mirror of
https://github.com/facebook/rocksdb.git
synced 2024-12-02 20:52:55 +00:00
6 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Alan Paxton | d9a441113e |
JNI get_helper code sharing / multiGet() use efficient batch C++ support (#12344)
Summary: Implement RAII-based helpers for JNIGet() and multiGet() Replace JNI C++ helpers `rocksdb_get_helper, rocksdb_get_helper_direct`, `multi_get_helper`, `multi_get_helper_direct`, `multi_get_helper_release_keys`, `txn_get_helper`, and `txn_multi_get_helper`. The model is to entirely do away with a single helper, instead a number of utility methods allow each separate JNI `Get()` and `MultiGet()` method to organise their parameters efficiently, then call the underlying C++ `db->Get()`, `db->MultiGet()`, `txn->Get()`, or `txn->MultiGet()` method itself, and use further utilities to retrieve results. Roughly speaking: * get keys into C++ form * Call C++ Get() * get results and status into Java form We achieve a useful performance gain as part of this work; by using the updated C++ multiGet we immediately pick up its performance gains (batch improvements to multiGet C++ were previously implemented, but not until now used by Java/JNI). multiGetBB already uses the batched C++ multiGet(), and all other benchmarks show consistent improvement after the changes: ## Before: ``` Benchmark (columnFamilyTestType) (keyCount) (keySize) (multiGetSize) (valueSize) Mode Cnt Score Error Units MultiGetNewBenchmarks.multiGetBB200 no_column_family 10000 1024 100 256 thrpt 25 5315.459 ± 20.465 ops/s MultiGetNewBenchmarks.multiGetBB200 no_column_family 10000 1024 100 1024 thrpt 25 5673.115 ± 78.299 ops/s MultiGetNewBenchmarks.multiGetBB200 no_column_family 10000 1024 100 4096 thrpt 25 2616.860 ± 46.994 ops/s MultiGetNewBenchmarks.multiGetBB200 no_column_family 10000 1024 100 16384 thrpt 25 1700.058 ± 24.034 ops/s MultiGetNewBenchmarks.multiGetBB200 no_column_family 10000 1024 100 65536 thrpt 25 791.171 ± 13.955 ops/s MultiGetNewBenchmarks.multiGetList10 no_column_family 10000 1024 100 256 thrpt 25 6129.929 ± 94.200 ops/s MultiGetNewBenchmarks.multiGetList10 no_column_family 10000 1024 100 1024 thrpt 25 7012.405 ± 97.886 ops/s MultiGetNewBenchmarks.multiGetList10 no_column_family 10000 1024 100 4096 thrpt 25 2799.014 ± 39.352 ops/s MultiGetNewBenchmarks.multiGetList10 no_column_family 10000 1024 100 16384 thrpt 25 1417.205 ± 22.272 ops/s MultiGetNewBenchmarks.multiGetList10 no_column_family 10000 1024 100 65536 thrpt 25 655.594 ± 13.050 ops/s MultiGetNewBenchmarks.multiGetListExplicitCF20 no_column_family 10000 1024 100 256 thrpt 25 6147.247 ± 82.711 ops/s MultiGetNewBenchmarks.multiGetListExplicitCF20 no_column_family 10000 1024 100 1024 thrpt 25 7004.213 ± 79.251 ops/s MultiGetNewBenchmarks.multiGetListExplicitCF20 no_column_family 10000 1024 100 4096 thrpt 25 2715.154 ± 110.017 ops/s MultiGetNewBenchmarks.multiGetListExplicitCF20 no_column_family 10000 1024 100 16384 thrpt 25 1408.070 ± 31.714 ops/s MultiGetNewBenchmarks.multiGetListExplicitCF20 no_column_family 10000 1024 100 65536 thrpt 25 623.829 ± 57.374 ops/s MultiGetNewBenchmarks.multiGetListRandomCF30 no_column_family 10000 1024 100 256 thrpt 25 6119.243 ± 116.313 ops/s MultiGetNewBenchmarks.multiGetListRandomCF30 no_column_family 10000 1024 100 1024 thrpt 25 6931.873 ± 128.094 ops/s MultiGetNewBenchmarks.multiGetListRandomCF30 no_column_family 10000 1024 100 4096 thrpt 25 2678.253 ± 39.113 ops/s MultiGetNewBenchmarks.multiGetListRandomCF30 no_column_family 10000 1024 100 16384 thrpt 25 1337.384 ± 19.500 ops/s MultiGetNewBenchmarks.multiGetListRandomCF30 no_column_family 10000 1024 100 65536 thrpt 25 625.596 ± 14.525 ops/s ``` ## After: ``` Benchmark (columnFamilyTestType) (keyCount) (keySize) (multiGetSize) (valueSize) Mode Cnt Score Error Units MultiGetBenchmarks.multiGetBB200 no_column_family 10000 1024 100 256 thrpt 25 5191.074 ± 78.250 ops/s MultiGetBenchmarks.multiGetBB200 no_column_family 10000 1024 100 1024 thrpt 25 5378.692 ± 260.682 ops/s MultiGetBenchmarks.multiGetBB200 no_column_family 10000 1024 100 4096 thrpt 25 2590.183 ± 34.844 ops/s MultiGetBenchmarks.multiGetBB200 no_column_family 10000 1024 100 16384 thrpt 25 1634.793 ± 34.022 ops/s MultiGetBenchmarks.multiGetBB200 no_column_family 10000 1024 100 65536 thrpt 25 786.455 ± 8.462 ops/s MultiGetBenchmarks.multiGetBB200 1_column_family 10000 1024 100 256 thrpt 25 5285.055 ± 11.676 ops/s MultiGetBenchmarks.multiGetBB200 1_column_family 10000 1024 100 1024 thrpt 25 5586.758 ± 213.008 ops/s MultiGetBenchmarks.multiGetBB200 1_column_family 10000 1024 100 4096 thrpt 25 2527.172 ± 17.106 ops/s MultiGetBenchmarks.multiGetBB200 1_column_family 10000 1024 100 16384 thrpt 25 1819.547 ± 12.958 ops/s MultiGetBenchmarks.multiGetBB200 1_column_family 10000 1024 100 65536 thrpt 25 803.861 ± 9.963 ops/s MultiGetBenchmarks.multiGetBB200 20_column_families 10000 1024 100 256 thrpt 25 5253.793 ± 28.020 ops/s MultiGetBenchmarks.multiGetBB200 20_column_families 10000 1024 100 1024 thrpt 25 5705.591 ± 20.556 ops/s MultiGetBenchmarks.multiGetBB200 20_column_families 10000 1024 100 4096 thrpt 25 2523.377 ± 15.415 ops/s MultiGetBenchmarks.multiGetBB200 20_column_families 10000 1024 100 16384 thrpt 25 1815.344 ± 11.309 ops/s MultiGetBenchmarks.multiGetBB200 20_column_families 10000 1024 100 65536 thrpt 25 820.792 ± 3.192 ops/s MultiGetBenchmarks.multiGetBB200 100_column_families 10000 1024 100 256 thrpt 25 5262.184 ± 20.477 ops/s MultiGetBenchmarks.multiGetBB200 100_column_families 10000 1024 100 1024 thrpt 25 5706.959 ± 23.123 ops/s MultiGetBenchmarks.multiGetBB200 100_column_families 10000 1024 100 4096 thrpt 25 2520.362 ± 9.170 ops/s MultiGetBenchmarks.multiGetBB200 100_column_families 10000 1024 100 16384 thrpt 25 1789.185 ± 14.239 ops/s MultiGetBenchmarks.multiGetBB200 100_column_families 10000 1024 100 65536 thrpt 25 818.401 ± 12.132 ops/s MultiGetBenchmarks.multiGetList10 no_column_family 10000 1024 100 256 thrpt 25 6978.310 ± 14.084 ops/s MultiGetBenchmarks.multiGetList10 no_column_family 10000 1024 100 1024 thrpt 25 7664.242 ± 22.304 ops/s MultiGetBenchmarks.multiGetList10 no_column_family 10000 1024 100 4096 thrpt 25 2881.778 ± 81.054 ops/s MultiGetBenchmarks.multiGetList10 no_column_family 10000 1024 100 16384 thrpt 25 1599.826 ± 7.190 ops/s MultiGetBenchmarks.multiGetList10 no_column_family 10000 1024 100 65536 thrpt 25 737.520 ± 6.809 ops/s MultiGetBenchmarks.multiGetList10 1_column_family 10000 1024 100 256 thrpt 25 6974.376 ± 10.716 ops/s MultiGetBenchmarks.multiGetList10 1_column_family 10000 1024 100 1024 thrpt 25 7637.440 ± 45.877 ops/s MultiGetBenchmarks.multiGetList10 1_column_family 10000 1024 100 4096 thrpt 25 2820.472 ± 42.231 ops/s MultiGetBenchmarks.multiGetList10 1_column_family 10000 1024 100 16384 thrpt 25 1716.663 ± 8.527 ops/s MultiGetBenchmarks.multiGetList10 1_column_family 10000 1024 100 65536 thrpt 25 755.848 ± 7.514 ops/s MultiGetBenchmarks.multiGetList10 20_column_families 10000 1024 100 256 thrpt 25 6943.651 ± 20.040 ops/s MultiGetBenchmarks.multiGetList10 20_column_families 10000 1024 100 1024 thrpt 25 7679.415 ± 9.114 ops/s MultiGetBenchmarks.multiGetList10 20_column_families 10000 1024 100 4096 thrpt 25 2844.564 ± 13.388 ops/s MultiGetBenchmarks.multiGetList10 20_column_families 10000 1024 100 16384 thrpt 25 1729.545 ± 5.983 ops/s MultiGetBenchmarks.multiGetList10 20_column_families 10000 1024 100 65536 thrpt 25 783.218 ± 1.530 ops/s MultiGetBenchmarks.multiGetList10 100_column_families 10000 1024 100 256 thrpt 25 6944.276 ± 29.995 ops/s MultiGetBenchmarks.multiGetList10 100_column_families 10000 1024 100 1024 thrpt 25 7670.301 ± 8.986 ops/s MultiGetBenchmarks.multiGetList10 100_column_families 10000 1024 100 4096 thrpt 25 2839.828 ± 12.421 ops/s MultiGetBenchmarks.multiGetList10 100_column_families 10000 1024 100 16384 thrpt 25 1730.005 ± 9.209 ops/s MultiGetBenchmarks.multiGetList10 100_column_families 10000 1024 100 65536 thrpt 25 787.096 ± 1.977 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 no_column_family 10000 1024 100 256 thrpt 25 6896.944 ± 21.530 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 no_column_family 10000 1024 100 1024 thrpt 25 7622.407 ± 12.824 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 no_column_family 10000 1024 100 4096 thrpt 25 2927.538 ± 19.792 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 no_column_family 10000 1024 100 16384 thrpt 25 1598.041 ± 4.312 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 no_column_family 10000 1024 100 65536 thrpt 25 744.564 ± 9.236 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 1_column_family 10000 1024 100 256 thrpt 25 6853.760 ± 78.041 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 1_column_family 10000 1024 100 1024 thrpt 25 7360.917 ± 355.365 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 1_column_family 10000 1024 100 4096 thrpt 25 2848.774 ± 13.409 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 1_column_family 10000 1024 100 16384 thrpt 25 1727.688 ± 3.329 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 1_column_family 10000 1024 100 65536 thrpt 25 776.088 ± 7.517 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 20_column_families 10000 1024 100 256 thrpt 25 6910.339 ± 14.366 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 20_column_families 10000 1024 100 1024 thrpt 25 7633.660 ± 10.830 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 20_column_families 10000 1024 100 4096 thrpt 25 2787.799 ± 81.775 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 20_column_families 10000 1024 100 16384 thrpt 25 1726.517 ± 6.830 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 20_column_families 10000 1024 100 65536 thrpt 25 787.597 ± 3.362 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 100_column_families 10000 1024 100 256 thrpt 25 6922.445 ± 10.493 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 100_column_families 10000 1024 100 1024 thrpt 25 7604.710 ± 48.043 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 100_column_families 10000 1024 100 4096 thrpt 25 2848.788 ± 15.783 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 100_column_families 10000 1024 100 16384 thrpt 25 1730.837 ± 6.497 ops/s MultiGetBenchmarks.multiGetListExplicitCF20 100_column_families 10000 1024 100 65536 thrpt 25 794.557 ± 1.869 ops/s MultiGetBenchmarks.multiGetListRandomCF30 no_column_family 10000 1024 100 256 thrpt 25 6918.716 ± 15.766 ops/s MultiGetBenchmarks.multiGetListRandomCF30 no_column_family 10000 1024 100 1024 thrpt 25 7626.692 ± 9.394 ops/s MultiGetBenchmarks.multiGetListRandomCF30 no_column_family 10000 1024 100 4096 thrpt 25 2871.382 ± 72.155 ops/s MultiGetBenchmarks.multiGetListRandomCF30 no_column_family 10000 1024 100 16384 thrpt 25 1598.786 ± 4.819 ops/s MultiGetBenchmarks.multiGetListRandomCF30 no_column_family 10000 1024 100 65536 thrpt 25 748.469 ± 7.234 ops/s MultiGetBenchmarks.multiGetListRandomCF30 1_column_family 10000 1024 100 256 thrpt 25 6922.666 ± 17.131 ops/s MultiGetBenchmarks.multiGetListRandomCF30 1_column_family 10000 1024 100 1024 thrpt 25 7623.890 ± 8.805 ops/s MultiGetBenchmarks.multiGetListRandomCF30 1_column_family 10000 1024 100 4096 thrpt 25 2850.698 ± 18.004 ops/s MultiGetBenchmarks.multiGetListRandomCF30 1_column_family 10000 1024 100 16384 thrpt 25 1727.623 ± 4.868 ops/s MultiGetBenchmarks.multiGetListRandomCF30 1_column_family 10000 1024 100 65536 thrpt 25 774.534 ± 10.025 ops/s MultiGetBenchmarks.multiGetListRandomCF30 20_column_families 10000 1024 100 256 thrpt 25 5486.251 ± 13.582 ops/s MultiGetBenchmarks.multiGetListRandomCF30 20_column_families 10000 1024 100 1024 thrpt 25 4920.656 ± 44.557 ops/s MultiGetBenchmarks.multiGetListRandomCF30 20_column_families 10000 1024 100 4096 thrpt 25 3922.913 ± 25.686 ops/s MultiGetBenchmarks.multiGetListRandomCF30 20_column_families 10000 1024 100 16384 thrpt 25 2873.106 ± 4.336 ops/s MultiGetBenchmarks.multiGetListRandomCF30 20_column_families 10000 1024 100 65536 thrpt 25 802.404 ± 8.967 ops/s MultiGetBenchmarks.multiGetListRandomCF30 100_column_families 10000 1024 100 256 thrpt 25 4817.996 ± 18.042 ops/s MultiGetBenchmarks.multiGetListRandomCF30 100_column_families 10000 1024 100 1024 thrpt 25 4243.922 ± 13.929 ops/s MultiGetBenchmarks.multiGetListRandomCF30 100_column_families 10000 1024 100 4096 thrpt 25 3175.998 ± 7.773 ops/s MultiGetBenchmarks.multiGetListRandomCF30 100_column_families 10000 1024 100 16384 thrpt 25 2321.990 ± 12.501 ops/s MultiGetBenchmarks.multiGetListRandomCF30 100_column_families 10000 1024 100 65536 thrpt 25 1753.028 ± 7.130 ops/s ``` Closes https://github.com/facebook/rocksdb/issues/11518 Pull Request resolved: https://github.com/facebook/rocksdb/pull/12344 Reviewed By: cbi42 Differential Revision: D54809714 Pulled By: pdillinger fbshipit-source-id: bee3b949720abac073bce043b59ce976a11e99eb |
||
Alan Paxton | 5a063ecd34 |
Java API consistency between RocksDB.put() , .merge() and Transaction.put() , .merge() (#11019)
Summary: ### Implement new Java API get()/put()/merge() methods, and transactional variants. The Java API methods are very inconsistent in terms of how they pass parameters (byte[], ByteBuffer), and what variants and defaulted parameters they support. We try to bring some consistency to this. * All APIs should support calls with ByteBuffer parameters. * Similar methods (RocksDB.get() vs Transaction.get()) should support as similar as possible sets of parameters for predictability. * get()-like methods should provide variants where the caller supplies the target buffer, for the sake of efficiency. Allocation costs in Java can be significant when large buffers are repeatedly allocated and freed. ### API Additions 1. RockDB.get implement indirect ByteBuffers. Added indirect ByteBuffers and supporting native methods for get(). 2. RocksDB.Iterator implement missing (byte[], offset, length) variants for key() and value() parameters. 3. Transaction.get() implement missing methods, based on RocksDB.get. Added ByteBuffer.get with and without column family. Added byte[]-as-target get. 4. Transaction.iterator() implement a getIterator() which defaults ReadOptions; as per RocksDB.iterator(). Rationalize support API for this and RocksDB.iterator() 5. RocksDB.merge implement ByteBuffer methods; both direct and indirect buffers. Shadow the methods of RocksDB.put; RocksDB.put only offers ByteBuffer API with explicit WriteOptions. Duplicated this with RocksDB.merge 6. Transaction.merge implement methods as per RocksDB.merge methods. Transaction is already constructed with WriteOptions, so no explicit WriteOptions methods required. 7. Transaction.mergeUntracked implement the same API methods as Transaction.merge except the ones that use assumeTracked, because that’s not a feature of merge untracked. ### Support Changes (C++) The current JNI code in C++ supports multiple variants of methods through a number of helper functions. There are numerous TODO suggestions in the code proposing that the helpers be re-factored/shared. We have taken a different approach for the new methods; we have created wrapper classes `JDirectBufferSlice`, `JDirectBufferPinnableSlice`, `JByteArraySlice` and `JByteArrayPinnableSlice` RAII classes which construct slices from JNI parameters and can then be passed directly to RocksDB methods. For instance, the `Java_org_rocksdb_Transaction_getDirect` method is implemented like this: ``` try { ROCKSDB_NAMESPACE::JDirectBufferSlice key(env, jkey_bb, jkey_off, jkey_part_len); ROCKSDB_NAMESPACE::JDirectBufferPinnableSlice value(env, jval_bb, jval_off, jval_part_len); ROCKSDB_NAMESPACE::KVException::ThrowOnError( env, txn->Get(*read_options, column_family_handle, key.slice(), &value.pinnable_slice())); return value.Fetch(); } catch (const ROCKSDB_NAMESPACE::KVException& e) { return e.Code(); } ``` Notice the try/catch mechanism with the `KVException` class, which combined with RAII and the wrapper classes means that there is no ad-hoc cleanup necessary in the JNI methods. We propose to extend this mechanism to existing JNI methods as further work. ### Support Changes (Java) Where there are multiple parameter-variant versions of the same method, we use fewer or just one supporting native method for all of them. This makes maintenance a bit easier and reduces the opportunity for coding errors mixing up (untyped) object handles. In order to support this efficiently, some classes need to have default values for column families and read options added and cached so that they are not re-constructed on every method call. This PR closes https://github.com/facebook/rocksdb/issues/9776 Pull Request resolved: https://github.com/facebook/rocksdb/pull/11019 Reviewed By: ajkr Differential Revision: D52039446 Pulled By: jowlyzhang fbshipit-source-id: 45d0140a4887e42134d2e56520e9b8efbd349660 |
||
Alan Paxton | f8969ad7d4 |
Improve Java API get() performance by reducing copies (#10970)
Summary: Performance improvements for `get()` paths in the RocksJava API (JNI). Document describing the performance results. Replace uses of the legacy `DB::Get()` method wrapper returning data in a `std::string` with direct calls to `DB::Get()` passing a pinnable slice to receive this data. Copying from a pinned slice direct to the destination java byte array, without going via an intervening std::string, is a major performance gain for this code path. Note that this gain only comes where `DB::Get()` is able to return a pinned buffer; where it has to copy into the buffer owned by the slice, there is still the intervening copy and no performance gain. It may be possible to address this case too, but it is not trivial. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10970 Reviewed By: pdillinger Differential Revision: D42125567 Pulled By: ajkr fbshipit-source-id: b7a4df7523b0420cadb1e9b6c7da3ec030a8da34 |
||
Alan Paxton | c1ec0b28eb |
java / jni io_uring support (#9224)
Summary: Existing multiGet() in java calls multi_get_helper() which then calls DB::std::vector MultiGet(). This doesn't take advantage of io_uring. This change adds another JNI level method that runs a parallel code path using the DB::void MultiGet(), using ByteBuffers at the JNI level. We call it multiGetDirect(). In addition to using the io_uring path, this code internally returns pinned slices which we can copy out of into our direct byte buffers; this should reduce the overall number of copies in the code path to/from Java. Some jmh benchmark runs (100k keys, 1000 key multiGet) suggest that for value sizes > 1k, we see about a 20% performance improvement, although performance is slightly reduced for small value sizes, there's a little bit more overhead in the JNI methods. Closes https://github.com/facebook/rocksdb/issues/8407 Pull Request resolved: https://github.com/facebook/rocksdb/pull/9224 Reviewed By: mrambacher Differential Revision: D32951754 Pulled By: jay-zhuang fbshipit-source-id: 1f70df7334be2b6c42a9c8f92725f67c71631690 |
||
Adam Retter | 7242dae7fe |
Improve RocksJava Comparator (#6252)
Summary: This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy. **NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into. Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`). In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`. In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`. --- [JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java. With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425). These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical. --- These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x. ``` ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252 Differential Revision: D19331064 Pulled By: pdillinger fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738 |
||
Adam Retter | 6477075f2c |
JMH microbenchmarks for RocksJava (#6241)
Summary: This is the start of some JMH microbenchmarks for RocksJava. Such benchmarks can help us decide on performance improvements of the Java API. At the moment, I have only added benchmarks for various Comparator options, as that is one of the first areas where I want to improve performance. I plan to expand this to many more tests. Details of how to compile and run the benchmarks are in the `README.md`. A run of these on a XEON 3.5 GHz 4vCPU (QEMU Virtual CPU version 2.5+) / 8GB RAM KVM with Ubuntu 18.04, OpenJDK 1.8.0_232, and gcc 8.3.0 produced the following: ``` # Run complete. Total time: 01:43:17 REMEMBER: The numbers below are just data. To gain reusable insights, you need to follow up on why the numbers are the way they are. Use profilers (see -prof, -lprof), design factorial experiments, perform baseline and negative tests that provide experimental control, make sure the benchmarking environment is safe on JVM/OS/HW level, ask for reviews from the domain experts. Do not assume the numbers tell you what you want them to tell. Benchmark (comparatorName) Mode Cnt Score Error Units ComparatorBenchmarks.put native_bytewise thrpt 25 122373.920 ± 2200.538 ops/s ComparatorBenchmarks.put java_bytewise_adaptive_mutex thrpt 25 17388.201 ± 1444.006 ops/s ComparatorBenchmarks.put java_bytewise_non-adaptive_mutex thrpt 25 16887.150 ± 1632.204 ops/s ComparatorBenchmarks.put java_direct_bytewise_adaptive_mutex thrpt 25 15644.572 ± 1791.189 ops/s ComparatorBenchmarks.put java_direct_bytewise_non-adaptive_mutex thrpt 25 14869.601 ± 2252.135 ops/s ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 116528.735 ± 4168.797 ops/s ComparatorBenchmarks.put java_reverse_bytewise_adaptive_mutex thrpt 25 10651.975 ± 545.998 ops/s ComparatorBenchmarks.put java_reverse_bytewise_non-adaptive_mutex thrpt 25 10514.224 ± 930.069 ops/s ``` Indicating a ~7x difference between comparators implemented natively (C++) and those implemented in Java. Let's see if we can't improve on that in the near future... Pull Request resolved: https://github.com/facebook/rocksdb/pull/6241 Differential Revision: D19290410 Pulled By: pdillinger fbshipit-source-id: 25d44bf3a31de265502ed0c5d8a28cf4c7cb9c0b |