Commit graph

6 commits

Author SHA1 Message Date
Changyu Bi f9cfc6a808 Updated NewDataBlockIterator to not fetch compression dict for non-da… (#10310)
Summary:
…ta blocks

During MyShadow testing, ajkr helped me find out that with partitioned index and dictionary compression enabled, `PartitionedIndexIterator::InitPartitionedIndexBlock()` spent considerable amount of time (1-2% CPU) on fetching uncompression dictionary. Fetching uncompression dict was not needed since the index blocks were not compressed (and even if they were, they use empty dictionary). This should only affect use cases with partitioned index, dictionary compression and without uncompression dictionary pinned. This PR updates NewDataBlockIterator to not fetch uncompression dictionary when it is not for data blocks.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10310

Test Plan:
1. `make check`
2. Perf benchmark: 1.5% (143950 -> 146176) improvement in op/sec for partitioned index + dict compression benchmark.
For default config without partitioned index and without dict compression, there is no regression in readrandom perf from multiple runs of db_bench.

```
# Set up for partitioned index with dictionary compression
TEST_TMPDIR=/dev/shm ./db_bench_main -benchmarks=filluniquerandom,compact -max_background_jobs=24 -memtablerep=vector -allow_concurrent_memtable_write=false -partition_index=true  -compression_max_dict_bytes=16384 -compression_zstd_max_train_bytes=1638400

# Pre PR
TEST_TMPDIR=/dev/shm ./db_bench_main -use_existing_db=true -benchmarks=readrandom[-X50] -partition_index=true
readrandom [AVG    50 runs] : 143950 (± 1108) ops/sec;   15.9 (± 0.1) MB/sec
readrandom [MEDIAN 50 runs] : 144406 ops/sec;   16.0 MB/sec

# Post PR
TEST_TMPDIR=/dev/shm ./db_bench_opt -use_existing_db=true -benchmarks=readrandom[-X50] -partition_index=true
readrandom [AVG    50 runs] : 146176 (± 1121) ops/sec;   16.2 (± 0.1) MB/sec
readrandom [MEDIAN 50 runs] : 146014 ops/sec;   16.2 MB/sec

# Set up for no partitioned index and no dictionary compression
TEST_TMPDIR=/dev/shm/baseline ./db_bench_main -benchmarks=filluniquerandom,compact -max_background_jobs=24 -memtablerep=vector -allow_concurrent_memtable_write=false
# Pre PR
TEST_TMPDIR=/dev/shm/baseline/ ./db_bench_main --use_existing_db=true "--benchmarks=readrandom[-X50]"
readrandom [AVG    50 runs] : 158546 (± 1000) ops/sec;   17.5 (± 0.1) MB/sec
readrandom [MEDIAN 50 runs] : 158280 ops/sec;   17.5 MB/sec

# Post PR
TEST_TMPDIR=/dev/shm/baseline/ ./db_bench_opt --use_existing_db=true "--benchmarks=readrandom[-X50]"
readrandom [AVG    50 runs] : 161061 (± 1520) ops/sec;   17.8 (± 0.2) MB/sec
readrandom [MEDIAN 50 runs] : 161596 ops/sec;   17.9 MB/sec
```

Reviewed By: ajkr

Differential Revision: D37631358

Pulled By: cbi42

fbshipit-source-id: 6ca2665e270e63871968e061ba4a99d3136785d9
2022-07-06 09:30:25 -07:00
Akanksha Mahajan 2db6a4a1d6 Seek parallelization (#9994)
Summary:
The RocksDB iterator is a hierarchy of iterators. MergingIterator maintains a heap of LevelIterators, one for each L0 file and for each non-zero level. The Seek() operation naturally lends itself to parallelization, as it involves positioning every LevelIterator on the correct data block in the correct SST file. It lookups a level for a target key, to find the first key that's >= the target key. This typically involves reading one data block that is likely to contain the target key, and scan forward to find the first valid key. The forward scan may read more data blocks. In order to find the right data block, the iterator may read some metadata blocks (required for opening a file and searching the index).
This flow can be parallelized.

Design: Seek will be called two times under async_io option. First seek will send asynchronous request to prefetch the data blocks at each level and second seek will follow the normal flow and in FilePrefetchBuffer::TryReadFromCacheAsync it will wait for the Poll() to get the results and add the iterator to min_heap.
- Status::TryAgain is passed down from FilePrefetchBuffer::PrefetchAsync to block_iter_.Status indicating asynchronous request has been submitted.
- If for some reason asynchronous request returns error in submitting the request, it will fallback to sequential reading of blocks in one pass.
- If the data already exists in prefetch_buffer, it will return the data without prefetching further and it will be treated as single pass of seek.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9994

Test Plan:
- **Run Regressions.**
```
./db_bench -db=/tmp/prefix_scan_prefetch_main -benchmarks="fillseq" -key_size=32 -value_size=512 -num=5000000 -use_direct_io_for_flush_and_compaction=true -target_file_size_base=16777216
```
i) Previous release 7.0 run for normal prefetching with async_io disabled:
```
./db_bench -use_existing_db=true -db=/tmp/prefix_scan_prefetch_main -benchmarks="seekrandom" -key_size=32 -value_size=512 -num=5000000 -use_direct_reads=true -seek_nexts=327680 -duration=120 -ops_between_duration_checks=1
Initializing RocksDB Options from the specified file
Initializing RocksDB Options from command-line flags
RocksDB:    version 7.0
Date:       Thu Mar 17 13:11:34 2022
CPU:        24 * Intel Core Processor (Broadwell)
CPUCache:   16384 KB
Keys:       32 bytes each (+ 0 bytes user-defined timestamp)
Values:     512 bytes each (256 bytes after compression)
Entries:    5000000
Prefix:    0 bytes
Keys per prefix:    0
RawSize:    2594.0 MB (estimated)
FileSize:   1373.3 MB (estimated)
Write rate: 0 bytes/second
Read rate: 0 ops/second
Compression: Snappy
Compression sampling rate: 0
Memtablerep: SkipListFactory
Perf Level: 1
------------------------------------------------
DB path: [/tmp/prefix_scan_prefetch_main]
seekrandom   :  483618.390 micros/op 2 ops/sec;  338.9 MB/s (249 of 249 found)
```

ii) normal prefetching after changes with async_io disable:
```
./db_bench -use_existing_db=true -db=/tmp/prefix_scan_prefetch_main -benchmarks="seekrandom" -key_size=32 -value_size=512 -num=5000000 -use_direct_reads=true -seek_nexts=327680 -duration=120 -ops_between_duration_checks=1
Set seed to 1652922591315307 because --seed was 0
Initializing RocksDB Options from the specified file
Initializing RocksDB Options from command-line flags
RocksDB:    version 7.3
Date:       Wed May 18 18:09:51 2022
CPU:        32 * Intel Xeon Processor (Skylake)
CPUCache:   16384 KB
Keys:       32 bytes each (+ 0 bytes user-defined timestamp)
Values:     512 bytes each (256 bytes after compression)
Entries:    5000000
Prefix:    0 bytes
Keys per prefix:    0
RawSize:    2594.0 MB (estimated)
FileSize:   1373.3 MB (estimated)
Write rate: 0 bytes/second
Read rate: 0 ops/second
Compression: Snappy
Compression sampling rate: 0
Memtablerep: SkipListFactory
Perf Level: 1
------------------------------------------------
DB path: [/tmp/prefix_scan_prefetch_main]
seekrandom   :  483080.466 micros/op 2 ops/sec 120.287 seconds 249 operations;  340.8 MB/s (249 of 249 found)
```
iii) db_bench with async_io enabled completed succesfully

```
./db_bench -use_existing_db=true -db=/tmp/prefix_scan_prefetch_main -benchmarks="seekrandom" -key_size=32 -value_size=512 -num=5000000 -use_direct_reads=true -seek_nexts=327680 -duration=120 -ops_between_duration_checks=1 -async_io=1 -adaptive_readahead=1
Set seed to 1652924062021732 because --seed was 0
Initializing RocksDB Options from the specified file
Initializing RocksDB Options from command-line flags
RocksDB:    version 7.3
Date:       Wed May 18 18:34:22 2022
CPU:        32 * Intel Xeon Processor (Skylake)
CPUCache:   16384 KB
Keys:       32 bytes each (+ 0 bytes user-defined timestamp)
Values:     512 bytes each (256 bytes after compression)
Entries:    5000000
Prefix:    0 bytes
Keys per prefix:    0
RawSize:    2594.0 MB (estimated)
FileSize:   1373.3 MB (estimated)
Write rate: 0 bytes/second
Read rate: 0 ops/second
Compression: Snappy
Compression sampling rate: 0
Memtablerep: SkipListFactory
Perf Level: 1
------------------------------------------------
DB path: [/tmp/prefix_scan_prefetch_main]
seekrandom   :  553913.576 micros/op 1 ops/sec 120.199 seconds 217 operations;  293.6 MB/s (217 of 217 found)
```

- db_stress with async_io disabled completed succesfully
```
 export CRASH_TEST_EXT_ARGS=" --async_io=0"
 make crash_test -j
```

I**n Progress**: db_stress with async_io is failing and working on debugging/fixing it.

Reviewed By: anand1976

Differential Revision: D36459323

Pulled By: akankshamahajan15

fbshipit-source-id: abb1cd944abe712bae3986ae5b16704b3338917c
2022-05-20 16:09:33 -07:00
Alan Paxton b6ad0d958f Fb 9718 verify checksums is ignored (#9767)
Summary:
Fixes https://github.com/facebook/rocksdb/issues/9718

The verify_checksums flag of read_options should be passed to the read options used by the BlockFetcher in a couple of cases where it is not at present. It will now happen (but did not, previously) on iteration and on [multi]get, where a fetcher is created as part of the iterate/get call.

This may result in much better performance in a few workloads where the client chooses to remove verification.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9767

Reviewed By: mrambacher

Differential Revision: D35218986

Pulled By: jay-zhuang

fbshipit-source-id: 329d29764bb70fbc7f2673440bc46c107a813bc8
2022-03-29 11:54:54 -07:00
Peter Dillinger 0050a73a4f New stable, fixed-length cache keys (#9126)
Summary:
This change standardizes on a new 16-byte cache key format for
block cache (incl compressed and secondary) and persistent cache (but
not table cache and row cache).

The goal is a really fast cache key with practically ideal stability and
uniqueness properties without external dependencies (e.g. from FileSystem).
A fixed key size of 16 bytes should enable future optimizations to the
concurrent hash table for block cache, which is a heavy CPU user /
bottleneck, but there appears to be measurable performance improvement
even with no changes to LRUCache.

This change replaces a lot of disjointed and ugly code handling cache
keys with calls to a simple, clean new internal API (cache_key.h).
(Preserving the old cache key logic under an option would be very ugly
and likely negate the performance gain of the new approach. Complete
replacement carries some inherent risk, but I think that's acceptable
with sufficient analysis and testing.)

The scheme for encoding new cache keys is complicated but explained
in cache_key.cc.

Also: EndianSwapValue is moved to math.h to be next to other bit
operations. (Explains some new include "math.h".) ReverseBits operation
added and unit tests added to hash_test for both.

Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause)

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126

Test Plan:
### Basic correctness
Several tests needed updates to work with the new functionality, mostly
because we are no longer relying on filesystem for stable cache keys
so table builders & readers need more context info to agree on cache
keys. This functionality is so core, a huge number of existing tests
exercise the cache key functionality.

### Performance
Create db with
`TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters`
And test performance with
`TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4`
using DEBUG_LEVEL=0 and simultaneous before & after runs.
Before ops/sec, avg over 100 runs: 121924
After ops/sec, avg over 100 runs: 125385 (+2.8%)

### Collision probability
I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity
over many months, by making some pessimistic simplifying assumptions:
* Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys)
* All of every file is cached for its entire lifetime

We use a simple table with skewed address assignment and replacement on address collision
to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output
with `./cache_bench -stress_cache_key -sck_keep_bits=40`:

```
Total cache or DBs size: 32TiB  Writing 925.926 MiB/s or 76.2939TiB/day
Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached)
```

These come from default settings of 2.5M files per day of 32 MB each, and
`-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of
the 128-bit cache key.  With file size of 2\*\*25 contiguous keys (pessimistic), our simulation
is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality.

More default assumptions, relatively pessimistic:
* 100 DBs in same process (doesn't matter much)
* Re-open DB in same process (new session ID related to old session ID) on average
every 100 files generated
* Restart process (all new session IDs unrelated to old) 24 times per day

After enough data, we get a result at the end:

```
(keep 40 bits)  17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected)
```

If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data:

```
(keep 41 bits)  16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected)
(keep 42 bits)  19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected)
```

The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases:

```
197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected)
```

I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data.

Reviewed By: zhichao-cao

Differential Revision: D33171746

Pulled By: pdillinger

fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:15:13 -08:00
anand76 8ea0a2c1bd Parallelize secondary cache lookup in MultiGet (#8405)
Summary:
Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file.

Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future.

Tests:
1. Add unit tests in lru_cache_test
2. Benchmark results with no secondary cache configured
Master -
```
readrandom   :      41.175 micros/op 388562 ops/sec;  106.7 MB/s (7277999 of 7277999 found)
readrandom   :      41.217 micros/op 388160 ops/sec;  106.6 MB/s (7274999 of 7274999 found)
multireadrandom :      10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found)
multireadrandom :      10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found)
```

This PR -
```
readrandom   :      41.158 micros/op 388723 ops/sec;  106.8 MB/s (7290999 of 7290999 found)
readrandom   :      41.185 micros/op 388463 ops/sec;  106.7 MB/s (7287999 of 7287999 found)
multireadrandom :      10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found)
multireadrandom :      10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found)
```

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405

Reviewed By: zhichao-cao

Differential Revision: D29190509

Pulled By: anand1976

fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
2021-06-18 09:35:59 -07:00
sdong 674cf41732 Divide block_based_table_reader.cc (#6527)
Summary:
block_based_table_reader.cc is a giant file, which makes it hard for users to navigate the code. Divide the files to multiple files.
Some class templates cannot be moved to .cc file. They are moved to .h files. It is still better than including them all in block_based_table_reader.cc.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6527

Test Plan: "make all check" and "make release". Also build using cmake.

Differential Revision: D20428455

fbshipit-source-id: ca713c698469f07f35bc0c271358c0874ed4eb28
2020-03-12 21:41:50 -07:00