Commit Graph

3 Commits

Author SHA1 Message Date
Richard Barnes a8dd15ad41 Fix deprecated dynamic exception in internal_repo_rocksdb/repo/java/rocksjni/kv_helper.h +1
Summary:
LLVM has detected a violation of `-Wdeprecated-dynamic-exception-spec`. Dynamic exceptions were removed in C++17. This diff fixes the deprecated instance(s).

See [Dynamic exception specification](https://en.cppreference.com/w/cpp/language/except_spec) and [noexcept specifier](https://en.cppreference.com/w/cpp/language/noexcept_spec).

Reviewed By: palmje

Differential Revision: D58528375

fbshipit-source-id: 130fecd3aa556e4cdb955feea53c442bd9fbc864
2024-06-13 12:41:13 -07:00
Alan Paxton d9a441113e JNI get_helper code sharing / multiGet() use efficient batch C++ support (#12344)
Summary:
Implement RAII-based helpers for JNIGet() and multiGet()

Replace JNI C++ helpers `rocksdb_get_helper, rocksdb_get_helper_direct`, `multi_get_helper`, `multi_get_helper_direct`, `multi_get_helper_release_keys`, `txn_get_helper`, and `txn_multi_get_helper`.

The model is to entirely do away with a single helper, instead a number of utility methods allow each separate
JNI `Get()` and `MultiGet()` method to organise their parameters efficiently, then call the underlying C++ `db->Get()`,
`db->MultiGet()`, `txn->Get()`, or `txn->MultiGet()` method itself, and use further utilities to retrieve results.

Roughly speaking:

* get keys into C++ form
* Call C++ Get()
* get results and status into Java form

We achieve a useful performance gain as part of this work; by using the updated C++ multiGet we immediately pick up its performance gains (batch improvements to multiGet C++ were previously implemented, but not until now used by Java/JNI). multiGetBB already uses the batched C++ multiGet(), and all other benchmarks show consistent improvement after the changes:

## Before:
```
Benchmark (columnFamilyTestType) (keyCount) (keySize) (multiGetSize) (valueSize) Mode Cnt Score Error Units
MultiGetNewBenchmarks.multiGetBB200 no_column_family 10000 1024 100 256 thrpt 25 5315.459 ± 20.465 ops/s
MultiGetNewBenchmarks.multiGetBB200 no_column_family 10000 1024 100 1024 thrpt 25 5673.115 ± 78.299 ops/s
MultiGetNewBenchmarks.multiGetBB200 no_column_family 10000 1024 100 4096 thrpt 25 2616.860 ± 46.994 ops/s
MultiGetNewBenchmarks.multiGetBB200 no_column_family 10000 1024 100 16384 thrpt 25 1700.058 ± 24.034 ops/s
MultiGetNewBenchmarks.multiGetBB200 no_column_family 10000 1024 100 65536 thrpt 25 791.171 ± 13.955 ops/s
MultiGetNewBenchmarks.multiGetList10 no_column_family 10000 1024 100 256 thrpt 25 6129.929 ± 94.200 ops/s
MultiGetNewBenchmarks.multiGetList10 no_column_family 10000 1024 100 1024 thrpt 25 7012.405 ± 97.886 ops/s
MultiGetNewBenchmarks.multiGetList10 no_column_family 10000 1024 100 4096 thrpt 25 2799.014 ± 39.352 ops/s
MultiGetNewBenchmarks.multiGetList10 no_column_family 10000 1024 100 16384 thrpt 25 1417.205 ± 22.272 ops/s
MultiGetNewBenchmarks.multiGetList10 no_column_family 10000 1024 100 65536 thrpt 25 655.594 ± 13.050 ops/s
MultiGetNewBenchmarks.multiGetListExplicitCF20 no_column_family 10000 1024 100 256 thrpt 25 6147.247 ± 82.711 ops/s
MultiGetNewBenchmarks.multiGetListExplicitCF20 no_column_family 10000 1024 100 1024 thrpt 25 7004.213 ± 79.251 ops/s
MultiGetNewBenchmarks.multiGetListExplicitCF20 no_column_family 10000 1024 100 4096 thrpt 25 2715.154 ± 110.017 ops/s
MultiGetNewBenchmarks.multiGetListExplicitCF20 no_column_family 10000 1024 100 16384 thrpt 25 1408.070 ± 31.714 ops/s
MultiGetNewBenchmarks.multiGetListExplicitCF20 no_column_family 10000 1024 100 65536 thrpt 25 623.829 ± 57.374 ops/s
MultiGetNewBenchmarks.multiGetListRandomCF30 no_column_family 10000 1024 100 256 thrpt 25 6119.243 ± 116.313 ops/s
MultiGetNewBenchmarks.multiGetListRandomCF30 no_column_family 10000 1024 100 1024 thrpt 25 6931.873 ± 128.094 ops/s
MultiGetNewBenchmarks.multiGetListRandomCF30 no_column_family 10000 1024 100 4096 thrpt 25 2678.253 ± 39.113 ops/s
MultiGetNewBenchmarks.multiGetListRandomCF30 no_column_family 10000 1024 100 16384 thrpt 25 1337.384 ± 19.500 ops/s
MultiGetNewBenchmarks.multiGetListRandomCF30 no_column_family 10000 1024 100 65536 thrpt 25 625.596 ± 14.525 ops/s
```

## After:
```
Benchmark                                    (columnFamilyTestType)  (keyCount)  (keySize)  (multiGetSize)  (valueSize)   Mode  Cnt     Score     Error  Units
MultiGetBenchmarks.multiGetBB200                   no_column_family       10000       1024             100          256  thrpt   25  5191.074 ±  78.250  ops/s
MultiGetBenchmarks.multiGetBB200                   no_column_family       10000       1024             100         1024  thrpt   25  5378.692 ± 260.682  ops/s
MultiGetBenchmarks.multiGetBB200                   no_column_family       10000       1024             100         4096  thrpt   25  2590.183 ±  34.844  ops/s
MultiGetBenchmarks.multiGetBB200                   no_column_family       10000       1024             100        16384  thrpt   25  1634.793 ±  34.022  ops/s
MultiGetBenchmarks.multiGetBB200                   no_column_family       10000       1024             100        65536  thrpt   25   786.455 ±   8.462  ops/s
MultiGetBenchmarks.multiGetBB200                    1_column_family       10000       1024             100          256  thrpt   25  5285.055 ±  11.676  ops/s
MultiGetBenchmarks.multiGetBB200                    1_column_family       10000       1024             100         1024  thrpt   25  5586.758 ± 213.008  ops/s
MultiGetBenchmarks.multiGetBB200                    1_column_family       10000       1024             100         4096  thrpt   25  2527.172 ±  17.106  ops/s
MultiGetBenchmarks.multiGetBB200                    1_column_family       10000       1024             100        16384  thrpt   25  1819.547 ±  12.958  ops/s
MultiGetBenchmarks.multiGetBB200                    1_column_family       10000       1024             100        65536  thrpt   25   803.861 ±   9.963  ops/s
MultiGetBenchmarks.multiGetBB200                 20_column_families       10000       1024             100          256  thrpt   25  5253.793 ±  28.020  ops/s
MultiGetBenchmarks.multiGetBB200                 20_column_families       10000       1024             100         1024  thrpt   25  5705.591 ±  20.556  ops/s
MultiGetBenchmarks.multiGetBB200                 20_column_families       10000       1024             100         4096  thrpt   25  2523.377 ±  15.415  ops/s
MultiGetBenchmarks.multiGetBB200                 20_column_families       10000       1024             100        16384  thrpt   25  1815.344 ±  11.309  ops/s
MultiGetBenchmarks.multiGetBB200                 20_column_families       10000       1024             100        65536  thrpt   25   820.792 ±   3.192  ops/s
MultiGetBenchmarks.multiGetBB200                100_column_families       10000       1024             100          256  thrpt   25  5262.184 ±  20.477  ops/s
MultiGetBenchmarks.multiGetBB200                100_column_families       10000       1024             100         1024  thrpt   25  5706.959 ±  23.123  ops/s
MultiGetBenchmarks.multiGetBB200                100_column_families       10000       1024             100         4096  thrpt   25  2520.362 ±   9.170  ops/s
MultiGetBenchmarks.multiGetBB200                100_column_families       10000       1024             100        16384  thrpt   25  1789.185 ±  14.239  ops/s
MultiGetBenchmarks.multiGetBB200                100_column_families       10000       1024             100        65536  thrpt   25   818.401 ±  12.132  ops/s
MultiGetBenchmarks.multiGetList10                  no_column_family       10000       1024             100          256  thrpt   25  6978.310 ±  14.084  ops/s
MultiGetBenchmarks.multiGetList10                  no_column_family       10000       1024             100         1024  thrpt   25  7664.242 ±  22.304  ops/s
MultiGetBenchmarks.multiGetList10                  no_column_family       10000       1024             100         4096  thrpt   25  2881.778 ±  81.054  ops/s
MultiGetBenchmarks.multiGetList10                  no_column_family       10000       1024             100        16384  thrpt   25  1599.826 ±   7.190  ops/s
MultiGetBenchmarks.multiGetList10                  no_column_family       10000       1024             100        65536  thrpt   25   737.520 ±   6.809  ops/s
MultiGetBenchmarks.multiGetList10                   1_column_family       10000       1024             100          256  thrpt   25  6974.376 ±  10.716  ops/s
MultiGetBenchmarks.multiGetList10                   1_column_family       10000       1024             100         1024  thrpt   25  7637.440 ±  45.877  ops/s
MultiGetBenchmarks.multiGetList10                   1_column_family       10000       1024             100         4096  thrpt   25  2820.472 ±  42.231  ops/s
MultiGetBenchmarks.multiGetList10                   1_column_family       10000       1024             100        16384  thrpt   25  1716.663 ±   8.527  ops/s
MultiGetBenchmarks.multiGetList10                   1_column_family       10000       1024             100        65536  thrpt   25   755.848 ±   7.514  ops/s
MultiGetBenchmarks.multiGetList10                20_column_families       10000       1024             100          256  thrpt   25  6943.651 ±  20.040  ops/s
MultiGetBenchmarks.multiGetList10                20_column_families       10000       1024             100         1024  thrpt   25  7679.415 ±   9.114  ops/s
MultiGetBenchmarks.multiGetList10                20_column_families       10000       1024             100         4096  thrpt   25  2844.564 ±  13.388  ops/s
MultiGetBenchmarks.multiGetList10                20_column_families       10000       1024             100        16384  thrpt   25  1729.545 ±   5.983  ops/s
MultiGetBenchmarks.multiGetList10                20_column_families       10000       1024             100        65536  thrpt   25   783.218 ±   1.530  ops/s
MultiGetBenchmarks.multiGetList10               100_column_families       10000       1024             100          256  thrpt   25  6944.276 ±  29.995  ops/s
MultiGetBenchmarks.multiGetList10               100_column_families       10000       1024             100         1024  thrpt   25  7670.301 ±   8.986  ops/s
MultiGetBenchmarks.multiGetList10               100_column_families       10000       1024             100         4096  thrpt   25  2839.828 ±  12.421  ops/s
MultiGetBenchmarks.multiGetList10               100_column_families       10000       1024             100        16384  thrpt   25  1730.005 ±   9.209  ops/s
MultiGetBenchmarks.multiGetList10               100_column_families       10000       1024             100        65536  thrpt   25   787.096 ±   1.977  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20        no_column_family       10000       1024             100          256  thrpt   25  6896.944 ±  21.530  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20        no_column_family       10000       1024             100         1024  thrpt   25  7622.407 ±  12.824  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20        no_column_family       10000       1024             100         4096  thrpt   25  2927.538 ±  19.792  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20        no_column_family       10000       1024             100        16384  thrpt   25  1598.041 ±   4.312  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20        no_column_family       10000       1024             100        65536  thrpt   25   744.564 ±   9.236  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20         1_column_family       10000       1024             100          256  thrpt   25  6853.760 ±  78.041  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20         1_column_family       10000       1024             100         1024  thrpt   25  7360.917 ± 355.365  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20         1_column_family       10000       1024             100         4096  thrpt   25  2848.774 ±  13.409  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20         1_column_family       10000       1024             100        16384  thrpt   25  1727.688 ±   3.329  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20         1_column_family       10000       1024             100        65536  thrpt   25   776.088 ±   7.517  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20      20_column_families       10000       1024             100          256  thrpt   25  6910.339 ±  14.366  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20      20_column_families       10000       1024             100         1024  thrpt   25  7633.660 ±  10.830  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20      20_column_families       10000       1024             100         4096  thrpt   25  2787.799 ±  81.775  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20      20_column_families       10000       1024             100        16384  thrpt   25  1726.517 ±   6.830  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20      20_column_families       10000       1024             100        65536  thrpt   25   787.597 ±   3.362  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20     100_column_families       10000       1024             100          256  thrpt   25  6922.445 ±  10.493  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20     100_column_families       10000       1024             100         1024  thrpt   25  7604.710 ±  48.043  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20     100_column_families       10000       1024             100         4096  thrpt   25  2848.788 ±  15.783  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20     100_column_families       10000       1024             100        16384  thrpt   25  1730.837 ±   6.497  ops/s
MultiGetBenchmarks.multiGetListExplicitCF20     100_column_families       10000       1024             100        65536  thrpt   25   794.557 ±   1.869  ops/s
MultiGetBenchmarks.multiGetListRandomCF30          no_column_family       10000       1024             100          256  thrpt   25  6918.716 ±  15.766  ops/s
MultiGetBenchmarks.multiGetListRandomCF30          no_column_family       10000       1024             100         1024  thrpt   25  7626.692 ±   9.394  ops/s
MultiGetBenchmarks.multiGetListRandomCF30          no_column_family       10000       1024             100         4096  thrpt   25  2871.382 ±  72.155  ops/s
MultiGetBenchmarks.multiGetListRandomCF30          no_column_family       10000       1024             100        16384  thrpt   25  1598.786 ±   4.819  ops/s
MultiGetBenchmarks.multiGetListRandomCF30          no_column_family       10000       1024             100        65536  thrpt   25   748.469 ±   7.234  ops/s
MultiGetBenchmarks.multiGetListRandomCF30           1_column_family       10000       1024             100          256  thrpt   25  6922.666 ±  17.131  ops/s
MultiGetBenchmarks.multiGetListRandomCF30           1_column_family       10000       1024             100         1024  thrpt   25  7623.890 ±   8.805  ops/s
MultiGetBenchmarks.multiGetListRandomCF30           1_column_family       10000       1024             100         4096  thrpt   25  2850.698 ±  18.004  ops/s
MultiGetBenchmarks.multiGetListRandomCF30           1_column_family       10000       1024             100        16384  thrpt   25  1727.623 ±   4.868  ops/s
MultiGetBenchmarks.multiGetListRandomCF30           1_column_family       10000       1024             100        65536  thrpt   25   774.534 ±  10.025  ops/s
MultiGetBenchmarks.multiGetListRandomCF30        20_column_families       10000       1024             100          256  thrpt   25  5486.251 ±  13.582  ops/s
MultiGetBenchmarks.multiGetListRandomCF30        20_column_families       10000       1024             100         1024  thrpt   25  4920.656 ±  44.557  ops/s
MultiGetBenchmarks.multiGetListRandomCF30        20_column_families       10000       1024             100         4096  thrpt   25  3922.913 ±  25.686  ops/s
MultiGetBenchmarks.multiGetListRandomCF30        20_column_families       10000       1024             100        16384  thrpt   25  2873.106 ±   4.336  ops/s
MultiGetBenchmarks.multiGetListRandomCF30        20_column_families       10000       1024             100        65536  thrpt   25   802.404 ±   8.967  ops/s
MultiGetBenchmarks.multiGetListRandomCF30       100_column_families       10000       1024             100          256  thrpt   25  4817.996 ±  18.042  ops/s
MultiGetBenchmarks.multiGetListRandomCF30       100_column_families       10000       1024             100         1024  thrpt   25  4243.922 ±  13.929  ops/s
MultiGetBenchmarks.multiGetListRandomCF30       100_column_families       10000       1024             100         4096  thrpt   25  3175.998 ±   7.773  ops/s
MultiGetBenchmarks.multiGetListRandomCF30       100_column_families       10000       1024             100        16384  thrpt   25  2321.990 ±  12.501  ops/s
MultiGetBenchmarks.multiGetListRandomCF30       100_column_families       10000       1024             100        65536  thrpt   25  1753.028 ±   7.130  ops/s
```

Closes https://github.com/facebook/rocksdb/issues/11518

Pull Request resolved: https://github.com/facebook/rocksdb/pull/12344

Reviewed By: cbi42

Differential Revision: D54809714

Pulled By: pdillinger

fbshipit-source-id: bee3b949720abac073bce043b59ce976a11e99eb
2024-03-12 12:42:08 -07:00
Alan Paxton 5a063ecd34 Java API consistency between RocksDB.put() , .merge() and Transaction.put() , .merge() (#11019)
Summary:
### Implement new Java API get()/put()/merge() methods, and transactional variants.

The Java API methods are very inconsistent in terms of how they pass parameters (byte[], ByteBuffer), and what variants and defaulted parameters they support. We try to bring some consistency to this.
 * All APIs should support calls with ByteBuffer parameters.
 * Similar methods (RocksDB.get() vs Transaction.get()) should support as similar as possible sets of parameters for predictability.
 * get()-like methods should provide variants where the caller supplies the target buffer, for the sake of efficiency. Allocation costs in Java can be significant when large buffers are repeatedly allocated and freed.

### API Additions

 1. RockDB.get implement indirect ByteBuffers. Added indirect ByteBuffers and supporting native methods for get().
 2. RocksDB.Iterator implement missing (byte[], offset, length) variants for key() and value() parameters.
 3. Transaction.get() implement missing methods, based on RocksDB.get. Added ByteBuffer.get with and without column family. Added byte[]-as-target get.
 4. Transaction.iterator() implement a getIterator() which defaults ReadOptions; as per RocksDB.iterator(). Rationalize support API for this and RocksDB.iterator()
 5. RocksDB.merge implement ByteBuffer methods; both direct and indirect buffers. Shadow the methods of RocksDB.put; RocksDB.put only offers ByteBuffer API with explicit WriteOptions. Duplicated this with RocksDB.merge
 6. Transaction.merge implement methods as per RocksDB.merge methods. Transaction is already constructed with WriteOptions, so no explicit WriteOptions methods required.
 7. Transaction.mergeUntracked implement the same API methods as Transaction.merge except the ones that use assumeTracked, because that’s not a feature of merge untracked.

### Support Changes (C++)

The current JNI code in C++ supports multiple variants of methods through a number of helper functions. There are numerous TODO suggestions in the code proposing that the helpers be re-factored/shared.

We have taken a different approach for the new methods; we have created wrapper classes `JDirectBufferSlice`, `JDirectBufferPinnableSlice`, `JByteArraySlice` and `JByteArrayPinnableSlice` RAII classes which construct slices from JNI parameters and can then be passed directly to RocksDB methods. For instance, the `Java_org_rocksdb_Transaction_getDirect` method is implemented like this:

```
  try {
    ROCKSDB_NAMESPACE::JDirectBufferSlice key(env, jkey_bb, jkey_off,
                                              jkey_part_len);
    ROCKSDB_NAMESPACE::JDirectBufferPinnableSlice value(env, jval_bb, jval_off,
                                                        jval_part_len);
    ROCKSDB_NAMESPACE::KVException::ThrowOnError(
        env, txn->Get(*read_options, column_family_handle, key.slice(),
                      &value.pinnable_slice()));
    return value.Fetch();
  } catch (const ROCKSDB_NAMESPACE::KVException& e) {
    return e.Code();
  }
```
Notice the try/catch mechanism with the `KVException` class, which combined with RAII and the wrapper classes means that there is no ad-hoc cleanup necessary in the JNI methods.

We propose to extend this mechanism to existing JNI methods as further work.

### Support Changes (Java)

Where there are multiple parameter-variant versions of the same method, we use fewer or just one supporting native method for all of them. This makes maintenance a bit easier and reduces the opportunity for coding errors mixing up (untyped) object handles.

In  order to support this efficiently, some classes need to have default values for column families and read options added and cached so that they are not re-constructed on every method call.

This PR closes https://github.com/facebook/rocksdb/issues/9776

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11019

Reviewed By: ajkr

Differential Revision: D52039446

Pulled By: jowlyzhang

fbshipit-source-id: 45d0140a4887e42134d2e56520e9b8efbd349660
2023-12-11 11:03:17 -08:00