs. Also, destructor needs to be virtual, and possible use-after-free in test
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6935
Test Plan: make check
Reviewed By: siying
Differential Revision: D21885484
Pulled By: pdillinger
fbshipit-source-id: e2e7cb0a0cf196f2b55edd16f0634e81f6cc8e08
Summary:
The implementation of GetApproximateSizes was inconsistent in
its treatment of the size of non-data blocks of SST files, sometimes
including and sometimes now. This was at its worst with large portion
of table file used by filters and querying a small range that crossed
a table boundary: the size estimate would include large filter size.
It's conceivable that someone might want only to know the size in terms
of data blocks, but I believe that's unlikely enough to ignore for now.
Similarly, there's no evidence the internal function AppoximateOffsetOf
is used for anything other than a one-sided ApproximateSize, so I intend
to refactor to remove redundancy in a follow-up commit.
So to fix this, GetApproximateSizes (and implementation details
ApproximateSize and ApproximateOffsetOf) now consistently include in
their returned sizes a portion of table file metadata (incl filters
and indexes) based on the size portion of the data blocks in range. In
other words, if a key range covers data blocks that are X% by size of all
the table's data blocks, returned approximate size is X% of the total
file size. It would technically be more accurate to attribute metadata
based on number of keys, but that's not computationally efficient with
data available and rarely a meaningful difference.
Also includes miscellaneous comment improvements / clarifications.
Also included is a new approximatesizerandom benchmark for db_bench.
No significant performance difference seen with this change, whether ~700 ops/sec with cache_index_and_filter_blocks and small cache or ~150k ops/sec without cache_index_and_filter_blocks.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6784
Test Plan:
Test added to DBTest.ApproximateSizesFilesWithErrorMargin.
Old code running new test...
[ RUN ] DBTest.ApproximateSizesFilesWithErrorMargin
db/db_test.cc:1562: Failure
Expected: (size) <= (11 * 100), actual: 9478 vs 1100
Other tests updated to reflect consistent accounting of metadata.
Reviewed By: siying
Differential Revision: D21334706
Pulled By: pdillinger
fbshipit-source-id: 6f86870e45213334fedbe9c73b4ebb1d8d611185
Summary:
Fix issues for reproducing synthetic ZippyDB workloads in the FAST20' paper using db_bench. Details changes as follows.
1, add a separate random mode in MixGraph to produce all_random workload.
2, fix power inverse function for generating prefix_dist workload.
3, make sure key_offset in prefix mode is always unsigned.
note: Need to carefully choose key_dist_a/b to avoid aliasing. Power inverse function range should be close to overall key space.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6795
Reviewed By: akankshamahajan15
Differential Revision: D21371095
Pulled By: zhichao-cao
fbshipit-source-id: 80744381e242392c8c7cf8ac3d68fe67fe876048
Summary:
This commit adds an `compression_parallel_threads` option in
db_stress. It also fixes the naming of parallel compression
option in db_bench to keep it aligned with others.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6722
Reviewed By: pdillinger
Differential Revision: D21091385
fbshipit-source-id: c9ba8c4e5cc327ff9e6094a6dc6a15fcff70f100
Summary:
The dynamic_cast in the filter benchmark causes release mode to fail due to
no-rtti. Replace with static_cast_with_check.
Signed-off-by: Derrick Pallas <derrick@pallas.us>
Addition by peterd: Remove unnecessary 2nd template arg on all static_cast_with_check
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6732
Reviewed By: ltamasi
Differential Revision: D21304260
Pulled By: pdillinger
fbshipit-source-id: 6e8eb437c4ca5a16dbbfa4053d67c4ad55f1608c
Summary:
Based on https://github.com/facebook/rocksdb/issues/6648 (CLA Signed), but heavily modified / extended:
* Implicit capture of this via [=] deprecated in C++20, and [=,this] not standard before C++20 -> now using explicit capture lists
* Implicit copy operator deprecated in gcc 9 -> add explicit '= default' definition
* std::random_shuffle deprecated in C++17 and removed in C++20 -> migrated to a replacement in RocksDB random.h API
* Add the ability to build with different std version though -DCMAKE_CXX_STANDARD=11/14/17/20 on the cmake command line
* Minimal rebuild flag of MSVC is deprecated and is forbidden with /std:c++latest (C++20)
* Added MSVC 2019 C++11 & MSVC 2019 C++20 in AppVeyor
* Added GCC 9 C++11 & GCC9 C++20 in Travis
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6697
Test Plan: make check and CI
Reviewed By: cheng-chang
Differential Revision: D21020318
Pulled By: pdillinger
fbshipit-source-id: 12311be5dbd8675a0e2c817f7ec50fa11c18ab91
Summary:
New memory technologies are being developed by various hardware vendors (Intel DCPMM is one such technology currently available). These new memory types require different libraries for allocation and management (such as PMDK and memkind). The high capacities available make it possible to provision large caches (up to several TBs in size), beyond what is achievable with DRAM.
The new allocator provided in this PR uses the memkind library to allocate memory on different media.
**Performance**
We tested the new allocator using db_bench.
- For each test, we vary the size of the block cache (relative to the size of the uncompressed data in the database).
- The database is filled sequentially. Throughput is then measured with a readrandom benchmark.
- We use a uniform distribution as a worst-case scenario.
The plot shows throughput (ops/s) relative to a configuration with no block cache and default allocator.
For all tests, p99 latency is below 500 us.
![image](https://user-images.githubusercontent.com/26400080/71108594-42479100-2178-11ea-8231-8a775bbc92db.png)
**Changes**
- Add MemkindKmemAllocator
- Add --use_cache_memkind_kmem_allocator db_bench option (to create an LRU block cache with the new allocator)
- Add detection of memkind library with KMEM DAX support
- Add test for MemkindKmemAllocator
**Minimum Requirements**
- kernel 5.3.12
- ndctl v67 - https://github.com/pmem/ndctl
- memkind v1.10.0 - https://github.com/memkind/memkind
**Memory Configuration**
The allocator uses the MEMKIND_DAX_KMEM memory kind. Follow the instructions on[ memkind’s GitHub page](https://github.com/memkind/memkind) to set up NVDIMM memory accordingly.
Note on memory allocation with NVDIMM memory exposed as system memory.
- The MemkindKmemAllocator will only allocate from NVDIMM memory (using memkind_malloc with MEMKIND_DAX_KMEM kind).
- The default allocator is not restricted to RAM by default. Based on NUMA node latency, the kernel should allocate from local RAM preferentially, but it’s a kernel decision. numactl --preferred/--membind can be used to allocate preferentially/exclusively from the local RAM node.
**Usage**
When creating an LRU cache, pass a MemkindKmemAllocator object as argument.
For example (replace capacity with the desired value in bytes):
```
#include "rocksdb/cache.h"
#include "memory/memkind_kmem_allocator.h"
NewLRUCache(
capacity /*size_t*/,
6 /*cache_numshardbits*/,
false /*strict_capacity_limit*/,
false /*cache_high_pri_pool_ratio*/,
std::make_shared<MemkindKmemAllocator>());
```
Refer to [RocksDB’s block cache documentation](https://github.com/facebook/rocksdb/wiki/Block-Cache) to assign the LRU cache as block cache for a database.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6214
Reviewed By: cheng-chang
Differential Revision: D19292435
fbshipit-source-id: 7202f47b769e7722b539c86c2ffd669f64d7b4e1
Summary:
This commit is fixing a bug that readrandom test returns many NotFound in db_bench from Version 6.2.
Pull Request resolved: https://github.com/facebook/rocksdb/issues/6664
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6665
Reviewed By: cheng-chang
Differential Revision: D20911298
Pulled By: ajkr
fbshipit-source-id: c2658d4dbb35798ccbf67dff6e64923fb731ef81
Summary:
This PR adds support for pipelined & parallel compression optimization for `BlockBasedTableBuilder`. This optimization makes block building, block compression and block appending a pipeline, and uses multiple threads to accelerate block compression. Users can set `CompressionOptions::parallel_threads` greater than 1 to enable compression parallelism.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6262
Reviewed By: ajkr
Differential Revision: D20651306
fbshipit-source-id: 62125590a9c15b6d9071def9dc72589c1696a4cb
Summary:
I start to see following failures:
tools/db_bench_tool.cc: In constructor ‘rocksdb::NormalDistribution::NormalDistribution(unsigned int, unsigned int)’:
tools/db_bench_tool.cc:1528:58: error: declaration of ‘max’ shadows a member of 'this' [-Werror=shadow]
NormalDistribution(unsigned int min, unsigned int max) :
^
tools/db_bench_tool.cc:1528:58: error: declaration of ‘min’ shadows a member of 'this' [-Werror=shadow]
tools/db_bench_tool.cc: In constructor ‘rocksdb::UniformDistribution::UniformDistribution(unsigned int, unsigned int)’:
tools/db_bench_tool.cc:1546:59: error: declaration of ‘max’ shadows a member of 'this' [-Werror=shadow]
UniformDistribution(unsigned int min, unsigned int max) :
^
tools/db_bench_tool.cc:1546:59: error: declaration of ‘min’ shadows a member of 'this' [-Werror=shadow]
when I build from GCC 4.8. Rename those variables to fix the problem.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6537
Test Plan: make all with the compiler that used to show the failure.
Differential Revision: D20448741
fbshipit-source-id: 18bcf012dbe020f22f79038a9b08f447befa2574
Summary:
Some combinatino of --index_with_first_key and --index_shortening_mode can signifcantly improve performance for large values. Expose them in db_bench.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5859
Test Plan: Run them with the new options and observe the behavior.
Differential Revision: D20104434
fbshipit-source-id: 21d48a732a9caf20b82312c7d7557d747ea3c304
Summary:
When dynamically linking two binaries together, different builds of RocksDB from two sources might cause errors. To provide a tool for user to solve the problem, the RocksDB namespace is changed to a flag which can be overridden in build time.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6433
Test Plan: Build release, all and jtest. Try to build with ROCKSDB_NAMESPACE with another flag.
Differential Revision: D19977691
fbshipit-source-id: aa7f2d0972e1c31d75339ac48478f34f6cfcfb3e
Summary:
Right, when reading from option files, no readahead is used and 8KB buffer is used. It might introduce high latency if the file system provide high latency and doesn't do readahead. Instead, introduce a readahead to the file. When calling inside DB, infer the value from options.log_readahead. Otherwise, a default 512KB readahead size is used.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6372
Test Plan: Add --log_readahead_size in db_bench. Run it with several options and observe read size from option files using strace.
Differential Revision: D19727739
fbshipit-source-id: e6d8053b0a64259abc087f1f388b9cd66fa8a583
Summary:
We see some odd errors complaining math. However, it doesn't seem that it is needed to be included. Remove the include of math.h. Just removing it from db_bench doesn't seem to break anything. Replacing sqrt from std::sqrt seems to work for histogram.cc
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6373
Test Plan: Watch Travis and appveyor to run.
Differential Revision: D19730068
fbshipit-source-id: d3ad41defcdd9f51c2da1a3673fb258f5dfacf47
Summary:
The patch makes it possible to set the BlobDB configuration option
`garbage_collection_cutoff` on the command line. In addition, it changes
the `db_bench` code so that the default values of BlobDB related
parameters are taken from the defaults of the actual BlobDB
configuration options (note: this changes the the default of
`blob_db_bytes_per_sync`).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6211
Test Plan: Ran `db_bench` with various values of the new parameter.
Differential Revision: D19166895
Pulled By: ltamasi
fbshipit-source-id: 305ccdf0123b9db032b744715810babdc3e3b7d5
Summary:
In the previous PR https://github.com/facebook/rocksdb/issues/4788, user can use db_bench mix_graph option to generate the workload that is from the social graph. The key is generated based on the key access hotness. In this PR, user can further model the key-range hotness and fit those to two-term-exponential distribution. First, user cuts the whole key space into small key ranges (e.g., key-ranges are the same size and the key-range number is the number of SST files). Then, user calculates the average access count per key of each key-range as the key-range hotness. Next, user fits the key-range hotness to two-term-exponential distribution (f(x) = f(x) = a*exp(b*x) + c*exp(d*x)) and generate the value of a, b, c, and d. They are the parameters in db_bench: prefix_dist_a, prefix_dist_b, prefix_dist_c, and prefix_dist_d. Finally, user can run db_bench by specify the parameters.
For example:
`./db_bench --benchmarks="mixgraph" -use_direct_io_for_flush_and_compaction=true -use_direct_reads=true -cache_size=268435456 -key_dist_a=0.002312 -key_dist_b=0.3467 -keyrange_dist_a=14.18 -keyrange_dist_b=-2.917 -keyrange_dist_c=0.0164 -keyrange_dist_d=-0.08082 -keyrange_num=30 -value_k=0.2615 -value_sigma=25.45 -iter_k=2.517 -iter_sigma=14.236 -mix_get_ratio=0.85 -mix_put_ratio=0.14 -mix_seek_ratio=0.01 -sine_mix_rate_interval_milliseconds=5000 -sine_a=350 -sine_b=0.0105 -sine_d=50000 --perf_level=2 -reads=1000000 -num=5000000 -key_size=48`
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5953
Test Plan: run db_bench with different parameters and checked the results.
Differential Revision: D18053527
Pulled By: zhichao-cao
fbshipit-source-id: 171f8b3142bd76462f1967c58345ad7e4f84bab7
Summary:
Since we already parse env_uri from command line and creates custom Env
accordingly, we should invoke the methods of such Envs instead of using
Env::Default().
Test Plan (on devserver):
```
$make db_bench db_stress
$./db_bench -benchmarks=fillseq
./db_stress
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5943
Differential Revision: D18018550
Pulled By: riversand963
fbshipit-source-id: 03b61329aaae0dfd914a0b902cc677f570f102e3
Summary:
In the current trace replay, all the queries are serialized and called by single threads. It may not simulate the original application query situations closely. The multi-threads replay is implemented in this PR. Users can set the number of threads to replay the trace. The queries generated according to the trace records are scheduled in the thread pool job queue.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5934
Test Plan: test with make check and real trace replay.
Differential Revision: D17998098
Pulled By: zhichao-cao
fbshipit-source-id: 87eecf6f7c17a9dc9d7ab29dd2af74f6f60212c8
Summary:
Currently, db_bench only supports PutWithTTL operations for BlobDB but
not regular Puts. The patch adds support for regular (non-TTL) Puts and also
changes the default for blob_db_max_ttl_range to zero, which corresponds
to no TTL.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5921
Test Plan:
make check
./db_bench -benchmarks=fillrandom -statistics -stats_interval_seconds=1
-duration=90 -num=500000 -use_blob_db=1 -blob_db_file_size=1000000
-target_file_size_base=1000000 (issues Put operations with no TTL)
./db_bench -benchmarks=fillrandom -statistics -stats_interval_seconds=1
-duration=90 -num=500000 -use_blob_db=1 -blob_db_file_size=1000000
-target_file_size_base=1000000 -blob_db_max_ttl_range=86400 (issues
PutWithTTL operations with random TTLs in the [0, blob_db_max_ttl_range)
interval, as before)
Differential Revision: D17919798
Pulled By: ltamasi
fbshipit-source-id: b946c3522b836b92b4c157ffbad24f92ba2b0a16
Summary:
Further apply formatter to more recent commits.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5830
Test Plan: Run all existing tests.
Differential Revision: D17488031
fbshipit-source-id: 137458fd94d56dd271b8b40c522b03036943a2ab
Summary:
MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory.
We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one.
The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming.
In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022
Differential Revision: D14394062
Pulled By: miasantreble
fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
Summary:
This is a new API added to db.h to allow for fetching all merge operands associated with a Key. The main motivation for this API is to support use cases where doing a full online merge is not necessary as it is performance sensitive. Example use-cases:
1. Update subset of columns and read subset of columns -
Imagine a SQL Table, a row is encoded as a K/V pair (as it is done in MyRocks). If there are many columns and users only updated one of them, we can use merge operator to reduce write amplification. While users only read one or two columns in the read query, this feature can avoid a full merging of the whole row, and save some CPU.
2. Updating very few attributes in a value which is a JSON-like document -
Updating one attribute can be done efficiently using merge operator, while reading back one attribute can be done more efficiently if we don't need to do a full merge.
----------------------------------------------------------------------------------------------------
API :
Status GetMergeOperands(
const ReadOptions& options, ColumnFamilyHandle* column_family,
const Slice& key, PinnableSlice* merge_operands,
GetMergeOperandsOptions* get_merge_operands_options,
int* number_of_operands)
Example usage :
int size = 100;
int number_of_operands = 0;
std::vector<PinnableSlice> values(size);
GetMergeOperandsOptions merge_operands_info;
db_->GetMergeOperands(ReadOptions(), db_->DefaultColumnFamily(), "k1", values.data(), merge_operands_info, &number_of_operands);
Description :
Returns all the merge operands corresponding to the key. If the number of merge operands in DB is greater than merge_operands_options.expected_max_number_of_operands no merge operands are returned and status is Incomplete. Merge operands returned are in the order of insertion.
merge_operands-> Points to an array of at-least merge_operands_options.expected_max_number_of_operands and the caller is responsible for allocating it. If the status returned is Incomplete then number_of_operands will contain the total number of merge operands found in DB for key.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5604
Test Plan:
Added unit test and perf test in db_bench that can be run using the command:
./db_bench -benchmarks=getmergeoperands --merge_operator=sortlist
Differential Revision: D16657366
Pulled By: vjnadimpalli
fbshipit-source-id: 0faadd752351745224ee12d4ae9ef3cb529951bf
Summary:
The ObjectRegistry class replaces the Registrar and NewCustomObjects. Objects are registered with the registry by Type (the class must implement the static const char *Type() method).
This change is necessary for a few reasons:
- By having a class (rather than static template instances), the class can be passed between compilation units, meaning that objects could be registered and shared from a dynamic library with an executable.
- By having a class with instances, different units could have different objects registered. This could be useful if, for example, one Option allowed for a dynamic library and one did not.
When combined with some other PRs (being able to load shared libraries, a Configurable interface to configure objects to/from string), this code will allow objects in external shared libraries to be added to a RocksDB image at run-time, rather than requiring every new extension to be built into the main library and called explicitly by every program.
Test plan (on riversand963's devserver)
```
$COMPILE_WITH_ASAN=1 make -j32 all && sleep 1 && make check
```
All tests pass.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5293
Differential Revision: D16363396
Pulled By: riversand963
fbshipit-source-id: fbe4acb615bfc11103eef40a0b288845791c0180
Summary:
Sometimes it is helpful to fetch the whole history of stats after benchmark runs. Add such an option
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5532
Test Plan: Run the benchmark manually and observe the output is as expected.
Differential Revision: D16097764
fbshipit-source-id: 10b5b735a22a18be198b8f348be11f11f8806904
Summary:
Formatting fixes in db_bench_tool that were accidentally omitted
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5525
Test Plan: Unit tests
Differential Revision: D16078516
Pulled By: elipoz
fbshipit-source-id: bf8df0e3f08092a91794ebf285396d9b8a335bb9
Summary:
This PR continues the work in https://github.com/facebook/rocksdb/pull/4748 and https://github.com/facebook/rocksdb/pull/4535 by adding a new DBOption `persist_stats_to_disk` which instructs RocksDB to persist stats history to RocksDB itself. When statistics is enabled, and both options `stats_persist_period_sec` and `persist_stats_to_disk` are set, RocksDB will periodically write stats to a built-in column family in the following form: key -> (timestamp in microseconds)#(stats name), value -> stats value. The existing API `GetStatsHistory` will detect the current value of `persist_stats_to_disk` and either read from in-memory data structure or from the hidden column family on disk.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5046
Differential Revision: D15863138
Pulled By: miasantreble
fbshipit-source-id: bb82abdb3f2ca581aa42531734ac799f113e931b
Summary:
This PR integrates the block cache tracing into db_bench. It adds three command line arguments.
-block_cache_trace_file (Block cache trace file path.) type: string default: ""
-block_cache_trace_max_trace_file_size_in_bytes (The maximum block cache
trace file size in bytes. Block cache accesses will not be logged if the
trace file size exceeds this threshold. Default is 64 GB.) type: int64
default: 68719476736
-block_cache_trace_sampling_frequency (Block cache trace sampling
frequency, termed s. It uses spatial downsampling and samples accesses to
one out of s blocks.) type: int32 default: 1
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5459
Differential Revision: D15832031
Pulled By: HaoyuHuang
fbshipit-source-id: 0ecf2f2686557251fe741a2769b21170777efa3d
Summary:
When using `PRIu64` type of printf specifier, current code base does the following:
```
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>
```
However, this can be simplified to
```
#include <cinttypes>
```
as long as flag `-std=c++11` is used.
This should solve issues like https://github.com/facebook/rocksdb/issues/5159
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5402
Differential Revision: D15701195
Pulled By: miasantreble
fbshipit-source-id: 6dac0a05f52aadb55e9728038599d3d2e4b59d03
Summary:
1. Fix a bug in WAL replay in which write batches with old sequence numbers are mistakenly inserted into memtables.
2. Add support for benchmarking secondary instance to db_bench_tool.
With changes made in this PR, we can start benchmarking secondary instance
using two processes. It is also possible to vary the frequency at which the
secondary instance tries to catch up with the primary. The info log of the
secondary can be found in a directory whose path can be specified with
'-secondary_path'.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5170
Differential Revision: D15564608
Pulled By: riversand963
fbshipit-source-id: ce97688ed3d33f69d3a0b9266ebbbbf887aa0ec8
Summary:
There are too many types of files under util/. Some test related files don't belong to there or just are just loosely related. Mo
ve them to a new directory test_util/, so that util/ is cleaner.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5377
Differential Revision: D15551366
Pulled By: siying
fbshipit-source-id: 0f5c8653832354ef8caa31749c0143815d719e2c
Summary:
This enables the user to set TransactionDBOptions::skip_concurrency_control so the standard `DB::Write(const WriteOptions& opts, WriteBatch* updates)` would skip the concurrency control. This would give higher throughput to the users who know their use case doesn't need concurrency control.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5330
Differential Revision: D15525932
Pulled By: maysamyabandeh
fbshipit-source-id: 68421ac1ba34f549a4a8de9ce4c2dccf6fb4b06b
Summary:
In the current db_bench trace replay, the replay process strictly follows the timestamp to issue the queries. In some cases, user does not care about the time. Therefore, fast forward is needed for users to speed up the replay process.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5273
Differential Revision: D15389232
Pulled By: zhichao-cao
fbshipit-source-id: 735d629b9d2a167b05af3e4fa0ddf9d5d0be1806
Summary:
Performing unordered writes in rocksdb when unordered_write option is set to true. When enabled the writes to memtable are done without joining any write thread. This offers much higher write throughput since the upcoming writes would not have to wait for the slowest memtable write to finish. The tradeoff is that the writes visible to a snapshot might change over time. If the application cannot tolerate that, it should implement its own mechanisms to work around that. Using TransactionDB with WRITE_PREPARED write policy is one way to achieve that. Doing so increases the max throughput by 2.2x without however compromising the snapshot guarantees.
The patch is prepared based on an original by siying
Existing unit tests are extended to include unordered_write option.
Benchmark Results:
```
TEST_TMPDIR=/dev/shm/ ./db_bench_unordered --benchmarks=fillrandom --threads=32 --num=10000000 -max_write_buffer_number=16 --max_background_jobs=64 --batch_size=8 --writes=3000000 -level0_file_num_compaction_trigger=99999 --level0_slowdown_writes_trigger=99999 --level0_stop_writes_trigger=99999 -enable_pipelined_write=false -disable_auto_compactions --unordered_write=1
```
With WAL
- Vanilla RocksDB: 78.6 MB/s
- WRITER_PREPARED with unordered_write: 177.8 MB/s (2.2x)
- unordered_write: 368.9 MB/s (4.7x with relaxed snapshot guarantees)
Without WAL
- Vanilla RocksDB: 111.3 MB/s
- WRITER_PREPARED with unordered_write: 259.3 MB/s MB/s (2.3x)
- unordered_write: 645.6 MB/s (5.8x with relaxed snapshot guarantees)
- WRITER_PREPARED with unordered_write disable concurrency control: 185.3 MB/s MB/s (2.35x)
Limitations:
- The feature is not yet extended to `max_successive_merges` > 0. The feature is also incompatible with `enable_pipelined_write` = true as well as with `allow_concurrent_memtable_write` = false.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5218
Differential Revision: D15219029
Pulled By: maysamyabandeh
fbshipit-source-id: 38f2abc4af8780148c6128acdba2b3227bc81759
Summary:
Improve the iterators performance when the user explicitly sets the readahead size via `ReadOptions.readahead_size`.
1. Stop creating new table readers when the user explicitly sets readahead size.
2. Make use of an internal buffer based on `FilePrefetchBuffer` instead of using `ReadaheadRandomAccessFileReader`, to handle the user readahead requests (for both buffered and direct io cases).
3. Add `readahead_size` to db_bench.
**Benchmarks:**
https://gist.github.com/sagar0/53693edc320a18abeaeca94ca32f5737
For 1 MB readahead, Buffered IO performance improves by 28% and Direct IO performance improves by 50%.
For 512KB readahead, Buffered IO performance improves by 30% and Direct IO performance improves by 67%.
**Test Plan:**
Updated `DBIteratorTest.ReadAhead` test to make sure that:
- no new table readers are created for iterators on setting ReadOptions.readahead_size
- At least "readahead" number of bytes are actually getting read on each iterator read.
TODO later:
- Use similar logic for compactions as well.
- This ties in nicely with #4052 and paves the way for removing ReadaheadRandomAcessFile later.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5246
Differential Revision: D15107946
Pulled By: sagar0
fbshipit-source-id: 2c1149729ca7d779e4e8b7710ba6f4e8cbfd3bea
Summary:
I needed this change to be able to build the v6.0.1 release on Windows.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5227
Differential Revision: D15033815
Pulled By: sagar0
fbshipit-source-id: 579f3b8e694c34c0d43527eb2fa37175e37f5911
Summary:
Depending on the config, manual compaction (leveled compaction style) does following compactions:
L0->L1
L1->L2
...
Ln-1 -> Ln
Ln -> Ln
The final Ln -> Ln compaction is partly unnecessary as it recompacts all the files that were just generated by the Ln-1 -> Ln. We should avoid recompacting such files. This rule should be applied to Lmax only.
Resolves issue https://github.com/facebook/rocksdb/issues/4995
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5138
Differential Revision: D14940106
Pulled By: miasantreble
fbshipit-source-id: 8d3cf5507a17e76f3333cfd4bac5256d005636e5
Summary:
This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching.
Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to -
1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch()
2. Bloom filter cachelines can be prefetched, hiding the cache miss latency
The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress.
Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32).
Batch Sizes
1 | 2 | 4 | 8 | 16 | 32
Random pattern (Stride length 0)
4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get
4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching)
4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching)
Good locality (Stride length 16)
4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753
4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781
4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135
Good locality (Stride length 256)
4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232
4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268
4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62
Medium locality (Stride length 4096)
4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555
4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465
4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891
dbbench command used (on a DB with 4 levels, 12 million keys)-
TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011
Differential Revision: D14348703
Pulled By: anand1976
fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
Summary:
The code convention we are following, Google C++ Style, discourage
alias in header files, especially public headers:
https://google.github.io/styleguide/cppguide.html#Aliases
Remove some of them. Might removed some from .cc files as well to be consistent.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5113
Differential Revision: D14633030
Pulled By: siying
fbshipit-source-id: b990edc919d5de60295992284f980195e501d424
Summary:
This is a feature to sample data-block compressibility and and report them as stats. 1 in N (tunable) blocks is sampled for compressibility using two algorithms:
1. lz4 or snappy for fast compression
2. zstd or zlib for slow but higher compression.
The stats are reported to the caller as raw-bytes and compressed-bytes. The block continues to be compressed for storage using the specified CompressionType.
The db_bench_tool how has a command line option for specifying the sampling rate. It's default value is 0 (no sampling). To test the overhead for a certain value, users can compare the performance of db_bench_tool, varying the sampling rate. It is unlikely to have a noticeable impact for high values like 20.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4842
Differential Revision: D13629011
Pulled By: shobhitdayal
fbshipit-source-id: 14ca668bcab6499b2a1734edf848eb62a4f4fafa
Summary:
In the MixGraph benchmark of db_bench, The max buffer size used for value of KV-pair might be extremely large (64MB), which might cause function stack overflow in some platforms, reduced to 1MB.
Added the finished ops printing in MixGraph benchmark.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5051
Differential Revision: D14379571
Pulled By: zhichao-cao
fbshipit-source-id: 24084fbe38f60f2902d9a40f6bc9a25e4e2c9bb9
Summary:
Added an option, `-use_existing_keys`, which can be set to run
benchmarks against an arbitrary existing database. Now users can
benchmark against their actual database rather than synthetic data.
Before the run begins, it loads all the keys into memory, then uses that
set of keys rather than synthesizing new ones in `GenerateKeyFromInt`.
This is mainly intended for small-scale DBs where the memory consumption
is not a concern.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5017
Differential Revision: D14270303
Pulled By: riversand963
fbshipit-source-id: 6328df9dffb5e19170270dd00a69f4bbe424e5ed
Summary:
Right now, users can change statistics.stats_level while DB is running, but TSAN may report
data race. We make stats_level_ to be atomic, and access them using accessors.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5030
Differential Revision: D14267519
Pulled By: siying
fbshipit-source-id: 37d7ebeff7a43a406230143422a16af899163f73
Summary:
Statistics cost too much CPU for some use cases. Add two stats levels
so that people can choose to skip two types of expensive stats, timers and
histograms.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5027
Differential Revision: D14252765
Pulled By: siying
fbshipit-source-id: 75ecec9eaa44c06118229df4f80c366115346592
Summary:
This PR adds public `GetStatsHistory` API to retrieve stats history in the form of an std map. The key of the map is the timestamp in microseconds when the stats snapshot is taken, the value is another std map from stats name to stats value (stored in std string). Two DBOptions are introduced: `stats_persist_period_sec` (default 10 minutes) controls the intervals between two snapshots are taken; `max_stats_history_count` (default 10) controls the max number of history snapshots to keep in memory. RocksDB will stop collecting stats snapshots if `stats_persist_period_sec` is set to 0.
(This PR is the in-memory part of https://github.com/facebook/rocksdb/pull/4535)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4748
Differential Revision: D13961471
Pulled By: miasantreble
fbshipit-source-id: ac836d401ecb84ea92216bf9966f969dedf4ad04
Summary:
MyRocks calls `GetForUpdate` on `INSERT`, for unique key check, and in almost all cases GetForUpdate returns empty result. For such cases, whole key bloom filter is helpful.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4985
Differential Revision: D14118257
Pulled By: miasantreble
fbshipit-source-id: d35cb7109c62fd5ad541a26968e3a3e16d3e85ea
Summary:
LITE mode has EventListener to be an empty class. However in db_bench,
it is used. When "override" is added to the functions, the build breaks. Fix it
by keeping the listener empty in LITE mode.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4989
Differential Revision: D14108132
Pulled By: siying
fbshipit-source-id: 80121aab35b1120e502b37b782301dd700692697
Summary:
We introduced ttl option in CompactionOptionsFIFO when ttl-based file
deletion (compaction) was supported only as part of FIFO Compaction. But
with the extension of ttl semantics even to Level compaction,
CompactionOptionsFIFO.ttl can now be deprecated. Instead we will start
using ColumnFamilyOptions.ttl for FIFO compaction as well.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4965
Differential Revision: D14072960
Pulled By: sagar0
fbshipit-source-id: c98cc2ae695a28136295787cd88d36a220fc219e
Summary:
Cuckoo Hash is less useful than we initially expected. Remove it.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4953
Differential Revision: D13979264
Pulled By: siying
fbshipit-source-id: 2a60afdaa989f045357398b43a1cc5d46f4492ed
Summary:
4985a9f73b (diff-e5276985b26a0551957144f4420a594bR511)
changes the meaning of latency reporting from running time per query, to elapse_time / #ops, without providing a reason why.
Considering that this is a counter-intuitive reporting, Reverting the change.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4949
Differential Revision: D13964684
Pulled By: siying
fbshipit-source-id: d6304d3d4b5a802daa292302623c7dbca9a680bc
Summary:
Measure CPU time consumed for a compaction and report it in the stats report
Enable NowCPUNanos() to work for MacOS
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4889
Differential Revision: D13701276
Pulled By: zinoale
fbshipit-source-id: 5024e5bbccd4dd10fd90d947870237f436445055
Summary:
In the MixGraph benchmark of db_bench #4788 , the char array is initialized with an argument from user's input, which can cause build error on some platforms. Also, the msg char array size can be potentially smaller than the printed data, which should be extended from 100 to 256.
Tested with make check.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4918
Differential Revision: D13844298
Pulled By: sagar0
fbshipit-source-id: 33c4809c5c4438f0a9f7b289d3f42e20c545bbab
Summary:
- When building with internal dependencies, specify this toolchain by setting `ROCKSDB_FBCODE_BUILD_WITH_PLATFORM007=1`
- It is not enabled by default. However, it is enabled for TSAN builds in CI since there is a known problem with TSAN in gcc-5: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=71090
- I did not add support for Lua since (1) we agreed to deprecate it, and (2) we only have an internal build for v5.3 with this toolchain while that has breaking changes compared to our current version (v5.2).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4923
Differential Revision: D13827226
Pulled By: ajkr
fbshipit-source-id: 9aa3388ed3679777cfb15ef8cbcb83c07f62f947
Summary:
Fixed clang static analyzer warning about division by 0.
```
ar: creating librocksdb_debug.a
tools/db_bench_tool.cc:4650:43: warning: Division by zero
int pos = static_cast<int>(rand_num % range_);
~~~~~~~~~^~~~~~~~
1 warning generated.
make: *** [analyze] Error 1
```
This is from the new code I recently merged in ce8e88d2d7.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4910
Differential Revision: D13788037
Pulled By: sagar0
fbshipit-source-id: f48851dca85047c19fbb1a361e25ce643aa4c7ea
Summary:
Based on the specific workload models (key access distribution, value size distribution, and iterator scan length distribution, the QPS variation), the MixGraph benchmark generate the synthetic workload according to these distributions which can reflect the real-world workload characteristics.
After user enable the tracing function, they will get the trace file. By analyzing the trace file with the trace_analyzer tool, user can generate a set of statistic data files including. The *_accessed_key_stats.txt, *-accessed_value_size_distribution.txt, *-iterator_length_distribution.txt, and *-qps_stats.txt are mainly used to fit the Matlab model fitting. After that, user can get the parameters of the workload distributions (the modeling details are described: [here](https://github.com/facebook/rocksdb/wiki/RocksDB-Trace%2C-Replay%2C-and-Analyzer))
The key access distribution follows the The two-term power model. The probability density function is: `f(x) = ax^{b}+c`. The corresponding parameters are key_dist_a, key_dist_b, and key_dist_c in db_bench
For the value size distribution and iterator scan length distribution, they both follow the Generalized Pareto Distribution. The probability density function is `f(x) = (1/sigma)(1+k*(x-theta)/sigma))^{-1-1/k)`. The parameters are: value_k, value_theta, value_sigma and iter_k, iter_theta, iter_sigma. For more information about the Generalized Pareto Distribution, users can find the [wiki](https://en.wikipedia.org/wiki/Generalized_Pareto_distribution) and [Matalb page](https://www.mathworks.com/help/stats/generalized-pareto-distribution.html)
As for the QPS, it follows the diurnal pattern. So Sine is a good model to fit it. `F(x) = sine_a*sin(sine_b*x + sine_c) + sine_d`. The trace_will tell you the average QPS in the print out resutls, which is sine_d. After user fit the "*-qps_stats.txt" to the Matlab model, user can get the sine_a, sine_b, and sine_c. By using the 4 parameters, user can control the QPS variation including the period, average, changes.
To use the bench mark, user can indicate the following parameters as examples:
```
-benchmarks="mixgraph" -key_dist_a=0.002312 -key_dist_b=0.3467 -value_k=0.9233 -value_sigma=226.4092 -iter_k=2.517 -iter_sigma=14.236 -mix_get_ratio=0.7 -mix_put_ratio=0.25 -mix_seek_ratio=0.05 -sine_mix_rate_interval_milliseconds=500 -sine_a=15000 -sine_b=1 -sine_d=20000
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4788
Differential Revision: D13573940
Pulled By: sagar0
fbshipit-source-id: e184c27e07b4f1bc0b436c2be36c5090c1fb0222
Summary:
This is essentially a re-submission of #4251 with a few improvements:
- Split `CompressionDict` into two separate classes: `CompressionDict` and `UncompressionDict`
- Eliminated `Init` functions. Instead do all initialization work in constructors.
- Added test case for parallel DB open, which is the scenario where #4251 failed under TSAN.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4849
Differential Revision: D13606039
Pulled By: ajkr
fbshipit-source-id: 08c236059798c710db9cbf545fce0f371232d447
Summary:
**Summary:**
Simplified the code layout by moving FIFOCompactionPicker to a separate file.
**Why?:**
While trying to add ttl functionality to universal compaction, I found that `FIFOCompactionPicker` class and its impl methods to be interspersed between `LevelCompactionPicker` methods which kind-of made the code a little hard to traverse. So I moved `FIFOCompactionPicker` to a separate compaction_picker_fifo.h/cc file, similar to `UniversalCompactionPicker`.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4724
Differential Revision: D13227914
Pulled By: sagar0
fbshipit-source-id: 89471766ea67fa4d87664a41c057dd7df4b3d4e3
Summary:
The error message of databases/rocksdb-lite (FreeBSD port) is as follows:
```
tools/db_bench_tool.cc:1976:16: error: private field 'trace_options_' is not used [-Werror,-Wunused-private-field]
TraceOptions trace_options_;
^
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4715
Differential Revision: D13207902
Pulled By: ajkr
fbshipit-source-id: be3c612eba656aeddb77e35e2f201dd25dc92f7e
Summary:
The new flag makes it possible to constrain iterator traversal
by the upper/lower bound the iterator is expected to pass. This allows
seekrandom results to be more easily comparable between DBs with and
without deletions.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4660
Differential Revision: D13053111
Pulled By: abhimadan
fbshipit-source-id: 33e250f2e2d210b54c7726399da30a33f723c33c
Summary:
Ran the following commands to recursively change all the files under RocksDB:
```
find . -type f -name "*.cc" -exec sed -i 's/ unique_ptr/ std::unique_ptr/g' {} +
find . -type f -name "*.cc" -exec sed -i 's/<unique_ptr/<std::unique_ptr/g' {} +
find . -type f -name "*.cc" -exec sed -i 's/ shared_ptr/ std::shared_ptr/g' {} +
find . -type f -name "*.cc" -exec sed -i 's/<shared_ptr/<std::shared_ptr/g' {} +
```
Running `make format` updated some formatting on the files touched.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4638
Differential Revision: D12934992
Pulled By: sagar0
fbshipit-source-id: 45a15d23c230cdd64c08f9c0243e5183934338a8
Summary:
Currently there are two contrun test failures:
* rocksdb-contrun-lite:
> tools/db_bench_tool.cc: In function ‘int rocksdb::db_bench_tool(int, char**)’:
tools/db_bench_tool.cc:5814:5: error: ‘DumpMallocStats’ is not a member of ‘rocksdb’
rocksdb::DumpMallocStats(&stats_string);
^
make: *** [tools/db_bench_tool.o] Error 1
* rocksdb-contrun-unity:
> In file included from unity.cc:44:0:
db/range_tombstone_fragmenter.cc: In member function ‘void rocksdb::FragmentedRangeTombstoneIterator::FragmentTombstones(std::unique_ptr<rocksdb::InternalIteratorBase<rocksdb::Slice> >, rocksdb::SequenceNumber)’:
db/range_tombstone_fragmenter.cc:90:14: error: reference to ‘ParsedInternalKeyComparator’ is ambiguous
auto cmp = ParsedInternalKeyComparator(icmp_);
This PR will fix them
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4587
Differential Revision: D10846554
Pulled By: miasantreble
fbshipit-source-id: 8d3358879e105060197b1379c84aecf51b352b93
Summary:
Option to print malloc stats to stdout at the end of db_bench. This is different from `--dump_malloc_stats`, which periodically print the same information to LOG file.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4582
Differential Revision: D10520814
Pulled By: yiwu-arbug
fbshipit-source-id: beff5e514e414079d31092b630813f82939ffe5c
Summary:
On MacOS with clang the compilation of _tools/db_bench_tool.cc_ always fails because the format used in a `fprintf` call has the wrong type. This PR should hopefully fix this issue
```
tools/db_bench_tool.cc:4233:61: error: format specifies type 'unsigned long long' but the argument has type 'size_t' (aka 'unsigned long')
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4533
Differential Revision: D10471657
Pulled By: maysamyabandeh
fbshipit-source-id: f20f5f3756d3571b586c895c845d0d4d1e34a398
Summary:
The new flag allows tombstones to be generated after enough
keys have been written to the database, which makes it easier to ensure
that tombstones cover a lot of keys.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4538
Differential Revision: D10455685
Pulled By: abhimadan
fbshipit-source-id: f25d5421745a353c830dea12b79784e852056551
Summary:
Current implementation of perf context is level agnostic. Making it hard to do performance evaluation for the LSM tree. This PR adds `PerfContextByLevel` to decompose the counters by level.
This will be helpful when analyzing point and range query performance as well as tuning bloom filter
Also replaced __thread with thread_local keyword for perf_context
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4226
Differential Revision: D10369509
Pulled By: miasantreble
fbshipit-source-id: f1ced4e0de5fcebdb7f9cff36164516bc6382d82
Summary:
This is a conceptually simple change, but it touches many files to
pass the allocator through function calls.
We introduce CacheAllocator, which can be used by clients to configure
custom allocator for cache blocks. Our motivation is to hook this up
with folly's `JemallocNodumpAllocator`
(f43ce6d686/folly/experimental/JemallocNodumpAllocator.h),
but there are many other possible use cases.
Additionally, this commit cleans up memory allocation in
`util/compression.h`, making sure that all allocations are wrapped in a
unique_ptr as soon as possible.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4437
Differential Revision: D10132814
Pulled By: yiwu-arbug
fbshipit-source-id: be1343a4b69f6048df127939fea9bbc96969f564
Summary:
If range tombstones are generated every few writes, the
KeyGenerator's limit is now extended to account for the additional
Next() calls. This is primarily important for `filluniquerandom`
benchmarks that enforce the call limit.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4404
Differential Revision: D9949326
Pulled By: abhimadan
fbshipit-source-id: 0bdfeb2cad2098dc0b8b029236dab5e4bef25e38
Summary:
This commit implements automatic recovery from a Status::NoSpace() error
during background operations such as write callback, flush and
compaction. The broad design is as follows -
1. Compaction errors are treated as soft errors and don't put the
database in read-only mode. A compaction is delayed until enough free
disk space is available to accomodate the compaction outputs, which is
estimated based on the input size. This means that users can continue to
write, and we rely on the WriteController to delay or stop writes if the
compaction debt becomes too high due to persistent low disk space
condition
2. Errors during write callback and flush are treated as hard errors,
i.e the database is put in read-only mode and goes back to read-write
only fater certain recovery actions are taken.
3. Both types of recovery rely on the SstFileManagerImpl to poll for
sufficient disk space. We assume that there is a 1-1 mapping between an
SFM and the underlying OS storage container. For cases where multiple
DBs are hosted on a single storage container, the user is expected to
allocate a single SFM instance and use the same one for all the DBs. If
no SFM is specified by the user, DBImpl::Open() will allocate one, but
this will be one per DB and each DB will recover independently. The
recovery implemented by SFM is as follows -
a) On the first occurance of an out of space error during compaction,
subsequent
compactions will be delayed until the disk free space check indicates
enough available space. The required space is computed as the sum of
input sizes.
b) The free space check requirement will be removed once the amount of
free space is greater than the size reserved by in progress
compactions when the first error occured
c) If the out of space error is a hard error, a background thread in
SFM will poll for sufficient headroom before triggering the recovery
of the database and putting it in write-only mode. The headroom is
calculated as the sum of the write_buffer_size of all the DB instances
associated with the SFM
4. EventListener callbacks will be called at the start and completion of
automatic recovery. Users can disable the auto recov ery in the start
callback, and later initiate it manually by calling DB::Resume()
Todo:
1. More extensive testing
2. Add disk full condition to db_stress (follow-on PR)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4164
Differential Revision: D9846378
Pulled By: anand1976
fbshipit-source-id: 80ea875dbd7f00205e19c82215ff6e37da10da4a
Summary:
Reverting is needed to unblock a user building against master, who is blocked for multiple days due to a thread-safety issue in `GetEmptyDict`. We haven't been able to fix it quickly, so reverting.
Simply ran `git revert 6c40806e51a89386d2b066fddf73d3fd03a36f65`. There were no merge conflicts.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4347
Differential Revision: D9668365
Pulled By: ajkr
fbshipit-source-id: 0c56334f0a23cf5ee0233d4e4679eae6709739cd
Summary:
In RocksDB, for a given SST file, all data blocks are compressed with the same dictionary. When we compress a block using the dictionary's raw bytes, the compression library first has to digest the dictionary to get it into a usable form. This digestion work is redundant and ideally should be done once per file.
ZSTD offers APIs for the caller to create and reuse a digested dictionary object (`ZSTD_CDict`). In this PR, we call `ZSTD_createCDict` once per file to digest the raw bytes. Then we use `ZSTD_compress_usingCDict` to compress each data block using the pre-digested dictionary. Once the file's created `ZSTD_freeCDict` releases the resources held by the digested dictionary.
There are a couple other changes included in this PR:
- Changed the parameter object for (un)compression functions from `CompressionContext`/`UncompressionContext` to `CompressionInfo`/`UncompressionInfo`. This avoids the previous pattern, where `CompressionContext`/`UncompressionContext` had to be mutated before calling a (un)compression function depending on whether dictionary should be used. I felt that mutation was error-prone so eliminated it.
- Added support for digested uncompression dictionaries (`ZSTD_DDict`) as well. However, this PR does not support reusing them across uncompression calls for the same file. That work is deferred to a later PR when we will store the `ZSTD_DDict` objects in block cache.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4251
Differential Revision: D9257078
Pulled By: ajkr
fbshipit-source-id: 21b8cb6bbdd48e459f1c62343780ab66c0a64438
Summary:
Add `--data_block_index_type` and `--data_block_hash_table_util_ratio` option to `db_bench`.
`--data_block_index_type` can be either of `binary` (default) or `binary_and_hash`;
`--data_block_hash_table_util_ratio` will be a double. The default value is `0.75`.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4281
Differential Revision: D9361476
Pulled By: fgwu
fbshipit-source-id: dc53e01acef9db81b9eec5e8a96f3bc8ed718c10
Summary:
db_bench's previous default compression level (-1) was not the default compression level in all libraries. In particular, in ZSTD negative values are valid compression levels, while ZSTD's default compression level is three.
This PR changes db_bench's default to be RocksDB's library-independent default compression level (see #3895). I also changed a couple other flags to get their default values from an options object directly rather than hardcoding.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4248
Differential Revision: D9235140
Pulled By: ajkr
fbshipit-source-id: be4e0722d59fa1968832183db36d1d20fcf11e5b
Summary:
A framework for tracing and replaying RocksDB operations.
A binary trace file is created by capturing the DB operations, and it can be replayed back at the same rate using db_bench.
- Column-families are supported
- Multi-threaded tracing is supported.
- TraceReader and TraceWriter are exposed to the user, so that tracing to various destinations can be enabled (say, to other messaging/logging services). By default, a FileTraceReader and FileTraceWriter are implemented to capture to a file and replay from it.
- This is not yet ideal to be enabled in production due to large performance overhead, but it can be safely tried out in a shadow setup, say, for analyzing RocksDB operations.
Currently supported DB operations:
- Writes:
-- Put
-- Merge
-- Delete
-- SingleDelete
-- DeleteRange
-- Write
- Reads:
-- Get (point lookups)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/3837
Differential Revision: D7974837
Pulled By: sagar0
fbshipit-source-id: 8ec65aaf336504bc1f6ed0feae67f6ed5ef97a72
Summary:
When running the tracing and analyzing, I found that MergeRandom benchmark in db_bench only access the default column family even the -num_column_families is specified > 1.
changes: Using the db_with_cfh as DB to randomly select the column family to execute the Merge operation if -num_column_families is specified > 1.
Tested with make asan_check and verified in tracing
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4155
Differential Revision: D8907888
Pulled By: zhichao-cao
fbshipit-source-id: 2b4bc8fe0e99c8f262f5be6b986c7025d62cf850
Summary:
Lint is not happy with some new code recently committed. Format them.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4161
Differential Revision: D8940582
Pulled By: siying
fbshipit-source-id: c9b43b1ef8c88b5e923911058b44eb77234b36b7
Summary:
Adding the string "PERF_CONTEXT:" before the perf_context stats are printed. Setting the filter policy if it's a block based table even when options are being loaded from the provided FLAGS_options_file.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4153
Differential Revision: D8905517
Pulled By: poojam23
fbshipit-source-id: 5956ed7882d39ec8ae654d5dadeb88727a36f0dd
Summary:
The patch makes sure that two parallel test threads will operate on different db paths. This enables using open source tools such as gtest-parallel to run the tests of a file in parallel.
Example: ``` ~/gtest-parallel/gtest-parallel ./table_test```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4135
Differential Revision: D8846653
Pulled By: maysamyabandeh
fbshipit-source-id: 799bad1abb260e3d346bcb680d2ae207a852ba84
Summary:
Right now there is no support for enabling compaction filter in db_bench, we should add support for that to facilitate testing of compaction filter.
This PR adds a compaction filter called KeepFilter and make `Filter` always returns false, essentially a noop compaction filter. This will allow us to test compaction filter code path without having to support arbitrary compaction filters
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4106
Differential Revision: D8828517
Pulled By: miasantreble
fbshipit-source-id: 9ad76d04103eaa9d00da98334b4a39e542d26c41
Summary:
`DEFINE_uint32` was unavailable on some platforms, e.g., https://travis-ci.org/facebook/rocksdb/jobs/403352902. Use `DEFINE_uint64` instead which should work as it's used many times elsewhere in this file.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4129
Differential Revision: D8830311
Pulled By: ajkr
fbshipit-source-id: b4fc90ba3f50e649c070ce8069c68e530d731f05
Summary:
give control of how often stats are printed, including jemalloc stats if enabled. Previously the default was 10 minutes so we'd only see updated stats for very long benchmark runs.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4109
Differential Revision: D8796444
Pulled By: ajkr
fbshipit-source-id: fd7902fe3f105fae89322c4ab63316bba4a2b15e
Summary:
Top-level index in partitioned index/filter blocks are small and could be pinned in memory. So far we use that by cache_index_and_filter_blocks to false. This however make it difficult to keep account of the total memory usage. This patch introduces pin_top_level_index_and_filter which in combination with cache_index_and_filter_blocks=true keeps the top-level index in cache and yet pinned them to avoid cache misses and also cache lookup overhead.
Closes https://github.com/facebook/rocksdb/pull/4037
Differential Revision: D8596218
Pulled By: maysamyabandeh
fbshipit-source-id: 3a5f7f9ca6b4b525b03ff6bd82354881ae974ad2