This commit is contained in:
Ankit Gupta 2014-05-18 22:41:00 -07:00
commit 5a1b41cee1
40 changed files with 3305 additions and 253 deletions

1
.gitignore vendored
View file

@ -19,6 +19,7 @@ build_config.mk
*.*jnilib*
*.d-e
*.o-*
*.swp
ldb
manifest_dump

20
.travis.yml Normal file
View file

@ -0,0 +1,20 @@
language: cpp
compiler: gcc
before_install:
# As of this writing (10 May 2014) the Travis build environment is Ubuntu 12.04,
# which needs the following ugly dependency incantations to build RocksDB:
- sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
- sudo apt-get update -qq
- sudo apt-get install -y -qq gcc-4.8 g++-4.8 zlib1g-dev libbz2-dev libsnappy-dev libjemalloc-dev
- sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.8 50
- sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.8 50
- wget https://gflags.googlecode.com/files/libgflags0_2.0-1_amd64.deb
- sudo dpkg -i libgflags0_2.0-1_amd64.deb
- wget https://gflags.googlecode.com/files/libgflags-dev_2.0-1_amd64.deb
- sudo dpkg -i libgflags-dev_2.0-1_amd64.deb
# Lousy hack to disable use and testing of fallocate, which doesn't behave quite
# as EnvPosixTest::AllocateTest expects within the Travis OpenVZ environment.
- sed -i "s/fallocate(/HACK_NO_fallocate(/" build_tools/build_detect_platform
script: make check -j8
notifications:
email: false

View file

@ -5,6 +5,9 @@
### Public API changes
* Replaced ColumnFamilyOptions::table_properties_collectors with ColumnFamilyOptions::table_properties_collector_factories
### New Features
* Hash index for block-based table will be materialized and reconstructed more efficiently. Previously hash index is constructed by scanning the whole table during every table open.
## 3.0.0 (05/05/2014)
### Public API changes

View file

@ -1,5 +1,7 @@
## RocksDB: A Persistent Key-Value Store for Flash and RAM Storage
[![Build Status](https://travis-ci.org/facebook/rocksdb.svg?branch=master)](https://travis-ci.org/facebook/rocksdb)
RocksDB is developed and maintained by Facebook Database Engineering Team.
It is built on on earlier work on LevelDB by Sanjay Ghemawat (sanjay@google.com)
and Jeff Dean (jeff@google.com)

View file

@ -8,7 +8,13 @@
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/compaction.h"
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <vector>
#include "db/column_family.h"
#include "util/logging.h"
namespace rocksdb {
@ -191,71 +197,51 @@ void Compaction::ResetNextCompactionIndex() {
input_version_->ResetNextCompactionIndex(level_);
}
/*
for sizes >=10TB, print "XXTB"
for sizes >=10GB, print "XXGB"
etc.
*/
static void FileSizeSummary(unsigned long long sz, char* output, int len) {
const unsigned long long ull10 = 10;
if (sz >= ull10<<40) {
snprintf(output, len, "%lluTB", sz>>40);
} else if (sz >= ull10<<30) {
snprintf(output, len, "%lluGB", sz>>30);
} else if (sz >= ull10<<20) {
snprintf(output, len, "%lluMB", sz>>20);
} else if (sz >= ull10<<10) {
snprintf(output, len, "%lluKB", sz>>10);
} else {
snprintf(output, len, "%lluB", sz);
}
}
static int InputSummary(std::vector<FileMetaData*>& files, char* output,
int len) {
namespace {
int InputSummary(const std::vector<FileMetaData*>& files, char* output,
int len) {
*output = '\0';
int write = 0;
for (unsigned int i = 0; i < files.size(); i++) {
int sz = len - write;
int ret;
char sztxt[16];
FileSizeSummary((unsigned long long)files.at(i)->file_size, sztxt, 16);
ret = snprintf(output + write, sz, "%lu(%s) ",
(unsigned long)files.at(i)->number,
AppendHumanBytes(files.at(i)->file_size, sztxt, 16);
ret = snprintf(output + write, sz, "%" PRIu64 "(%s) ", files.at(i)->number,
sztxt);
if (ret < 0 || ret >= sz)
break;
if (ret < 0 || ret >= sz) break;
write += ret;
}
return write;
// if files.size() is non-zero, overwrite the last space
return write - !!files.size();
}
} // namespace
void Compaction::Summary(char* output, int len) {
int write = snprintf(output, len,
"Base version %lu Base level %d, seek compaction:%d, inputs: [",
(unsigned long)input_version_->GetVersionNumber(),
level_,
seek_compaction_);
int write =
snprintf(output, len, "Base version %" PRIu64
" Base level %d, seek compaction:%d, inputs: [",
input_version_->GetVersionNumber(), level_, seek_compaction_);
if (write < 0 || write >= len) {
return;
}
write += InputSummary(inputs_[0], output+write, len-write);
write += InputSummary(inputs_[0], output + write, len - write);
if (write < 0 || write >= len) {
return;
}
write += snprintf(output+write, len-write, "],[");
write += snprintf(output + write, len - write, "], [");
if (write < 0 || write >= len) {
return;
}
write += InputSummary(inputs_[1], output+write, len-write);
write += InputSummary(inputs_[1], output + write, len - write);
if (write < 0 || write >= len) {
return;
}
snprintf(output+write, len-write, "]");
snprintf(output + write, len - write, "]");
}
} // namespace rocksdb

View file

@ -159,14 +159,7 @@ DEFINE_int32(duration, 0, "Time in seconds for the random-ops tests to run."
DEFINE_int32(value_size, 100, "Size of each value");
// the maximum size of key in bytes
static const int kMaxKeySize = 128;
static bool ValidateKeySize(const char* flagname, int32_t value) {
if (value > kMaxKeySize) {
fprintf(stderr, "Invalid value for --%s: %d, must be < %d\n",
flagname, value, kMaxKeySize);
return false;
}
return true;
}

View file

@ -2365,9 +2365,9 @@ TEST(DBTest, NumImmutableMemTable) {
ASSERT_EQ(num, "0");
ASSERT_TRUE(dbfull()->GetProperty(
handles_[1], "rocksdb.cur-size-active-mem-table", &num));
// "208" is the size of the metadata of an empty skiplist, this would
// "200" is the size of the metadata of an empty skiplist, this would
// break if we change the default skiplist implementation
ASSERT_EQ(num, "208");
ASSERT_EQ(num, "200");
SetPerfLevel(kDisable);
} while (ChangeCompactOptions());
}

View file

@ -7,9 +7,9 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#define __STDC_FORMAT_MACROS
#include "db/version_set.h"
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <algorithm>
#include <map>
@ -1151,6 +1151,10 @@ const char* Version::LevelSummary(LevelSummaryStorage* scratch) const {
if (ret < 0 || ret >= sz) break;
len += ret;
}
if (len > 0) {
// overwrite the last space
--len;
}
snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, "]");
return scratch->buffer;
}
@ -1160,16 +1164,20 @@ const char* Version::LevelFileSummary(FileSummaryStorage* scratch,
int len = snprintf(scratch->buffer, sizeof(scratch->buffer), "files_size[");
for (const auto& f : files_[level]) {
int sz = sizeof(scratch->buffer) - len;
char sztxt[16];
AppendHumanBytes(f->file_size, sztxt, 16);
int ret = snprintf(scratch->buffer + len, sz,
"#%lu(seq=%lu,sz=%lu,%lu) ",
(unsigned long)f->number,
(unsigned long)f->smallest_seqno,
(unsigned long)f->file_size,
(unsigned long)f->being_compacted);
"#%" PRIu64 "(seq=%" PRIu64 ",sz=%s,%d) ", f->number,
f->smallest_seqno, sztxt,
static_cast<int>(f->being_compacted));
if (ret < 0 || ret >= sz)
break;
len += ret;
}
// overwrite the last space (only if files_[level].size() is non-zero)
if (files_[level].size() && len > 0) {
--len;
}
snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, "]");
return scratch->buffer;
}

View file

@ -18,9 +18,6 @@
namespace rocksdb {
static const std::string kProto = "hdfs://";
static const std::string pathsep = "/";
// Thrown during execution when there is an issue with the supplied
// arguments.
class HdfsUsageException : public std::exception { };
@ -58,20 +55,23 @@ class HdfsEnv : public Env {
}
virtual Status NewSequentialFile(const std::string& fname,
SequentialFile** result);
std::unique_ptr<SequentialFile>* result,
const EnvOptions& options);
virtual Status NewRandomAccessFile(const std::string& fname,
RandomAccessFile** result);
std::unique_ptr<RandomAccessFile>* result,
const EnvOptions& options);
virtual Status NewWritableFile(const std::string& fname,
WritableFile** result);
std::unique_ptr<WritableFile>* result,
const EnvOptions& options);
virtual Status NewRandomRWFile(const std::string& fname,
unique_ptr<RandomRWFile>* result,
std::unique_ptr<RandomRWFile>* result,
const EnvOptions& options);
virtual Status NewDirectory(const std::string& name,
unique_ptr<Directory>* result);
std::unique_ptr<Directory>* result);
virtual bool FileExists(const std::string& fname);
@ -97,7 +97,8 @@ class HdfsEnv : public Env {
virtual Status UnlockFile(FileLock* lock);
virtual Status NewLogger(const std::string& fname, Logger** result);
virtual Status NewLogger(const std::string& fname,
std::shared_ptr<Logger>* result);
virtual void Schedule(void (*function)(void* arg), void* arg,
Priority pri = LOW) {
@ -161,6 +162,9 @@ class HdfsEnv : public Env {
// object here so that we can use posix timers,
// posix threads, etc.
static const std::string kProto;
static const std::string pathsep;
/**
* If the URI is specified of the form hdfs://server:port/path,
* then connect to the specified cluster

View file

@ -97,7 +97,6 @@ class Status {
// Returns the string "OK" for success.
std::string ToString() const;
private:
enum Code {
kOk = 0,
kNotFound = 1,
@ -110,6 +109,10 @@ class Status {
kShutdownInProgress = 8
};
Code code() const {
return code_;
}
private:
// A nullptr state_ (which is always the case for OK) means the message
// is empty.
// of the following form:
@ -118,9 +121,6 @@ class Status {
Code code_;
const char* state_;
Code code() const {
return code_;
}
explicit Status(Code code) : code_(code), state_(nullptr) { }
Status(Code code, const Slice& msg, const Slice& msg2);
static const char* CopyState(const char* s);

View file

@ -15,6 +15,8 @@
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include "db/dbformat.h"
@ -41,6 +43,8 @@
namespace rocksdb {
extern const std::string kHashIndexPrefixesBlock;
extern const std::string kHashIndexPrefixesMetadataBlock;
namespace {
typedef BlockBasedTableOptions::IndexType IndexType;
@ -57,6 +61,14 @@ typedef BlockBasedTableOptions::IndexType IndexType;
// design that just works.
class IndexBuilder {
public:
// Index builder will construct a set of blocks which contain:
// 1. One primary index block.
// 2. (Optional) a set of metablocks that contains the metadata of the
// primary index.
struct IndexBlocks {
Slice index_block_contents;
std::unordered_map<std::string, Slice> meta_blocks;
};
explicit IndexBuilder(const Comparator* comparator)
: comparator_(comparator) {}
@ -72,15 +84,19 @@ class IndexBuilder {
// the last one in the table
//
// REQUIRES: Finish() has not yet been called.
virtual void AddEntry(std::string* last_key_in_current_block,
const Slice* first_key_in_next_block,
const BlockHandle& block_handle) = 0;
virtual void AddIndexEntry(std::string* last_key_in_current_block,
const Slice* first_key_in_next_block,
const BlockHandle& block_handle) = 0;
// This method will be called whenever a key is added. The subclasses may
// override OnKeyAdded() if they need to collect additional information.
virtual void OnKeyAdded(const Slice& key) {}
// Inform the index builder that all entries has been written. Block builder
// may therefore perform any operation required for block finalization.
//
// REQUIRES: Finish() has not yet been called.
virtual Slice Finish() = 0;
virtual Status Finish(IndexBlocks* index_blocks) = 0;
// Get the estimated size for index block.
virtual size_t EstimatedSize() const = 0;
@ -103,9 +119,9 @@ class ShortenedIndexBuilder : public IndexBuilder {
: IndexBuilder(comparator),
index_block_builder_(1 /* block_restart_interval == 1 */, comparator) {}
virtual void AddEntry(std::string* last_key_in_current_block,
const Slice* first_key_in_next_block,
const BlockHandle& block_handle) override {
virtual void AddIndexEntry(std::string* last_key_in_current_block,
const Slice* first_key_in_next_block,
const BlockHandle& block_handle) override {
if (first_key_in_next_block != nullptr) {
comparator_->FindShortestSeparator(last_key_in_current_block,
*first_key_in_next_block);
@ -118,7 +134,10 @@ class ShortenedIndexBuilder : public IndexBuilder {
index_block_builder_.Add(*last_key_in_current_block, handle_encoding);
}
virtual Slice Finish() override { return index_block_builder_.Finish(); }
virtual Status Finish(IndexBlocks* index_blocks) {
index_blocks->index_block_contents = index_block_builder_.Finish();
return Status::OK();
}
virtual size_t EstimatedSize() const {
return index_block_builder_.CurrentSizeEstimate();
@ -128,38 +147,125 @@ class ShortenedIndexBuilder : public IndexBuilder {
BlockBuilder index_block_builder_;
};
// FullKeyIndexBuilder is also based on BlockBuilder. It works pretty much like
// ShortenedIndexBuilder, but preserves the full key instead the substitude key.
class FullKeyIndexBuilder : public IndexBuilder {
// HashIndexBuilder contains a binary-searchable primary index and the
// metadata for secondary hash index construction.
// The metadata for hash index consists two parts:
// - a metablock that compactly contains a sequence of prefixes. All prefixes
// are stored consectively without any metadata (like, prefix sizes) being
// stored, which is kept in the other metablock.
// - a metablock contains the metadata of the prefixes, including prefix size,
// restart index and number of block it spans. The format looks like:
//
// +-----------------+---------------------------+---------------------+ <=prefix 1
// | length: 4 bytes | restart interval: 4 bytes | num-blocks: 4 bytes |
// +-----------------+---------------------------+---------------------+ <=prefix 2
// | length: 4 bytes | restart interval: 4 bytes | num-blocks: 4 bytes |
// +-----------------+---------------------------+---------------------+
// | |
// | .... |
// | |
// +-----------------+---------------------------+---------------------+ <=prefix n
// | length: 4 bytes | restart interval: 4 bytes | num-blocks: 4 bytes |
// +-----------------+---------------------------+---------------------+
//
// The reason of separating these two metablocks is to enable the efficiently
// reuse the first metablock during hash index construction without unnecessary
// data copy or small heap allocations for prefixes.
class HashIndexBuilder : public IndexBuilder {
public:
explicit FullKeyIndexBuilder(const Comparator* comparator)
explicit HashIndexBuilder(const Comparator* comparator,
const SliceTransform* hash_key_extractor)
: IndexBuilder(comparator),
index_block_builder_(1 /* block_restart_interval == 1 */, comparator) {}
primary_index_builder(comparator),
hash_key_extractor_(hash_key_extractor) {}
virtual void AddEntry(std::string* last_key_in_current_block,
const Slice* first_key_in_next_block,
const BlockHandle& block_handle) override {
std::string handle_encoding;
block_handle.EncodeTo(&handle_encoding);
index_block_builder_.Add(*last_key_in_current_block, handle_encoding);
virtual void AddIndexEntry(std::string* last_key_in_current_block,
const Slice* first_key_in_next_block,
const BlockHandle& block_handle) override {
++current_restart_index_;
primary_index_builder.AddIndexEntry(last_key_in_current_block,
first_key_in_next_block, block_handle);
}
virtual Slice Finish() override { return index_block_builder_.Finish(); }
virtual void OnKeyAdded(const Slice& key) override {
auto key_prefix = hash_key_extractor_->Transform(key);
bool is_first_entry = pending_block_num_ == 0;
// Keys may share the prefix
if (is_first_entry || pending_entry_prefix_ != key_prefix) {
if (!is_first_entry) {
FlushPendingPrefix();
}
// need a hard copy otherwise the underlying data changes all the time.
// TODO(kailiu) ToString() is expensive. We may speed up can avoid data
// copy.
pending_entry_prefix_ = key_prefix.ToString();
pending_block_num_ = 1;
pending_entry_index_ = current_restart_index_;
} else {
// entry number increments when keys share the prefix reside in
// differnt data blocks.
auto last_restart_index = pending_entry_index_ + pending_block_num_ - 1;
assert(last_restart_index <= current_restart_index_);
if (last_restart_index != current_restart_index_) {
++pending_block_num_;
}
}
}
virtual Status Finish(IndexBlocks* index_blocks) {
FlushPendingPrefix();
primary_index_builder.Finish(index_blocks);
index_blocks->meta_blocks.insert(
{kHashIndexPrefixesBlock.c_str(), prefix_block_});
index_blocks->meta_blocks.insert(
{kHashIndexPrefixesMetadataBlock.c_str(), prefix_meta_block_});
return Status::OK();
}
virtual size_t EstimatedSize() const {
return index_block_builder_.CurrentSizeEstimate();
return primary_index_builder.EstimatedSize() + prefix_block_.size() +
prefix_meta_block_.size();
}
private:
BlockBuilder index_block_builder_;
void FlushPendingPrefix() {
prefix_block_.append(pending_entry_prefix_.data(),
pending_entry_prefix_.size());
PutVarint32(&prefix_meta_block_, pending_entry_prefix_.size());
PutVarint32(&prefix_meta_block_, pending_entry_index_);
PutVarint32(&prefix_meta_block_, pending_block_num_);
}
ShortenedIndexBuilder primary_index_builder;
const SliceTransform* hash_key_extractor_;
// stores a sequence of prefixes
std::string prefix_block_;
// stores the metadata of prefixes
std::string prefix_meta_block_;
// The following 3 variables keeps unflushed prefix and its metadata.
// The details of block_num and entry_index can be found in
// "block_hash_index.{h,cc}"
uint32_t pending_block_num_ = 0;
uint32_t pending_entry_index_ = 0;
std::string pending_entry_prefix_;
uint64_t current_restart_index_ = 0;
};
// Create a index builder based on its type.
IndexBuilder* CreateIndexBuilder(IndexType type, const Comparator* comparator) {
IndexBuilder* CreateIndexBuilder(IndexType type, const Comparator* comparator,
const SliceTransform* prefix_extractor) {
switch (type) {
case BlockBasedTableOptions::kBinarySearch: {
return new ShortenedIndexBuilder(comparator);
}
case BlockBasedTableOptions::kHashSearch: {
return new HashIndexBuilder(comparator, prefix_extractor);
}
default: {
assert(!"Do not recognize the index type ");
return nullptr;
@ -249,7 +355,7 @@ extern const uint64_t kLegacyBlockBasedTableMagicNumber = 0xdb4775248b80fb57ull;
class BlockBasedTableBuilder::BlockBasedTablePropertiesCollector
: public TablePropertiesCollector {
public:
BlockBasedTablePropertiesCollector(
explicit BlockBasedTablePropertiesCollector(
BlockBasedTableOptions::IndexType index_type)
: index_type_(index_type) {}
@ -288,6 +394,8 @@ struct BlockBasedTableBuilder::Rep {
uint64_t offset = 0;
Status status;
BlockBuilder data_block;
InternalKeySliceTransform internal_prefix_transform;
std::unique_ptr<IndexBuilder> index_builder;
std::string last_key;
@ -316,8 +424,9 @@ struct BlockBasedTableBuilder::Rep {
internal_comparator(icomparator),
file(f),
data_block(options, &internal_comparator),
index_builder(
CreateIndexBuilder(index_block_type, &internal_comparator)),
internal_prefix_transform(options.prefix_extractor.get()),
index_builder(CreateIndexBuilder(index_block_type, &internal_comparator,
&this->internal_prefix_transform)),
compression_type(compression_type),
checksum_type(checksum_type),
filter_block(opt.filter_policy == nullptr
@ -335,16 +444,13 @@ struct BlockBasedTableBuilder::Rep {
}
};
// TODO(sdong): Currently only write out binary search index. In
// BlockBasedTableReader, Hash index will be built using binary search index.
BlockBasedTableBuilder::BlockBasedTableBuilder(
const Options& options, const BlockBasedTableOptions& table_options,
const InternalKeyComparator& internal_comparator, WritableFile* file,
CompressionType compression_type)
: rep_(new Rep(options, internal_comparator, file,
table_options.flush_block_policy_factory.get(),
compression_type,
BlockBasedTableOptions::IndexType::kBinarySearch,
compression_type, table_options.index_type,
table_options.checksum)) {
if (rep_->filter_block != nullptr) {
rep_->filter_block->StartBlock(0);
@ -370,7 +476,7 @@ void BlockBasedTableBuilder::Add(const Slice& key, const Slice& value) {
if (r->props.num_entries > 0) {
assert(r->internal_comparator.Compare(key, Slice(r->last_key)) > 0);
}
r->index_builder->OnKeyAdded(key);
auto should_flush = r->flush_block_policy->Update(key, value);
if (should_flush) {
assert(!r->data_block.empty());
@ -385,7 +491,7 @@ void BlockBasedTableBuilder::Add(const Slice& key, const Slice& value) {
// entries in the first block and < all entries in subsequent
// blocks.
if (ok()) {
r->index_builder->AddEntry(&r->last_key, &key, r->pending_handle);
r->index_builder->AddIndexEntry(&r->last_key, &key, r->pending_handle);
}
}
@ -561,24 +667,36 @@ Status BlockBasedTableBuilder::Finish() {
// block, we will finish writing all index entries here and flush them
// to storage after metaindex block is written.
if (ok() && !empty_data_block) {
r->index_builder->AddEntry(&r->last_key, nullptr /* no next data block */,
r->pending_handle);
r->index_builder->AddIndexEntry(
&r->last_key, nullptr /* no next data block */, r->pending_handle);
}
IndexBuilder::IndexBlocks index_blocks;
auto s = r->index_builder->Finish(&index_blocks);
if (!s.ok()) {
return s;
}
// Write meta blocks and metaindex block with the following order.
// 1. [meta block: filter]
// 2. [meta block: properties]
// 3. [metaindex block]
if (ok()) {
MetaIndexBuilder meta_index_builer;
// 2. [other meta blocks]
// 3. [meta block: properties]
// 4. [metaindex block]
// write meta blocks
MetaIndexBuilder meta_index_builder;
for (const auto& item : index_blocks.meta_blocks) {
BlockHandle block_handle;
WriteBlock(item.second, &block_handle);
meta_index_builder.Add(item.first, block_handle);
}
// Write filter block.
if (ok()) {
if (r->filter_block != nullptr) {
// Add mapping from "<filter_block_prefix>.Name" to location
// of filter data.
std::string key = BlockBasedTable::kFilterBlockPrefix;
key.append(r->options.filter_policy->Name());
meta_index_builer.Add(key, filter_block_handle);
meta_index_builder.Add(key, filter_block_handle);
}
// Write properties block.
@ -605,20 +723,16 @@ Status BlockBasedTableBuilder::Finish() {
&properties_block_handle
);
meta_index_builer.Add(kPropertiesBlock,
properties_block_handle);
meta_index_builder.Add(kPropertiesBlock, properties_block_handle);
} // end of properties block writing
WriteRawBlock(
meta_index_builer.Finish(),
kNoCompression,
&metaindex_block_handle
);
} // meta blocks and metaindex block.
} // meta blocks
// Write index block
if (ok()) {
WriteBlock(r->index_builder->Finish(), &index_block_handle);
// flush the meta index block
WriteRawBlock(meta_index_builder.Finish(), kNoCompression,
&metaindex_block_handle);
WriteBlock(index_blocks.index_block_contents, &index_block_handle);
}
// Write footer
@ -685,7 +799,6 @@ uint64_t BlockBasedTableBuilder::FileSize() const {
return rep_->offset;
}
const std::string BlockBasedTable::kFilterBlockPrefix =
"filter.";
const std::string BlockBasedTable::kFilterBlockPrefix = "filter.";
} // namespace rocksdb

View file

@ -56,5 +56,8 @@ TableFactory* NewBlockBasedTableFactory(
const std::string BlockBasedTablePropertyNames::kIndexType =
"rocksdb.block.based.table.index.type";
const std::string kHashIndexPrefixesBlock = "rocksdb.hashindex.prefixes";
const std::string kHashIndexPrefixesMetadataBlock =
"rocksdb.hashindex.metadata";
} // namespace rocksdb

View file

@ -8,9 +8,11 @@
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <memory>
#include <stdint.h>
#include <memory>
#include <string>
#include "rocksdb/flush_block_policy.h"
#include "rocksdb/options.h"
#include "rocksdb/table.h"
@ -45,4 +47,7 @@ class BlockBasedTableFactory : public TableFactory {
BlockBasedTableOptions table_options_;
};
extern const std::string kHashIndexPrefixesBlock;
extern const std::string kHashIndexPrefixesMetadataBlock;
} // namespace rocksdb

View file

@ -38,6 +38,8 @@
namespace rocksdb {
extern const uint64_t kBlockBasedTableMagicNumber;
extern const std::string kHashIndexPrefixesBlock;
extern const std::string kHashIndexPrefixesMetadataBlock;
using std::unique_ptr;
typedef BlockBasedTable::IndexReader IndexReader;
@ -186,19 +188,13 @@ class BinarySearchIndexReader : public IndexReader {
// Index that leverages an internal hash table to quicken the lookup for a given
// key.
// @param data_iter_gen, equavalent to BlockBasedTable::NewIterator(). But that
// functions requires index to be initalized. To avoid this problem external
// caller will pass a function that can create the iterator over the entries
// without the table to be fully initialized.
class HashIndexReader : public IndexReader {
public:
static Status Create(RandomAccessFile* file, const Footer& footer,
const BlockHandle& index_handle, Env* env,
static Status Create(const SliceTransform* hash_key_extractor,
const Footer& footer, RandomAccessFile* file, Env* env,
const Comparator* comparator,
std::function<Iterator*(Iterator*)> data_iter_gen,
const SliceTransform* prefix_extractor,
IndexReader** index_reader) {
assert(prefix_extractor);
const BlockHandle& index_handle,
Iterator* meta_index_iter, IndexReader** index_reader) {
Block* index_block = nullptr;
auto s = ReadBlockFromFile(file, footer, ReadOptions(), index_handle,
&index_block, env);
@ -207,14 +203,57 @@ class HashIndexReader : public IndexReader {
return s;
}
*index_reader = new HashIndexReader(comparator, index_block);
std::unique_ptr<Iterator> index_iter(index_block->NewIterator(nullptr));
std::unique_ptr<Iterator> data_iter(
data_iter_gen(index_block->NewIterator(nullptr)));
auto hash_index = CreateBlockHashIndex(index_iter.get(), data_iter.get(),
index_block->NumRestarts(),
comparator, prefix_extractor);
index_block->SetBlockHashIndex(hash_index);
// Get prefixes block
BlockHandle prefixes_handle;
s = FindMetaBlock(meta_index_iter, kHashIndexPrefixesBlock,
&prefixes_handle);
if (!s.ok()) {
return s;
}
// Get index metadata block
BlockHandle prefixes_meta_handle;
s = FindMetaBlock(meta_index_iter, kHashIndexPrefixesMetadataBlock,
&prefixes_meta_handle);
if (!s.ok()) {
return s;
}
// Read contents for the blocks
BlockContents prefixes_contents;
s = ReadBlockContents(file, footer, ReadOptions(), prefixes_handle,
&prefixes_contents, env, true /* do decompression */);
if (!s.ok()) {
return s;
}
BlockContents prefixes_meta_contents;
s = ReadBlockContents(file, footer, ReadOptions(), prefixes_meta_handle,
&prefixes_meta_contents, env,
true /* do decompression */);
if (!s.ok()) {
if (prefixes_contents.heap_allocated) {
delete[] prefixes_contents.data.data();
}
return s;
}
auto new_index_reader =
new HashIndexReader(comparator, index_block, prefixes_contents);
BlockHashIndex* hash_index = nullptr;
s = CreateBlockHashIndex(hash_key_extractor, prefixes_contents.data,
prefixes_meta_contents.data, &hash_index);
if (!s.ok()) {
return s;
}
new_index_reader->index_block_->SetBlockHashIndex(hash_index);
*index_reader = new_index_reader;
// release resources
if (prefixes_meta_contents.heap_allocated) {
delete[] prefixes_meta_contents.data.data();
}
return s;
}
@ -225,11 +264,22 @@ class HashIndexReader : public IndexReader {
virtual size_t size() const override { return index_block_->size(); }
private:
HashIndexReader(const Comparator* comparator, Block* index_block)
: IndexReader(comparator), index_block_(index_block) {
HashIndexReader(const Comparator* comparator, Block* index_block,
const BlockContents& prefixes_contents)
: IndexReader(comparator),
index_block_(index_block),
prefixes_contents_(prefixes_contents) {
assert(index_block_ != nullptr);
}
~HashIndexReader() {
if (prefixes_contents_.heap_allocated) {
delete[] prefixes_contents_.data.data();
}
}
std::unique_ptr<Block> index_block_;
BlockContents prefixes_contents_;
};
@ -408,7 +458,7 @@ Status BlockBasedTable::Open(const Options& options, const EnvOptions& soptions,
// and with a same life-time as this table object.
IndexReader* index_reader = nullptr;
// TODO: we never really verify check sum for index block
s = new_table->CreateIndexReader(&index_reader);
s = new_table->CreateIndexReader(&index_reader, meta_iter.get());
if (s.ok()) {
rep->index_reader.reset(index_reader);
@ -417,10 +467,9 @@ Status BlockBasedTable::Open(const Options& options, const EnvOptions& soptions,
if (rep->options.filter_policy) {
std::string key = kFilterBlockPrefix;
key.append(rep->options.filter_policy->Name());
meta_iter->Seek(key);
if (meta_iter->Valid() && meta_iter->key() == Slice(key)) {
rep->filter.reset(ReadFilter(meta_iter->value(), rep));
BlockHandle handle;
if (FindMetaBlock(meta_iter.get(), key, &handle).ok()) {
rep->filter.reset(ReadFilter(handle, rep));
}
}
} else {
@ -617,16 +666,9 @@ Status BlockBasedTable::PutDataBlockToCache(
return s;
}
FilterBlockReader* BlockBasedTable::ReadFilter (
const Slice& filter_handle_value,
BlockBasedTable::Rep* rep,
size_t* filter_size) {
Slice v = filter_handle_value;
BlockHandle filter_handle;
if (!filter_handle.DecodeFrom(&v).ok()) {
return nullptr;
}
FilterBlockReader* BlockBasedTable::ReadFilter(const BlockHandle& filter_handle,
BlockBasedTable::Rep* rep,
size_t* filter_size) {
// TODO: We might want to unify with ReadBlockFromFile() if we start
// requiring checksum verification in Table::Open.
ReadOptions opt;
@ -687,10 +729,9 @@ BlockBasedTable::CachableEntry<FilterBlockReader> BlockBasedTable::GetFilter(
if (s.ok()) {
std::string filter_block_key = kFilterBlockPrefix;
filter_block_key.append(rep_->options.filter_policy->Name());
iter->Seek(filter_block_key);
if (iter->Valid() && iter->key() == Slice(filter_block_key)) {
filter = ReadFilter(iter->value(), rep_, &filter_size);
BlockHandle handle;
if (FindMetaBlock(iter.get(), filter_block_key, &handle).ok()) {
filter = ReadFilter(handle, rep_, &filter_size);
assert(filter);
assert(filter_size > 0);
@ -1032,7 +1073,8 @@ bool BlockBasedTable::TEST_KeyInCache(const ReadOptions& options,
// 3. options
// 4. internal_comparator
// 5. index_type
Status BlockBasedTable::CreateIndexReader(IndexReader** index_reader) {
Status BlockBasedTable::CreateIndexReader(IndexReader** index_reader,
Iterator* preloaded_meta_index_iter) {
// Some old version of block-based tables don't have index type present in
// table properties. If that's the case we can safely use the kBinarySearch.
auto index_type_on_file = BlockBasedTableOptions::kBinarySearch;
@ -1045,41 +1087,45 @@ Status BlockBasedTable::CreateIndexReader(IndexReader** index_reader) {
}
}
// TODO(sdong): Currently binary index is the only index type we support in
// files. Hash index is built on top of binary index too.
if (index_type_on_file != BlockBasedTableOptions::kBinarySearch) {
return Status::NotSupported("File Contains not supported index type: ",
std::to_string(index_type_on_file));
}
auto file = rep_->file.get();
auto env = rep_->options.env;
auto comparator = &rep_->internal_comparator;
const Footer& footer = rep_->footer;
switch (rep_->index_type) {
switch (index_type_on_file) {
case BlockBasedTableOptions::kBinarySearch: {
return BinarySearchIndexReader::Create(
file, footer, footer.index_handle(), env, comparator, index_reader);
}
case BlockBasedTableOptions::kHashSearch: {
std::unique_ptr<Block> meta_guard;
std::unique_ptr<Iterator> meta_iter_guard;
auto meta_index_iter = preloaded_meta_index_iter;
if (meta_index_iter == nullptr) {
auto s = ReadMetaBlock(rep_, &meta_guard, &meta_iter_guard);
if (!s.ok()) {
return Status::Corruption("Unable to read the metaindex block");
}
meta_index_iter = meta_iter_guard.get();
}
// We need to wrap data with internal_prefix_transform to make sure it can
// handle prefix correctly.
if (rep_->options.prefix_extractor == nullptr) {
return Status::InvalidArgument(
"BlockBasedTableOptions::kHashSearch requires "
"options.prefix_extractor to be set.");
}
rep_->internal_prefix_transform.reset(
new InternalKeySliceTransform(rep_->options.prefix_extractor.get()));
return HashIndexReader::Create(
file, footer, footer.index_handle(), env, comparator,
[&](Iterator* index_iter) {
return NewTwoLevelIterator(new BlockEntryIteratorState(this,
ReadOptions(), nullptr), index_iter);
},
rep_->internal_prefix_transform.get(), index_reader);
rep_->internal_prefix_transform.get(), footer, file, env, comparator,
footer.index_handle(), meta_index_iter, index_reader);
}
default: {
std::string error_message =
"Unrecognized index type: " + std::to_string(rep_->index_type);
// equivalent to assert(false), but more informative.
assert(!error_message.c_str());
return Status::InvalidArgument(error_message.c_str());
}
}

View file

@ -160,8 +160,13 @@ class BlockBasedTable : public TableReader {
friend class BlockBasedTableBuilder;
void ReadMeta(const Footer& footer);
void ReadFilter(const Slice& filter_handle_value);
Status CreateIndexReader(IndexReader** index_reader);
// Create a index reader based on the index type stored in the table.
// Optionally, user can pass a preloaded meta_index_iter for the index that
// need to access extra meta blocks for index construction. This parameter
// helps avoid re-reading meta index block if caller already created one.
Status CreateIndexReader(IndexReader** index_reader,
Iterator* preloaded_meta_index_iter = nullptr);
// Read the meta block from sst.
static Status ReadMetaBlock(
@ -170,10 +175,8 @@ class BlockBasedTable : public TableReader {
std::unique_ptr<Iterator>* iter);
// Create the filter from the filter block.
static FilterBlockReader* ReadFilter(
const Slice& filter_handle_value,
Rep* rep,
size_t* filter_size = nullptr);
static FilterBlockReader* ReadFilter(const BlockHandle& filter_handle,
Rep* rep, size_t* filter_size = nullptr);
static void SetupCacheKeyPrefix(Rep* rep);

View file

@ -3,21 +3,62 @@
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#include "table/block_hash_index.h"
#include <algorithm>
#include "table/block_hash_index.h"
#include "rocksdb/comparator.h"
#include "rocksdb/iterator.h"
#include "rocksdb/slice_transform.h"
#include "util/coding.h"
namespace rocksdb {
BlockHashIndex* CreateBlockHashIndex(Iterator* index_iter, Iterator* data_iter,
const uint32_t num_restarts,
const Comparator* comparator,
const SliceTransform* hash_key_extractor) {
Status CreateBlockHashIndex(const SliceTransform* hash_key_extractor,
const Slice& prefixes, const Slice& prefix_meta,
BlockHashIndex** hash_index) {
uint64_t pos = 0;
auto meta_pos = prefix_meta;
Status s;
*hash_index = new BlockHashIndex(
hash_key_extractor,
false /* external module manages memory space for prefixes */);
while (!meta_pos.empty()) {
uint32_t prefix_size = 0;
uint32_t entry_index = 0;
uint32_t num_blocks = 0;
if (!GetVarint32(&meta_pos, &prefix_size) ||
!GetVarint32(&meta_pos, &entry_index) ||
!GetVarint32(&meta_pos, &num_blocks)) {
s = Status::Corruption(
"Corrupted prefix meta block: unable to read from it.");
break;
}
Slice prefix(prefixes.data() + pos, prefix_size);
(*hash_index)->Add(prefix, entry_index, num_blocks);
pos += prefix_size;
}
if (s.ok() && pos != prefixes.size()) {
s = Status::Corruption("Corrupted prefix meta block");
}
if (!s.ok()) {
delete *hash_index;
}
return s;
}
BlockHashIndex* CreateBlockHashIndexOnTheFly(
Iterator* index_iter, Iterator* data_iter, const uint32_t num_restarts,
const Comparator* comparator, const SliceTransform* hash_key_extractor) {
assert(hash_key_extractor);
auto hash_index = new BlockHashIndex(hash_key_extractor);
auto hash_index = new BlockHashIndex(
hash_key_extractor,
true /* hash_index will copy prefix when Add() is called */);
uint64_t current_restart_index = 0;
std::string pending_entry_prefix;
@ -88,12 +129,16 @@ BlockHashIndex* CreateBlockHashIndex(Iterator* index_iter, Iterator* data_iter,
bool BlockHashIndex::Add(const Slice& prefix, uint32_t restart_index,
uint32_t num_blocks) {
auto prefix_ptr = arena_.Allocate(prefix.size());
std::copy(prefix.data() /* begin */, prefix.data() + prefix.size() /* end */,
prefix_ptr /* destination */);
auto result =
restart_indices_.insert({Slice(prefix_ptr, prefix.size()),
RestartIndex(restart_index, num_blocks)});
auto prefix_to_insert = prefix;
if (kOwnPrefixes) {
auto prefix_ptr = arena_.Allocate(prefix.size());
std::copy(prefix.data() /* begin */,
prefix.data() + prefix.size() /* end */,
prefix_ptr /* destination */);
prefix_to_insert = Slice(prefix_ptr, prefix.size());
}
auto result = restart_indices_.insert(
{prefix_to_insert, RestartIndex(restart_index, num_blocks)});
return result.second;
}

View file

@ -7,6 +7,7 @@
#include <string>
#include <unordered_map>
#include "rocksdb/status.h"
#include "util/arena.h"
#include "util/murmurhash.h"
@ -35,8 +36,12 @@ class BlockHashIndex {
uint32_t num_blocks = 1;
};
explicit BlockHashIndex(const SliceTransform* hash_key_extractor)
: hash_key_extractor_(hash_key_extractor) {}
// @params own_prefixes indicate if we should take care the memory space for
// the `key_prefix`
// passed by Add()
explicit BlockHashIndex(const SliceTransform* hash_key_extractor,
bool own_prefixes)
: hash_key_extractor_(hash_key_extractor), kOwnPrefixes(own_prefixes) {}
// Maps a key to its restart first_index.
// Returns nullptr if the restart first_index is found
@ -52,9 +57,18 @@ class BlockHashIndex {
private:
const SliceTransform* hash_key_extractor_;
std::unordered_map<Slice, RestartIndex, murmur_hash> restart_indices_;
Arena arena_;
bool kOwnPrefixes;
};
// Create hash index by reading from the metadata blocks.
// @params prefixes: a sequence of prefixes.
// @params prefix_meta: contains the "metadata" to of the prefixes.
Status CreateBlockHashIndex(const SliceTransform* hash_key_extractor,
const Slice& prefixes, const Slice& prefix_meta,
BlockHashIndex** hash_index);
// Create hash index by scanning the entries in index as well as the whole
// dataset.
// @params index_iter: an iterator with the pointer to the first entry in a
@ -64,9 +78,8 @@ class BlockHashIndex {
// @params num_restarts: used for correctness verification.
// @params hash_key_extractor: extract the hashable part of a given key.
// On error, nullptr will be returned.
BlockHashIndex* CreateBlockHashIndex(Iterator* index_iter, Iterator* data_iter,
const uint32_t num_restarts,
const Comparator* comparator,
const SliceTransform* hash_key_extractor);
BlockHashIndex* CreateBlockHashIndexOnTheFly(
Iterator* index_iter, Iterator* data_iter, const uint32_t num_restarts,
const Comparator* comparator, const SliceTransform* hash_key_extractor);
} // namespace rocksdb

View file

@ -81,9 +81,9 @@ TEST(BlockTest, BasicTest) {
MapIterator index_iter(index_entries);
auto prefix_extractor = NewFixedPrefixTransform(prefix_size);
std::unique_ptr<BlockHashIndex> block_hash_index(
CreateBlockHashIndex(&index_iter, &data_iter, index_entries.size(),
BytewiseComparator(), prefix_extractor));
std::unique_ptr<BlockHashIndex> block_hash_index(CreateBlockHashIndexOnTheFly(
&index_iter, &data_iter, index_entries.size(), BytewiseComparator(),
prefix_extractor));
std::map<std::string, BlockHashIndex::RestartIndex> expected = {
{"01xx", BlockHashIndex::RestartIndex(0, 1)},

View file

@ -163,9 +163,9 @@ void CheckBlockContents(BlockContents contents, const int max_key,
{
auto iter1 = reader1.NewIterator(nullptr);
auto iter2 = reader1.NewIterator(nullptr);
reader1.SetBlockHashIndex(CreateBlockHashIndex(iter1, iter2, keys.size(),
BytewiseComparator(),
prefix_extractor.get()));
reader1.SetBlockHashIndex(CreateBlockHashIndexOnTheFly(
iter1, iter2, keys.size(), BytewiseComparator(),
prefix_extractor.get()));
delete iter1;
delete iter2;

View file

@ -254,11 +254,23 @@ Status ReadTableProperties(RandomAccessFile* file, uint64_t file_size,
properties);
} else {
s = Status::Corruption("Unable to read the property block.");
Log(WARN_LEVEL, info_log,
"Cannot find Properties block from file.");
Log(WARN_LEVEL, info_log, "Cannot find Properties block from file.");
}
return s;
}
Status FindMetaBlock(Iterator* meta_index_iter,
const std::string& meta_block_name,
BlockHandle* block_handle) {
meta_index_iter->Seek(meta_block_name);
if (meta_index_iter->status().ok() && meta_index_iter->Valid() &&
meta_index_iter->key() == meta_block_name) {
Slice v = meta_index_iter->value();
return block_handle->DecodeFrom(&v);
} else {
return Status::Corruption("Cannot find the meta block", meta_block_name);
}
}
} // namespace rocksdb

View file

@ -123,4 +123,9 @@ Status ReadTableProperties(RandomAccessFile* file, uint64_t file_size,
// set to true.
extern Status SeekToPropertiesBlock(Iterator* meta_iter, bool* is_found);
// Find the meta block from the meta index block.
Status FindMetaBlock(Iterator* meta_index_iter,
const std::string& meta_block_name,
BlockHandle* block_handle);
} // namespace rocksdb

821
third-party/rapidjson/document.h vendored Normal file
View file

@ -0,0 +1,821 @@
#ifndef RAPIDJSON_DOCUMENT_H_
#define RAPIDJSON_DOCUMENT_H_
#include "reader.h"
#include "internal/strfunc.h"
#include <new> // placement new
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#endif
namespace rapidjson {
///////////////////////////////////////////////////////////////////////////////
// GenericValue
//! Represents a JSON value. Use Value for UTF8 encoding and default allocator.
/*!
A JSON value can be one of 7 types. This class is a variant type supporting
these types.
Use the Value if UTF8 and default allocator
\tparam Encoding Encoding of the value. (Even non-string values need to have the same encoding in a document)
\tparam Allocator Allocator type for allocating memory of object, array and string.
*/
#pragma pack (push, 4)
template <typename Encoding, typename Allocator = MemoryPoolAllocator<> >
class GenericValue {
public:
//! Name-value pair in an object.
struct Member {
GenericValue<Encoding, Allocator> name; //!< name of member (must be a string)
GenericValue<Encoding, Allocator> value; //!< value of member.
};
typedef Encoding EncodingType; //!< Encoding type from template parameter.
typedef Allocator AllocatorType; //!< Allocator type from template parameter.
typedef typename Encoding::Ch Ch; //!< Character type derived from Encoding.
typedef Member* MemberIterator; //!< Member iterator for iterating in object.
typedef const Member* ConstMemberIterator; //!< Constant member iterator for iterating in object.
typedef GenericValue* ValueIterator; //!< Value iterator for iterating in array.
typedef const GenericValue* ConstValueIterator; //!< Constant value iterator for iterating in array.
//!@name Constructors and destructor.
//@{
//! Default constructor creates a null value.
GenericValue() : flags_(kNullFlag) {}
//! Copy constructor is not permitted.
private:
GenericValue(const GenericValue& rhs);
public:
//! Constructor with JSON value type.
/*! This creates a Value of specified type with default content.
\param type Type of the value.
\note Default content for number is zero.
*/
GenericValue(Type type) {
static const unsigned defaultFlags[7] = {
kNullFlag, kFalseFlag, kTrueFlag, kObjectFlag, kArrayFlag, kConstStringFlag,
kNumberFlag | kIntFlag | kUintFlag | kInt64Flag | kUint64Flag | kDoubleFlag
};
RAPIDJSON_ASSERT(type <= kNumberType);
flags_ = defaultFlags[type];
memset(&data_, 0, sizeof(data_));
}
//! Constructor for boolean value.
GenericValue(bool b) : flags_(b ? kTrueFlag : kFalseFlag) {}
//! Constructor for int value.
GenericValue(int i) : flags_(kNumberIntFlag) {
data_.n.i64 = i;
if (i >= 0)
flags_ |= kUintFlag | kUint64Flag;
}
//! Constructor for unsigned value.
GenericValue(unsigned u) : flags_(kNumberUintFlag) {
data_.n.u64 = u;
if (!(u & 0x80000000))
flags_ |= kIntFlag | kInt64Flag;
}
//! Constructor for int64_t value.
GenericValue(int64_t i64) : flags_(kNumberInt64Flag) {
data_.n.i64 = i64;
if (i64 >= 0) {
flags_ |= kNumberUint64Flag;
if (!(i64 & 0xFFFFFFFF00000000LL))
flags_ |= kUintFlag;
if (!(i64 & 0xFFFFFFFF80000000LL))
flags_ |= kIntFlag;
}
else if (i64 >= -2147483648LL)
flags_ |= kIntFlag;
}
//! Constructor for uint64_t value.
GenericValue(uint64_t u64) : flags_(kNumberUint64Flag) {
data_.n.u64 = u64;
if (!(u64 & 0x8000000000000000ULL))
flags_ |= kInt64Flag;
if (!(u64 & 0xFFFFFFFF00000000ULL))
flags_ |= kUintFlag;
if (!(u64 & 0xFFFFFFFF80000000ULL))
flags_ |= kIntFlag;
}
//! Constructor for double value.
GenericValue(double d) : flags_(kNumberDoubleFlag) { data_.n.d = d; }
//! Constructor for constant string (i.e. do not make a copy of string)
GenericValue(const Ch* s, SizeType length) {
RAPIDJSON_ASSERT(s != NULL);
flags_ = kConstStringFlag;
data_.s.str = s;
data_.s.length = length;
}
//! Constructor for constant string (i.e. do not make a copy of string)
GenericValue(const Ch* s) { SetStringRaw(s, internal::StrLen(s)); }
//! Constructor for copy-string (i.e. do make a copy of string)
GenericValue(const Ch* s, SizeType length, Allocator& allocator) { SetStringRaw(s, length, allocator); }
//! Constructor for copy-string (i.e. do make a copy of string)
GenericValue(const Ch*s, Allocator& allocator) { SetStringRaw(s, internal::StrLen(s), allocator); }
//! Destructor.
/*! Need to destruct elements of array, members of object, or copy-string.
*/
~GenericValue() {
if (Allocator::kNeedFree) { // Shortcut by Allocator's trait
switch(flags_) {
case kArrayFlag:
for (GenericValue* v = data_.a.elements; v != data_.a.elements + data_.a.size; ++v)
v->~GenericValue();
Allocator::Free(data_.a.elements);
break;
case kObjectFlag:
for (Member* m = data_.o.members; m != data_.o.members + data_.o.size; ++m) {
m->name.~GenericValue();
m->value.~GenericValue();
}
Allocator::Free(data_.o.members);
break;
case kCopyStringFlag:
Allocator::Free(const_cast<Ch*>(data_.s.str));
break;
}
}
}
//@}
//!@name Assignment operators
//@{
//! Assignment with move semantics.
/*! \param rhs Source of the assignment. It will become a null value after assignment.
*/
GenericValue& operator=(GenericValue& rhs) {
RAPIDJSON_ASSERT(this != &rhs);
this->~GenericValue();
memcpy(this, &rhs, sizeof(GenericValue));
rhs.flags_ = kNullFlag;
return *this;
}
//! Assignment with primitive types.
/*! \tparam T Either Type, int, unsigned, int64_t, uint64_t, const Ch*
\param value The value to be assigned.
*/
template <typename T>
GenericValue& operator=(T value) {
this->~GenericValue();
new (this) GenericValue(value);
return *this;
}
//@}
//!@name Type
//@{
Type GetType() const { return static_cast<Type>(flags_ & kTypeMask); }
bool IsNull() const { return flags_ == kNullFlag; }
bool IsFalse() const { return flags_ == kFalseFlag; }
bool IsTrue() const { return flags_ == kTrueFlag; }
bool IsBool() const { return (flags_ & kBoolFlag) != 0; }
bool IsObject() const { return flags_ == kObjectFlag; }
bool IsArray() const { return flags_ == kArrayFlag; }
bool IsNumber() const { return (flags_ & kNumberFlag) != 0; }
bool IsInt() const { return (flags_ & kIntFlag) != 0; }
bool IsUint() const { return (flags_ & kUintFlag) != 0; }
bool IsInt64() const { return (flags_ & kInt64Flag) != 0; }
bool IsUint64() const { return (flags_ & kUint64Flag) != 0; }
bool IsDouble() const { return (flags_ & kDoubleFlag) != 0; }
bool IsString() const { return (flags_ & kStringFlag) != 0; }
//@}
//!@name Null
//@{
GenericValue& SetNull() { this->~GenericValue(); new (this) GenericValue(); return *this; }
//@}
//!@name Bool
//@{
bool GetBool() const { RAPIDJSON_ASSERT(IsBool()); return flags_ == kTrueFlag; }
GenericValue& SetBool(bool b) { this->~GenericValue(); new (this) GenericValue(b); return *this; }
//@}
//!@name Object
//@{
//! Set this value as an empty object.
GenericValue& SetObject() { this->~GenericValue(); new (this) GenericValue(kObjectType); return *this; }
//! Get the value associated with the object's name.
GenericValue& operator[](const Ch* name) {
if (Member* member = FindMember(name))
return member->value;
else {
static GenericValue NullValue;
return NullValue;
}
}
const GenericValue& operator[](const Ch* name) const { return const_cast<GenericValue&>(*this)[name]; }
//! Member iterators.
ConstMemberIterator MemberBegin() const { RAPIDJSON_ASSERT(IsObject()); return data_.o.members; }
ConstMemberIterator MemberEnd() const { RAPIDJSON_ASSERT(IsObject()); return data_.o.members + data_.o.size; }
MemberIterator MemberBegin() { RAPIDJSON_ASSERT(IsObject()); return data_.o.members; }
MemberIterator MemberEnd() { RAPIDJSON_ASSERT(IsObject()); return data_.o.members + data_.o.size; }
//! Check whether a member exists in the object.
bool HasMember(const Ch* name) const { return FindMember(name) != 0; }
//! Add a member (name-value pair) to the object.
/*! \param name A string value as name of member.
\param value Value of any type.
\param allocator Allocator for reallocating memory.
\return The value itself for fluent API.
\note The ownership of name and value will be transfered to this object if success.
*/
GenericValue& AddMember(GenericValue& name, GenericValue& value, Allocator& allocator) {
RAPIDJSON_ASSERT(IsObject());
RAPIDJSON_ASSERT(name.IsString());
Object& o = data_.o;
if (o.size >= o.capacity) {
if (o.capacity == 0) {
o.capacity = kDefaultObjectCapacity;
o.members = (Member*)allocator.Malloc(o.capacity * sizeof(Member));
}
else {
SizeType oldCapacity = o.capacity;
o.capacity *= 2;
o.members = (Member*)allocator.Realloc(o.members, oldCapacity * sizeof(Member), o.capacity * sizeof(Member));
}
}
o.members[o.size].name.RawAssign(name);
o.members[o.size].value.RawAssign(value);
o.size++;
return *this;
}
GenericValue& AddMember(const Ch* name, Allocator& nameAllocator, GenericValue& value, Allocator& allocator) {
GenericValue n(name, internal::StrLen(name), nameAllocator);
return AddMember(n, value, allocator);
}
GenericValue& AddMember(const Ch* name, GenericValue& value, Allocator& allocator) {
GenericValue n(name, internal::StrLen(name));
return AddMember(n, value, allocator);
}
template <typename T>
GenericValue& AddMember(const Ch* name, T value, Allocator& allocator) {
GenericValue n(name, internal::StrLen(name));
GenericValue v(value);
return AddMember(n, v, allocator);
}
//! Remove a member in object by its name.
/*! \param name Name of member to be removed.
\return Whether the member existed.
\note Removing member is implemented by moving the last member. So the ordering of members is changed.
*/
bool RemoveMember(const Ch* name) {
RAPIDJSON_ASSERT(IsObject());
if (Member* m = FindMember(name)) {
RAPIDJSON_ASSERT(data_.o.size > 0);
RAPIDJSON_ASSERT(data_.o.members != 0);
Member* last = data_.o.members + (data_.o.size - 1);
if (data_.o.size > 1 && m != last) {
// Move the last one to this place
m->name = last->name;
m->value = last->value;
}
else {
// Only one left, just destroy
m->name.~GenericValue();
m->value.~GenericValue();
}
--data_.o.size;
return true;
}
return false;
}
//@}
//!@name Array
//@{
//! Set this value as an empty array.
GenericValue& SetArray() { this->~GenericValue(); new (this) GenericValue(kArrayType); return *this; }
//! Get the number of elements in array.
SizeType Size() const { RAPIDJSON_ASSERT(IsArray()); return data_.a.size; }
//! Get the capacity of array.
SizeType Capacity() const { RAPIDJSON_ASSERT(IsArray()); return data_.a.capacity; }
//! Check whether the array is empty.
bool Empty() const { RAPIDJSON_ASSERT(IsArray()); return data_.a.size == 0; }
//! Remove all elements in the array.
/*! This function do not deallocate memory in the array, i.e. the capacity is unchanged.
*/
void Clear() {
RAPIDJSON_ASSERT(IsArray());
for (SizeType i = 0; i < data_.a.size; ++i)
data_.a.elements[i].~GenericValue();
data_.a.size = 0;
}
//! Get an element from array by index.
/*! \param index Zero-based index of element.
\note
\code
Value a(kArrayType);
a.PushBack(123);
int x = a[0].GetInt(); // Error: operator[ is ambiguous, as 0 also mean a null pointer of const char* type.
int y = a[SizeType(0)].GetInt(); // Cast to SizeType will work.
int z = a[0u].GetInt(); // This works too.
\endcode
*/
GenericValue& operator[](SizeType index) {
RAPIDJSON_ASSERT(IsArray());
RAPIDJSON_ASSERT(index < data_.a.size);
return data_.a.elements[index];
}
const GenericValue& operator[](SizeType index) const { return const_cast<GenericValue&>(*this)[index]; }
//! Element iterator
ValueIterator Begin() { RAPIDJSON_ASSERT(IsArray()); return data_.a.elements; }
ValueIterator End() { RAPIDJSON_ASSERT(IsArray()); return data_.a.elements + data_.a.size; }
ConstValueIterator Begin() const { return const_cast<GenericValue&>(*this).Begin(); }
ConstValueIterator End() const { return const_cast<GenericValue&>(*this).End(); }
//! Request the array to have enough capacity to store elements.
/*! \param newCapacity The capacity that the array at least need to have.
\param allocator The allocator for allocating memory. It must be the same one use previously.
\return The value itself for fluent API.
*/
GenericValue& Reserve(SizeType newCapacity, Allocator &allocator) {
RAPIDJSON_ASSERT(IsArray());
if (newCapacity > data_.a.capacity) {
data_.a.elements = (GenericValue*)allocator.Realloc(data_.a.elements, data_.a.capacity * sizeof(GenericValue), newCapacity * sizeof(GenericValue));
data_.a.capacity = newCapacity;
}
return *this;
}
//! Append a value at the end of the array.
/*! \param value The value to be appended.
\param allocator The allocator for allocating memory. It must be the same one use previously.
\return The value itself for fluent API.
\note The ownership of the value will be transfered to this object if success.
\note If the number of elements to be appended is known, calls Reserve() once first may be more efficient.
*/
GenericValue& PushBack(GenericValue& value, Allocator& allocator) {
RAPIDJSON_ASSERT(IsArray());
if (data_.a.size >= data_.a.capacity)
Reserve(data_.a.capacity == 0 ? kDefaultArrayCapacity : data_.a.capacity * 2, allocator);
data_.a.elements[data_.a.size++].RawAssign(value);
return *this;
}
template <typename T>
GenericValue& PushBack(T value, Allocator& allocator) {
GenericValue v(value);
return PushBack(v, allocator);
}
//! Remove the last element in the array.
GenericValue& PopBack() {
RAPIDJSON_ASSERT(IsArray());
RAPIDJSON_ASSERT(!Empty());
data_.a.elements[--data_.a.size].~GenericValue();
return *this;
}
//@}
//!@name Number
//@{
int GetInt() const { RAPIDJSON_ASSERT(flags_ & kIntFlag); return data_.n.i.i; }
unsigned GetUint() const { RAPIDJSON_ASSERT(flags_ & kUintFlag); return data_.n.u.u; }
int64_t GetInt64() const { RAPIDJSON_ASSERT(flags_ & kInt64Flag); return data_.n.i64; }
uint64_t GetUint64() const { RAPIDJSON_ASSERT(flags_ & kUint64Flag); return data_.n.u64; }
double GetDouble() const {
RAPIDJSON_ASSERT(IsNumber());
if ((flags_ & kDoubleFlag) != 0) return data_.n.d; // exact type, no conversion.
if ((flags_ & kIntFlag) != 0) return data_.n.i.i; // int -> double
if ((flags_ & kUintFlag) != 0) return data_.n.u.u; // unsigned -> double
if ((flags_ & kInt64Flag) != 0) return (double)data_.n.i64; // int64_t -> double (may lose precision)
RAPIDJSON_ASSERT((flags_ & kUint64Flag) != 0); return (double)data_.n.u64; // uint64_t -> double (may lose precision)
}
GenericValue& SetInt(int i) { this->~GenericValue(); new (this) GenericValue(i); return *this; }
GenericValue& SetUint(unsigned u) { this->~GenericValue(); new (this) GenericValue(u); return *this; }
GenericValue& SetInt64(int64_t i64) { this->~GenericValue(); new (this) GenericValue(i64); return *this; }
GenericValue& SetUint64(uint64_t u64) { this->~GenericValue(); new (this) GenericValue(u64); return *this; }
GenericValue& SetDouble(double d) { this->~GenericValue(); new (this) GenericValue(d); return *this; }
//@}
//!@name String
//@{
const Ch* GetString() const { RAPIDJSON_ASSERT(IsString()); return data_.s.str; }
//! Get the length of string.
/*! Since rapidjson permits "\u0000" in the json string, strlen(v.GetString()) may not equal to v.GetStringLength().
*/
SizeType GetStringLength() const { RAPIDJSON_ASSERT(IsString()); return data_.s.length; }
//! Set this value as a string without copying source string.
/*! This version has better performance with supplied length, and also support string containing null character.
\param s source string pointer.
\param length The length of source string, excluding the trailing null terminator.
\return The value itself for fluent API.
*/
GenericValue& SetString(const Ch* s, SizeType length) { this->~GenericValue(); SetStringRaw(s, length); return *this; }
//! Set this value as a string without copying source string.
/*! \param s source string pointer.
\return The value itself for fluent API.
*/
GenericValue& SetString(const Ch* s) { return SetString(s, internal::StrLen(s)); }
//! Set this value as a string by copying from source string.
/*! This version has better performance with supplied length, and also support string containing null character.
\param s source string.
\param length The length of source string, excluding the trailing null terminator.
\param allocator Allocator for allocating copied buffer. Commonly use document.GetAllocator().
\return The value itself for fluent API.
*/
GenericValue& SetString(const Ch* s, SizeType length, Allocator& allocator) { this->~GenericValue(); SetStringRaw(s, length, allocator); return *this; }
//! Set this value as a string by copying from source string.
/*! \param s source string.
\param allocator Allocator for allocating copied buffer. Commonly use document.GetAllocator().
\return The value itself for fluent API.
*/
GenericValue& SetString(const Ch* s, Allocator& allocator) { SetString(s, internal::StrLen(s), allocator); return *this; }
//@}
//! Generate events of this value to a Handler.
/*! This function adopts the GoF visitor pattern.
Typical usage is to output this JSON value as JSON text via Writer, which is a Handler.
It can also be used to deep clone this value via GenericDocument, which is also a Handler.
\tparam Handler type of handler.
\param handler An object implementing concept Handler.
*/
template <typename Handler>
const GenericValue& Accept(Handler& handler) const {
switch(GetType()) {
case kNullType: handler.Null(); break;
case kFalseType: handler.Bool(false); break;
case kTrueType: handler.Bool(true); break;
case kObjectType:
handler.StartObject();
for (Member* m = data_.o.members; m != data_.o.members + data_.o.size; ++m) {
handler.String(m->name.data_.s.str, m->name.data_.s.length, false);
m->value.Accept(handler);
}
handler.EndObject(data_.o.size);
break;
case kArrayType:
handler.StartArray();
for (GenericValue* v = data_.a.elements; v != data_.a.elements + data_.a.size; ++v)
v->Accept(handler);
handler.EndArray(data_.a.size);
break;
case kStringType:
handler.String(data_.s.str, data_.s.length, false);
break;
case kNumberType:
if (IsInt()) handler.Int(data_.n.i.i);
else if (IsUint()) handler.Uint(data_.n.u.u);
else if (IsInt64()) handler.Int64(data_.n.i64);
else if (IsUint64()) handler.Uint64(data_.n.u64);
else handler.Double(data_.n.d);
break;
}
return *this;
}
private:
template <typename, typename>
friend class GenericDocument;
enum {
kBoolFlag = 0x100,
kNumberFlag = 0x200,
kIntFlag = 0x400,
kUintFlag = 0x800,
kInt64Flag = 0x1000,
kUint64Flag = 0x2000,
kDoubleFlag = 0x4000,
kStringFlag = 0x100000,
kCopyFlag = 0x200000,
// Initial flags of different types.
kNullFlag = kNullType,
kTrueFlag = kTrueType | kBoolFlag,
kFalseFlag = kFalseType | kBoolFlag,
kNumberIntFlag = kNumberType | kNumberFlag | kIntFlag | kInt64Flag,
kNumberUintFlag = kNumberType | kNumberFlag | kUintFlag | kUint64Flag | kInt64Flag,
kNumberInt64Flag = kNumberType | kNumberFlag | kInt64Flag,
kNumberUint64Flag = kNumberType | kNumberFlag | kUint64Flag,
kNumberDoubleFlag = kNumberType | kNumberFlag | kDoubleFlag,
kConstStringFlag = kStringType | kStringFlag,
kCopyStringFlag = kStringType | kStringFlag | kCopyFlag,
kObjectFlag = kObjectType,
kArrayFlag = kArrayType,
kTypeMask = 0xFF // bitwise-and with mask of 0xFF can be optimized by compiler
};
static const SizeType kDefaultArrayCapacity = 16;
static const SizeType kDefaultObjectCapacity = 16;
struct String {
const Ch* str;
SizeType length;
unsigned hashcode; //!< reserved
}; // 12 bytes in 32-bit mode, 16 bytes in 64-bit mode
// By using proper binary layout, retrieval of different integer types do not need conversions.
union Number {
#if RAPIDJSON_ENDIAN == RAPIDJSON_LITTLEENDIAN
struct I {
int i;
char padding[4];
}i;
struct U {
unsigned u;
char padding2[4];
}u;
#else
struct I {
char padding[4];
int i;
}i;
struct U {
char padding2[4];
unsigned u;
}u;
#endif
int64_t i64;
uint64_t u64;
double d;
}; // 8 bytes
struct Object {
Member* members;
SizeType size;
SizeType capacity;
}; // 12 bytes in 32-bit mode, 16 bytes in 64-bit mode
struct Array {
GenericValue<Encoding, Allocator>* elements;
SizeType size;
SizeType capacity;
}; // 12 bytes in 32-bit mode, 16 bytes in 64-bit mode
union Data {
String s;
Number n;
Object o;
Array a;
}; // 12 bytes in 32-bit mode, 16 bytes in 64-bit mode
//! Find member by name.
Member* FindMember(const Ch* name) {
RAPIDJSON_ASSERT(name);
RAPIDJSON_ASSERT(IsObject());
SizeType length = internal::StrLen(name);
Object& o = data_.o;
for (Member* member = o.members; member != data_.o.members + data_.o.size; ++member)
if (length == member->name.data_.s.length && memcmp(member->name.data_.s.str, name, length * sizeof(Ch)) == 0)
return member;
return 0;
}
const Member* FindMember(const Ch* name) const { return const_cast<GenericValue&>(*this).FindMember(name); }
// Initialize this value as array with initial data, without calling destructor.
void SetArrayRaw(GenericValue* values, SizeType count, Allocator& alloctaor) {
flags_ = kArrayFlag;
data_.a.elements = (GenericValue*)alloctaor.Malloc(count * sizeof(GenericValue));
memcpy(data_.a.elements, values, count * sizeof(GenericValue));
data_.a.size = data_.a.capacity = count;
}
//! Initialize this value as object with initial data, without calling destructor.
void SetObjectRaw(Member* members, SizeType count, Allocator& alloctaor) {
flags_ = kObjectFlag;
data_.o.members = (Member*)alloctaor.Malloc(count * sizeof(Member));
memcpy(data_.o.members, members, count * sizeof(Member));
data_.o.size = data_.o.capacity = count;
}
//! Initialize this value as constant string, without calling destructor.
void SetStringRaw(const Ch* s, SizeType length) {
RAPIDJSON_ASSERT(s != NULL);
flags_ = kConstStringFlag;
data_.s.str = s;
data_.s.length = length;
}
//! Initialize this value as copy string with initial data, without calling destructor.
void SetStringRaw(const Ch* s, SizeType length, Allocator& allocator) {
RAPIDJSON_ASSERT(s != NULL);
flags_ = kCopyStringFlag;
data_.s.str = (Ch *)allocator.Malloc((length + 1) * sizeof(Ch));
data_.s.length = length;
memcpy(const_cast<Ch*>(data_.s.str), s, length * sizeof(Ch));
const_cast<Ch*>(data_.s.str)[length] = '\0';
}
//! Assignment without calling destructor
void RawAssign(GenericValue& rhs) {
memcpy(this, &rhs, sizeof(GenericValue));
rhs.flags_ = kNullFlag;
}
Data data_;
unsigned flags_;
};
#pragma pack (pop)
//! Value with UTF8 encoding.
typedef GenericValue<UTF8<> > Value;
///////////////////////////////////////////////////////////////////////////////
// GenericDocument
//! A document for parsing JSON text as DOM.
/*!
\implements Handler
\tparam Encoding encoding for both parsing and string storage.
\tparam Alloactor allocator for allocating memory for the DOM, and the stack during parsing.
*/
template <typename Encoding, typename Allocator = MemoryPoolAllocator<> >
class GenericDocument : public GenericValue<Encoding, Allocator> {
public:
typedef typename Encoding::Ch Ch; //!< Character type derived from Encoding.
typedef GenericValue<Encoding, Allocator> ValueType; //!< Value type of the document.
typedef Allocator AllocatorType; //!< Allocator type from template parameter.
//! Constructor
/*! \param allocator Optional allocator for allocating stack memory.
\param stackCapacity Initial capacity of stack in bytes.
*/
GenericDocument(Allocator* allocator = 0, size_t stackCapacity = kDefaultStackCapacity) : stack_(allocator, stackCapacity), parseError_(0), errorOffset_(0) {}
//! Parse JSON text from an input stream.
/*! \tparam parseFlags Combination of ParseFlag.
\param stream Input stream to be parsed.
\return The document itself for fluent API.
*/
template <unsigned parseFlags, typename Stream>
GenericDocument& ParseStream(Stream& stream) {
ValueType::SetNull(); // Remove existing root if exist
GenericReader<Encoding, Allocator> reader;
if (reader.template Parse<parseFlags>(stream, *this)) {
RAPIDJSON_ASSERT(stack_.GetSize() == sizeof(ValueType)); // Got one and only one root object
this->RawAssign(*stack_.template Pop<ValueType>(1)); // Add this-> to prevent issue 13.
parseError_ = 0;
errorOffset_ = 0;
}
else {
parseError_ = reader.GetParseError();
errorOffset_ = reader.GetErrorOffset();
ClearStack();
}
return *this;
}
//! Parse JSON text from a mutable string.
/*! \tparam parseFlags Combination of ParseFlag.
\param str Mutable zero-terminated string to be parsed.
\return The document itself for fluent API.
*/
template <unsigned parseFlags>
GenericDocument& ParseInsitu(Ch* str) {
GenericInsituStringStream<Encoding> s(str);
return ParseStream<parseFlags | kParseInsituFlag>(s);
}
//! Parse JSON text from a read-only string.
/*! \tparam parseFlags Combination of ParseFlag (must not contain kParseInsituFlag).
\param str Read-only zero-terminated string to be parsed.
*/
template <unsigned parseFlags>
GenericDocument& Parse(const Ch* str) {
RAPIDJSON_ASSERT(!(parseFlags & kParseInsituFlag));
GenericStringStream<Encoding> s(str);
return ParseStream<parseFlags>(s);
}
//! Whether a parse error was occured in the last parsing.
bool HasParseError() const { return parseError_ != 0; }
//! Get the message of parsing error.
const char* GetParseError() const { return parseError_; }
//! Get the offset in character of the parsing error.
size_t GetErrorOffset() const { return errorOffset_; }
//! Get the allocator of this document.
Allocator& GetAllocator() { return stack_.GetAllocator(); }
//! Get the capacity of stack in bytes.
size_t GetStackCapacity() const { return stack_.GetCapacity(); }
private:
// Prohibit assignment
GenericDocument& operator=(const GenericDocument&);
friend class GenericReader<Encoding, Allocator>; // for Reader to call the following private handler functions
// Implementation of Handler
void Null() { new (stack_.template Push<ValueType>()) ValueType(); }
void Bool(bool b) { new (stack_.template Push<ValueType>()) ValueType(b); }
void Int(int i) { new (stack_.template Push<ValueType>()) ValueType(i); }
void Uint(unsigned i) { new (stack_.template Push<ValueType>()) ValueType(i); }
void Int64(int64_t i) { new (stack_.template Push<ValueType>()) ValueType(i); }
void Uint64(uint64_t i) { new (stack_.template Push<ValueType>()) ValueType(i); }
void Double(double d) { new (stack_.template Push<ValueType>()) ValueType(d); }
void String(const Ch* str, SizeType length, bool copy) {
if (copy)
new (stack_.template Push<ValueType>()) ValueType(str, length, GetAllocator());
else
new (stack_.template Push<ValueType>()) ValueType(str, length);
}
void StartObject() { new (stack_.template Push<ValueType>()) ValueType(kObjectType); }
void EndObject(SizeType memberCount) {
typename ValueType::Member* members = stack_.template Pop<typename ValueType::Member>(memberCount);
stack_.template Top<ValueType>()->SetObjectRaw(members, (SizeType)memberCount, GetAllocator());
}
void StartArray() { new (stack_.template Push<ValueType>()) ValueType(kArrayType); }
void EndArray(SizeType elementCount) {
ValueType* elements = stack_.template Pop<ValueType>(elementCount);
stack_.template Top<ValueType>()->SetArrayRaw(elements, elementCount, GetAllocator());
}
void ClearStack() {
if (Allocator::kNeedFree)
while (stack_.GetSize() > 0) // Here assumes all elements in stack array are GenericValue (Member is actually 2 GenericValue objects)
(stack_.template Pop<ValueType>(1))->~ValueType();
else
stack_.Clear();
}
static const size_t kDefaultStackCapacity = 1024;
internal::Stack<Allocator> stack_;
const char* parseError_;
size_t errorOffset_;
};
typedef GenericDocument<UTF8<> > Document;
} // namespace rapidjson
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // RAPIDJSON_DOCUMENT_H_

46
third-party/rapidjson/filestream.h vendored Normal file
View file

@ -0,0 +1,46 @@
#ifndef RAPIDJSON_FILESTREAM_H_
#define RAPIDJSON_FILESTREAM_H_
#include <cstdio>
namespace rapidjson {
//! Wrapper of C file stream for input or output.
/*!
This simple wrapper does not check the validity of the stream.
\implements Stream
*/
class FileStream {
public:
typedef char Ch; //!< Character type. Only support char.
FileStream(FILE* fp) : fp_(fp), count_(0) { Read(); }
char Peek() const { return current_; }
char Take() { char c = current_; Read(); return c; }
size_t Tell() const { return count_; }
void Put(char c) { fputc(c, fp_); }
// Not implemented
char* PutBegin() { return 0; }
size_t PutEnd(char*) { return 0; }
private:
void Read() {
RAPIDJSON_ASSERT(fp_ != 0);
int c = fgetc(fp_);
if (c != EOF) {
current_ = (char)c;
count_++;
}
else
current_ = '\0';
}
FILE* fp_;
char current_;
size_t count_;
};
} // namespace rapidjson
#endif // RAPIDJSON_FILESTREAM_H_

54
third-party/rapidjson/internal/pow10.h vendored Normal file
View file

@ -0,0 +1,54 @@
#ifndef RAPIDJSON_POW10_
#define RAPIDJSON_POW10_
namespace rapidjson {
namespace internal {
//! Computes integer powers of 10 in double (10.0^n).
/*! This function uses lookup table for fast and accurate results.
\param n positive/negative exponent. Must <= 308.
\return 10.0^n
*/
inline double Pow10(int n) {
static const double e[] = { // 1e-308...1e308: 617 * 8 bytes = 4936 bytes
1e-308,1e-307,1e-306,1e-305,1e-304,1e-303,1e-302,1e-301,1e-300,
1e-299,1e-298,1e-297,1e-296,1e-295,1e-294,1e-293,1e-292,1e-291,1e-290,1e-289,1e-288,1e-287,1e-286,1e-285,1e-284,1e-283,1e-282,1e-281,1e-280,
1e-279,1e-278,1e-277,1e-276,1e-275,1e-274,1e-273,1e-272,1e-271,1e-270,1e-269,1e-268,1e-267,1e-266,1e-265,1e-264,1e-263,1e-262,1e-261,1e-260,
1e-259,1e-258,1e-257,1e-256,1e-255,1e-254,1e-253,1e-252,1e-251,1e-250,1e-249,1e-248,1e-247,1e-246,1e-245,1e-244,1e-243,1e-242,1e-241,1e-240,
1e-239,1e-238,1e-237,1e-236,1e-235,1e-234,1e-233,1e-232,1e-231,1e-230,1e-229,1e-228,1e-227,1e-226,1e-225,1e-224,1e-223,1e-222,1e-221,1e-220,
1e-219,1e-218,1e-217,1e-216,1e-215,1e-214,1e-213,1e-212,1e-211,1e-210,1e-209,1e-208,1e-207,1e-206,1e-205,1e-204,1e-203,1e-202,1e-201,1e-200,
1e-199,1e-198,1e-197,1e-196,1e-195,1e-194,1e-193,1e-192,1e-191,1e-190,1e-189,1e-188,1e-187,1e-186,1e-185,1e-184,1e-183,1e-182,1e-181,1e-180,
1e-179,1e-178,1e-177,1e-176,1e-175,1e-174,1e-173,1e-172,1e-171,1e-170,1e-169,1e-168,1e-167,1e-166,1e-165,1e-164,1e-163,1e-162,1e-161,1e-160,
1e-159,1e-158,1e-157,1e-156,1e-155,1e-154,1e-153,1e-152,1e-151,1e-150,1e-149,1e-148,1e-147,1e-146,1e-145,1e-144,1e-143,1e-142,1e-141,1e-140,
1e-139,1e-138,1e-137,1e-136,1e-135,1e-134,1e-133,1e-132,1e-131,1e-130,1e-129,1e-128,1e-127,1e-126,1e-125,1e-124,1e-123,1e-122,1e-121,1e-120,
1e-119,1e-118,1e-117,1e-116,1e-115,1e-114,1e-113,1e-112,1e-111,1e-110,1e-109,1e-108,1e-107,1e-106,1e-105,1e-104,1e-103,1e-102,1e-101,1e-100,
1e-99, 1e-98, 1e-97, 1e-96, 1e-95, 1e-94, 1e-93, 1e-92, 1e-91, 1e-90, 1e-89, 1e-88, 1e-87, 1e-86, 1e-85, 1e-84, 1e-83, 1e-82, 1e-81, 1e-80,
1e-79, 1e-78, 1e-77, 1e-76, 1e-75, 1e-74, 1e-73, 1e-72, 1e-71, 1e-70, 1e-69, 1e-68, 1e-67, 1e-66, 1e-65, 1e-64, 1e-63, 1e-62, 1e-61, 1e-60,
1e-59, 1e-58, 1e-57, 1e-56, 1e-55, 1e-54, 1e-53, 1e-52, 1e-51, 1e-50, 1e-49, 1e-48, 1e-47, 1e-46, 1e-45, 1e-44, 1e-43, 1e-42, 1e-41, 1e-40,
1e-39, 1e-38, 1e-37, 1e-36, 1e-35, 1e-34, 1e-33, 1e-32, 1e-31, 1e-30, 1e-29, 1e-28, 1e-27, 1e-26, 1e-25, 1e-24, 1e-23, 1e-22, 1e-21, 1e-20,
1e-19, 1e-18, 1e-17, 1e-16, 1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e+0,
1e+1, 1e+2, 1e+3, 1e+4, 1e+5, 1e+6, 1e+7, 1e+8, 1e+9, 1e+10, 1e+11, 1e+12, 1e+13, 1e+14, 1e+15, 1e+16, 1e+17, 1e+18, 1e+19, 1e+20,
1e+21, 1e+22, 1e+23, 1e+24, 1e+25, 1e+26, 1e+27, 1e+28, 1e+29, 1e+30, 1e+31, 1e+32, 1e+33, 1e+34, 1e+35, 1e+36, 1e+37, 1e+38, 1e+39, 1e+40,
1e+41, 1e+42, 1e+43, 1e+44, 1e+45, 1e+46, 1e+47, 1e+48, 1e+49, 1e+50, 1e+51, 1e+52, 1e+53, 1e+54, 1e+55, 1e+56, 1e+57, 1e+58, 1e+59, 1e+60,
1e+61, 1e+62, 1e+63, 1e+64, 1e+65, 1e+66, 1e+67, 1e+68, 1e+69, 1e+70, 1e+71, 1e+72, 1e+73, 1e+74, 1e+75, 1e+76, 1e+77, 1e+78, 1e+79, 1e+80,
1e+81, 1e+82, 1e+83, 1e+84, 1e+85, 1e+86, 1e+87, 1e+88, 1e+89, 1e+90, 1e+91, 1e+92, 1e+93, 1e+94, 1e+95, 1e+96, 1e+97, 1e+98, 1e+99, 1e+100,
1e+101,1e+102,1e+103,1e+104,1e+105,1e+106,1e+107,1e+108,1e+109,1e+110,1e+111,1e+112,1e+113,1e+114,1e+115,1e+116,1e+117,1e+118,1e+119,1e+120,
1e+121,1e+122,1e+123,1e+124,1e+125,1e+126,1e+127,1e+128,1e+129,1e+130,1e+131,1e+132,1e+133,1e+134,1e+135,1e+136,1e+137,1e+138,1e+139,1e+140,
1e+141,1e+142,1e+143,1e+144,1e+145,1e+146,1e+147,1e+148,1e+149,1e+150,1e+151,1e+152,1e+153,1e+154,1e+155,1e+156,1e+157,1e+158,1e+159,1e+160,
1e+161,1e+162,1e+163,1e+164,1e+165,1e+166,1e+167,1e+168,1e+169,1e+170,1e+171,1e+172,1e+173,1e+174,1e+175,1e+176,1e+177,1e+178,1e+179,1e+180,
1e+181,1e+182,1e+183,1e+184,1e+185,1e+186,1e+187,1e+188,1e+189,1e+190,1e+191,1e+192,1e+193,1e+194,1e+195,1e+196,1e+197,1e+198,1e+199,1e+200,
1e+201,1e+202,1e+203,1e+204,1e+205,1e+206,1e+207,1e+208,1e+209,1e+210,1e+211,1e+212,1e+213,1e+214,1e+215,1e+216,1e+217,1e+218,1e+219,1e+220,
1e+221,1e+222,1e+223,1e+224,1e+225,1e+226,1e+227,1e+228,1e+229,1e+230,1e+231,1e+232,1e+233,1e+234,1e+235,1e+236,1e+237,1e+238,1e+239,1e+240,
1e+241,1e+242,1e+243,1e+244,1e+245,1e+246,1e+247,1e+248,1e+249,1e+250,1e+251,1e+252,1e+253,1e+254,1e+255,1e+256,1e+257,1e+258,1e+259,1e+260,
1e+261,1e+262,1e+263,1e+264,1e+265,1e+266,1e+267,1e+268,1e+269,1e+270,1e+271,1e+272,1e+273,1e+274,1e+275,1e+276,1e+277,1e+278,1e+279,1e+280,
1e+281,1e+282,1e+283,1e+284,1e+285,1e+286,1e+287,1e+288,1e+289,1e+290,1e+291,1e+292,1e+293,1e+294,1e+295,1e+296,1e+297,1e+298,1e+299,1e+300,
1e+301,1e+302,1e+303,1e+304,1e+305,1e+306,1e+307,1e+308
};
RAPIDJSON_ASSERT(n <= 308);
return n < -308 ? 0.0 : e[n + 308];
}
} // namespace internal
} // namespace rapidjson
#endif // RAPIDJSON_POW10_

82
third-party/rapidjson/internal/stack.h vendored Normal file
View file

@ -0,0 +1,82 @@
#ifndef RAPIDJSON_INTERNAL_STACK_H_
#define RAPIDJSON_INTERNAL_STACK_H_
namespace rapidjson {
namespace internal {
///////////////////////////////////////////////////////////////////////////////
// Stack
//! A type-unsafe stack for storing different types of data.
/*! \tparam Allocator Allocator for allocating stack memory.
*/
template <typename Allocator>
class Stack {
public:
Stack(Allocator* allocator, size_t stack_capacity) : allocator_(allocator), own_allocator_(0), stack_(0), stack_top_(0), stack_end_(0), stack_capacity_(stack_capacity) {
RAPIDJSON_ASSERT(stack_capacity_ > 0);
if (!allocator_)
own_allocator_ = allocator_ = new Allocator();
stack_top_ = stack_ = (char*)allocator_->Malloc(stack_capacity_);
stack_end_ = stack_ + stack_capacity_;
}
~Stack() {
Allocator::Free(stack_);
delete own_allocator_; // Only delete if it is owned by the stack
}
void Clear() { /*stack_top_ = 0;*/ stack_top_ = stack_; }
template<typename T>
T* Push(size_t count = 1) {
// Expand the stack if needed
if (stack_top_ + sizeof(T) * count >= stack_end_) {
size_t new_capacity = stack_capacity_ * 2;
size_t size = GetSize();
size_t new_size = GetSize() + sizeof(T) * count;
if (new_capacity < new_size)
new_capacity = new_size;
stack_ = (char*)allocator_->Realloc(stack_, stack_capacity_, new_capacity);
stack_capacity_ = new_capacity;
stack_top_ = stack_ + size;
stack_end_ = stack_ + stack_capacity_;
}
T* ret = (T*)stack_top_;
stack_top_ += sizeof(T) * count;
return ret;
}
template<typename T>
T* Pop(size_t count) {
RAPIDJSON_ASSERT(GetSize() >= count * sizeof(T));
stack_top_ -= count * sizeof(T);
return (T*)stack_top_;
}
template<typename T>
T* Top() {
RAPIDJSON_ASSERT(GetSize() >= sizeof(T));
return (T*)(stack_top_ - sizeof(T));
}
template<typename T>
T* Bottom() { return (T*)stack_; }
Allocator& GetAllocator() { return *allocator_; }
size_t GetSize() const { return stack_top_ - stack_; }
size_t GetCapacity() const { return stack_capacity_; }
private:
Allocator* allocator_;
Allocator* own_allocator_;
char *stack_;
char *stack_top_;
char *stack_end_;
size_t stack_capacity_;
};
} // namespace internal
} // namespace rapidjson
#endif // RAPIDJSON_STACK_H_

View file

@ -0,0 +1,24 @@
#ifndef RAPIDJSON_INTERNAL_STRFUNC_H_
#define RAPIDJSON_INTERNAL_STRFUNC_H_
namespace rapidjson {
namespace internal {
//! Custom strlen() which works on different character types.
/*! \tparam Ch Character type (e.g. char, wchar_t, short)
\param s Null-terminated input string.
\return Number of characters in the string.
\note This has the same semantics as strlen(), the return value is not number of Unicode codepoints.
*/
template <typename Ch>
inline SizeType StrLen(const Ch* s) {
const Ch* p = s;
while (*p != '\0')
++p;
return SizeType(p - s);
}
} // namespace internal
} // namespace rapidjson
#endif // RAPIDJSON_INTERNAL_STRFUNC_H_

19
third-party/rapidjson/license.txt vendored Normal file
View file

@ -0,0 +1,19 @@
Copyright (C) 2011 Milo Yip
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

156
third-party/rapidjson/prettywriter.h vendored Normal file
View file

@ -0,0 +1,156 @@
#ifndef RAPIDJSON_PRETTYWRITER_H_
#define RAPIDJSON_PRETTYWRITER_H_
#include "writer.h"
namespace rapidjson {
//! Writer with indentation and spacing.
/*!
\tparam Stream Type of ouptut stream.
\tparam Encoding Encoding of both source strings and output.
\tparam Allocator Type of allocator for allocating memory of stack.
*/
template<typename Stream, typename Encoding = UTF8<>, typename Allocator = MemoryPoolAllocator<> >
class PrettyWriter : public Writer<Stream, Encoding, Allocator> {
public:
typedef Writer<Stream, Encoding, Allocator> Base;
typedef typename Base::Ch Ch;
//! Constructor
/*! \param stream Output stream.
\param allocator User supplied allocator. If it is null, it will create a private one.
\param levelDepth Initial capacity of
*/
PrettyWriter(Stream& stream, Allocator* allocator = 0, size_t levelDepth = Base::kDefaultLevelDepth) :
Base(stream, allocator, levelDepth), indentChar_(' '), indentCharCount_(4) {}
//! Set custom indentation.
/*! \param indentChar Character for indentation. Must be whitespace character (' ', '\t', '\n', '\r').
\param indentCharCount Number of indent characters for each indentation level.
\note The default indentation is 4 spaces.
*/
PrettyWriter& SetIndent(Ch indentChar, unsigned indentCharCount) {
RAPIDJSON_ASSERT(indentChar == ' ' || indentChar == '\t' || indentChar == '\n' || indentChar == '\r');
indentChar_ = indentChar;
indentCharCount_ = indentCharCount;
return *this;
}
//@name Implementation of Handler.
//@{
PrettyWriter& Null() { PrettyPrefix(kNullType); Base::WriteNull(); return *this; }
PrettyWriter& Bool(bool b) { PrettyPrefix(b ? kTrueType : kFalseType); Base::WriteBool(b); return *this; }
PrettyWriter& Int(int i) { PrettyPrefix(kNumberType); Base::WriteInt(i); return *this; }
PrettyWriter& Uint(unsigned u) { PrettyPrefix(kNumberType); Base::WriteUint(u); return *this; }
PrettyWriter& Int64(int64_t i64) { PrettyPrefix(kNumberType); Base::WriteInt64(i64); return *this; }
PrettyWriter& Uint64(uint64_t u64) { PrettyPrefix(kNumberType); Base::WriteUint64(u64); return *this; }
PrettyWriter& Double(double d) { PrettyPrefix(kNumberType); Base::WriteDouble(d); return *this; }
PrettyWriter& String(const Ch* str, SizeType length, bool copy = false) {
(void)copy;
PrettyPrefix(kStringType);
Base::WriteString(str, length);
return *this;
}
PrettyWriter& StartObject() {
PrettyPrefix(kObjectType);
new (Base::level_stack_.template Push<typename Base::Level>()) typename Base::Level(false);
Base::WriteStartObject();
return *this;
}
PrettyWriter& EndObject(SizeType memberCount = 0) {
(void)memberCount;
RAPIDJSON_ASSERT(Base::level_stack_.GetSize() >= sizeof(typename Base::Level));
RAPIDJSON_ASSERT(!Base::level_stack_.template Top<typename Base::Level>()->inArray);
bool empty = Base::level_stack_.template Pop<typename Base::Level>(1)->valueCount == 0;
if (!empty) {
Base::stream_.Put('\n');
WriteIndent();
}
Base::WriteEndObject();
return *this;
}
PrettyWriter& StartArray() {
PrettyPrefix(kArrayType);
new (Base::level_stack_.template Push<typename Base::Level>()) typename Base::Level(true);
Base::WriteStartArray();
return *this;
}
PrettyWriter& EndArray(SizeType memberCount = 0) {
(void)memberCount;
RAPIDJSON_ASSERT(Base::level_stack_.GetSize() >= sizeof(typename Base::Level));
RAPIDJSON_ASSERT(Base::level_stack_.template Top<typename Base::Level>()->inArray);
bool empty = Base::level_stack_.template Pop<typename Base::Level>(1)->valueCount == 0;
if (!empty) {
Base::stream_.Put('\n');
WriteIndent();
}
Base::WriteEndArray();
return *this;
}
//@}
//! Simpler but slower overload.
PrettyWriter& String(const Ch* str) { return String(str, internal::StrLen(str)); }
protected:
void PrettyPrefix(Type type) {
(void)type;
if (Base::level_stack_.GetSize() != 0) { // this value is not at root
typename Base::Level* level = Base::level_stack_.template Top<typename Base::Level>();
if (level->inArray) {
if (level->valueCount > 0) {
Base::stream_.Put(','); // add comma if it is not the first element in array
Base::stream_.Put('\n');
}
else
Base::stream_.Put('\n');
WriteIndent();
}
else { // in object
if (level->valueCount > 0) {
if (level->valueCount % 2 == 0) {
Base::stream_.Put(',');
Base::stream_.Put('\n');
}
else {
Base::stream_.Put(':');
Base::stream_.Put(' ');
}
}
else
Base::stream_.Put('\n');
if (level->valueCount % 2 == 0)
WriteIndent();
}
if (!level->inArray && level->valueCount % 2 == 0)
RAPIDJSON_ASSERT(type == kStringType); // if it's in object, then even number should be a name
level->valueCount++;
}
else
RAPIDJSON_ASSERT(type == kObjectType || type == kArrayType);
}
void WriteIndent() {
size_t count = (Base::level_stack_.GetSize() / sizeof(typename Base::Level)) * indentCharCount_;
PutN(Base::stream_, indentChar_, count);
}
Ch indentChar_;
unsigned indentCharCount_;
};
} // namespace rapidjson
#endif // RAPIDJSON_RAPIDJSON_H_

525
third-party/rapidjson/rapidjson.h vendored Normal file
View file

@ -0,0 +1,525 @@
#ifndef RAPIDJSON_RAPIDJSON_H_
#define RAPIDJSON_RAPIDJSON_H_
// Copyright (c) 2011-2012 Milo Yip (miloyip@gmail.com)
// Version 0.11
#include <cstdlib> // malloc(), realloc(), free()
#include <cstring> // memcpy()
///////////////////////////////////////////////////////////////////////////////
// RAPIDJSON_NO_INT64DEFINE
// Here defines int64_t and uint64_t types in global namespace.
// If user have their own definition, can define RAPIDJSON_NO_INT64DEFINE to disable this.
#ifndef RAPIDJSON_NO_INT64DEFINE
#ifdef _MSC_VER
typedef __int64 int64_t;
typedef unsigned __int64 uint64_t;
#else
#include <inttypes.h>
#endif
#endif // RAPIDJSON_NO_INT64TYPEDEF
///////////////////////////////////////////////////////////////////////////////
// RAPIDJSON_ENDIAN
#define RAPIDJSON_LITTLEENDIAN 0 //!< Little endian machine
#define RAPIDJSON_BIGENDIAN 1 //!< Big endian machine
//! Endianness of the machine.
/*! GCC provided macro for detecting endianness of the target machine. But other
compilers may not have this. User can define RAPIDJSON_ENDIAN to either
RAPIDJSON_LITTLEENDIAN or RAPIDJSON_BIGENDIAN.
*/
#ifndef RAPIDJSON_ENDIAN
#ifdef __BYTE_ORDER__
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define RAPIDJSON_ENDIAN RAPIDJSON_LITTLEENDIAN
#else
#define RAPIDJSON_ENDIAN RAPIDJSON_BIGENDIAN
#endif // __BYTE_ORDER__
#else
#define RAPIDJSON_ENDIAN RAPIDJSON_LITTLEENDIAN // Assumes little endian otherwise.
#endif
#endif // RAPIDJSON_ENDIAN
///////////////////////////////////////////////////////////////////////////////
// RAPIDJSON_SSE2/RAPIDJSON_SSE42/RAPIDJSON_SIMD
// Enable SSE2 optimization.
//#define RAPIDJSON_SSE2
// Enable SSE4.2 optimization.
//#define RAPIDJSON_SSE42
#if defined(RAPIDJSON_SSE2) || defined(RAPIDJSON_SSE42)
#define RAPIDJSON_SIMD
#endif
///////////////////////////////////////////////////////////////////////////////
// RAPIDJSON_NO_SIZETYPEDEFINE
#ifndef RAPIDJSON_NO_SIZETYPEDEFINE
namespace rapidjson {
//! Use 32-bit array/string indices even for 64-bit platform, instead of using size_t.
/*! User may override the SizeType by defining RAPIDJSON_NO_SIZETYPEDEFINE.
*/
typedef unsigned SizeType;
} // namespace rapidjson
#endif
///////////////////////////////////////////////////////////////////////////////
// RAPIDJSON_ASSERT
//! Assertion.
/*! By default, rapidjson uses C assert() for assertion.
User can override it by defining RAPIDJSON_ASSERT(x) macro.
*/
#ifndef RAPIDJSON_ASSERT
#include <cassert>
#define RAPIDJSON_ASSERT(x) assert(x)
#endif // RAPIDJSON_ASSERT
///////////////////////////////////////////////////////////////////////////////
// Helpers
#define RAPIDJSON_MULTILINEMACRO_BEGIN do {
#define RAPIDJSON_MULTILINEMACRO_END \
} while((void)0, 0)
namespace rapidjson {
///////////////////////////////////////////////////////////////////////////////
// Allocator
/*! \class rapidjson::Allocator
\brief Concept for allocating, resizing and freeing memory block.
Note that Malloc() and Realloc() are non-static but Free() is static.
So if an allocator need to support Free(), it needs to put its pointer in
the header of memory block.
\code
concept Allocator {
static const bool kNeedFree; //!< Whether this allocator needs to call Free().
// Allocate a memory block.
// \param size of the memory block in bytes.
// \returns pointer to the memory block.
void* Malloc(size_t size);
// Resize a memory block.
// \param originalPtr The pointer to current memory block. Null pointer is permitted.
// \param originalSize The current size in bytes. (Design issue: since some allocator may not book-keep this, explicitly pass to it can save memory.)
// \param newSize the new size in bytes.
void* Realloc(void* originalPtr, size_t originalSize, size_t newSize);
// Free a memory block.
// \param pointer to the memory block. Null pointer is permitted.
static void Free(void *ptr);
};
\endcode
*/
///////////////////////////////////////////////////////////////////////////////
// CrtAllocator
//! C-runtime library allocator.
/*! This class is just wrapper for standard C library memory routines.
\implements Allocator
*/
class CrtAllocator {
public:
static const bool kNeedFree = true;
void* Malloc(size_t size) { return malloc(size); }
void* Realloc(void* originalPtr, size_t originalSize, size_t newSize) { (void)originalSize; return realloc(originalPtr, newSize); }
static void Free(void *ptr) { free(ptr); }
};
///////////////////////////////////////////////////////////////////////////////
// MemoryPoolAllocator
//! Default memory allocator used by the parser and DOM.
/*! This allocator allocate memory blocks from pre-allocated memory chunks.
It does not free memory blocks. And Realloc() only allocate new memory.
The memory chunks are allocated by BaseAllocator, which is CrtAllocator by default.
User may also supply a buffer as the first chunk.
If the user-buffer is full then additional chunks are allocated by BaseAllocator.
The user-buffer is not deallocated by this allocator.
\tparam BaseAllocator the allocator type for allocating memory chunks. Default is CrtAllocator.
\implements Allocator
*/
template <typename BaseAllocator = CrtAllocator>
class MemoryPoolAllocator {
public:
static const bool kNeedFree = false; //!< Tell users that no need to call Free() with this allocator. (concept Allocator)
//! Constructor with chunkSize.
/*! \param chunkSize The size of memory chunk. The default is kDefaultChunkSize.
\param baseAllocator The allocator for allocating memory chunks.
*/
MemoryPoolAllocator(size_t chunkSize = kDefaultChunkCapacity, BaseAllocator* baseAllocator = 0) :
chunkHead_(0), chunk_capacity_(chunkSize), userBuffer_(0), baseAllocator_(baseAllocator), ownBaseAllocator_(0)
{
if (!baseAllocator_)
ownBaseAllocator_ = baseAllocator_ = new BaseAllocator();
AddChunk(chunk_capacity_);
}
//! Constructor with user-supplied buffer.
/*! The user buffer will be used firstly. When it is full, memory pool allocates new chunk with chunk size.
The user buffer will not be deallocated when this allocator is destructed.
\param buffer User supplied buffer.
\param size Size of the buffer in bytes. It must at least larger than sizeof(ChunkHeader).
\param chunkSize The size of memory chunk. The default is kDefaultChunkSize.
\param baseAllocator The allocator for allocating memory chunks.
*/
MemoryPoolAllocator(char *buffer, size_t size, size_t chunkSize = kDefaultChunkCapacity, BaseAllocator* baseAllocator = 0) :
chunkHead_(0), chunk_capacity_(chunkSize), userBuffer_(buffer), baseAllocator_(baseAllocator), ownBaseAllocator_(0)
{
RAPIDJSON_ASSERT(buffer != 0);
RAPIDJSON_ASSERT(size > sizeof(ChunkHeader));
chunkHead_ = (ChunkHeader*)buffer;
chunkHead_->capacity = size - sizeof(ChunkHeader);
chunkHead_->size = 0;
chunkHead_->next = 0;
}
//! Destructor.
/*! This deallocates all memory chunks, excluding the user-supplied buffer.
*/
~MemoryPoolAllocator() {
Clear();
delete ownBaseAllocator_;
}
//! Deallocates all memory chunks, excluding the user-supplied buffer.
void Clear() {
while(chunkHead_ != 0 && chunkHead_ != (ChunkHeader *)userBuffer_) {
ChunkHeader* next = chunkHead_->next;
baseAllocator_->Free(chunkHead_);
chunkHead_ = next;
}
}
//! Computes the total capacity of allocated memory chunks.
/*! \return total capacity in bytes.
*/
size_t Capacity() {
size_t capacity = 0;
for (ChunkHeader* c = chunkHead_; c != 0; c = c->next)
capacity += c->capacity;
return capacity;
}
//! Computes the memory blocks allocated.
/*! \return total used bytes.
*/
size_t Size() {
size_t size = 0;
for (ChunkHeader* c = chunkHead_; c != 0; c = c->next)
size += c->size;
return size;
}
//! Allocates a memory block. (concept Allocator)
void* Malloc(size_t size) {
size = (size + 3) & ~3; // Force aligning size to 4
if (chunkHead_->size + size > chunkHead_->capacity)
AddChunk(chunk_capacity_ > size ? chunk_capacity_ : size);
char *buffer = (char *)(chunkHead_ + 1) + chunkHead_->size;
RAPIDJSON_ASSERT(((uintptr_t)buffer & 3) == 0); // returned buffer is aligned to 4
chunkHead_->size += size;
return buffer;
}
//! Resizes a memory block (concept Allocator)
void* Realloc(void* originalPtr, size_t originalSize, size_t newSize) {
if (originalPtr == 0)
return Malloc(newSize);
// Do not shrink if new size is smaller than original
if (originalSize >= newSize)
return originalPtr;
// Simply expand it if it is the last allocation and there is sufficient space
if (originalPtr == (char *)(chunkHead_ + 1) + chunkHead_->size - originalSize) {
size_t increment = newSize - originalSize;
increment = (increment + 3) & ~3; // Force aligning size to 4
if (chunkHead_->size + increment <= chunkHead_->capacity) {
chunkHead_->size += increment;
RAPIDJSON_ASSERT(((uintptr_t)originalPtr & 3) == 0); // returned buffer is aligned to 4
return originalPtr;
}
}
// Realloc process: allocate and copy memory, do not free original buffer.
void* newBuffer = Malloc(newSize);
RAPIDJSON_ASSERT(newBuffer != 0); // Do not handle out-of-memory explicitly.
return memcpy(newBuffer, originalPtr, originalSize);
}
//! Frees a memory block (concept Allocator)
static void Free(void *) {} // Do nothing
private:
//! Creates a new chunk.
/*! \param capacity Capacity of the chunk in bytes.
*/
void AddChunk(size_t capacity) {
ChunkHeader* chunk = (ChunkHeader*)baseAllocator_->Malloc(sizeof(ChunkHeader) + capacity);
chunk->capacity = capacity;
chunk->size = 0;
chunk->next = chunkHead_;
chunkHead_ = chunk;
}
static const int kDefaultChunkCapacity = 64 * 1024; //!< Default chunk capacity.
//! Chunk header for perpending to each chunk.
/*! Chunks are stored as a singly linked list.
*/
struct ChunkHeader {
size_t capacity; //!< Capacity of the chunk in bytes (excluding the header itself).
size_t size; //!< Current size of allocated memory in bytes.
ChunkHeader *next; //!< Next chunk in the linked list.
};
ChunkHeader *chunkHead_; //!< Head of the chunk linked-list. Only the head chunk serves allocation.
size_t chunk_capacity_; //!< The minimum capacity of chunk when they are allocated.
char *userBuffer_; //!< User supplied buffer.
BaseAllocator* baseAllocator_; //!< base allocator for allocating memory chunks.
BaseAllocator* ownBaseAllocator_; //!< base allocator created by this object.
};
///////////////////////////////////////////////////////////////////////////////
// Encoding
/*! \class rapidjson::Encoding
\brief Concept for encoding of Unicode characters.
\code
concept Encoding {
typename Ch; //! Type of character.
//! \brief Encode a Unicode codepoint to a buffer.
//! \param buffer pointer to destination buffer to store the result. It should have sufficient size of encoding one character.
//! \param codepoint An unicode codepoint, ranging from 0x0 to 0x10FFFF inclusively.
//! \returns the pointer to the next character after the encoded data.
static Ch* Encode(Ch *buffer, unsigned codepoint);
};
\endcode
*/
///////////////////////////////////////////////////////////////////////////////
// UTF8
//! UTF-8 encoding.
/*! http://en.wikipedia.org/wiki/UTF-8
\tparam CharType Type for storing 8-bit UTF-8 data. Default is char.
\implements Encoding
*/
template<typename CharType = char>
struct UTF8 {
typedef CharType Ch;
static Ch* Encode(Ch *buffer, unsigned codepoint) {
if (codepoint <= 0x7F)
*buffer++ = codepoint & 0xFF;
else if (codepoint <= 0x7FF) {
*buffer++ = 0xC0 | ((codepoint >> 6) & 0xFF);
*buffer++ = 0x80 | ((codepoint & 0x3F));
}
else if (codepoint <= 0xFFFF) {
*buffer++ = 0xE0 | ((codepoint >> 12) & 0xFF);
*buffer++ = 0x80 | ((codepoint >> 6) & 0x3F);
*buffer++ = 0x80 | (codepoint & 0x3F);
}
else {
RAPIDJSON_ASSERT(codepoint <= 0x10FFFF);
*buffer++ = 0xF0 | ((codepoint >> 18) & 0xFF);
*buffer++ = 0x80 | ((codepoint >> 12) & 0x3F);
*buffer++ = 0x80 | ((codepoint >> 6) & 0x3F);
*buffer++ = 0x80 | (codepoint & 0x3F);
}
return buffer;
}
};
///////////////////////////////////////////////////////////////////////////////
// UTF16
//! UTF-16 encoding.
/*! http://en.wikipedia.org/wiki/UTF-16
\tparam CharType Type for storing 16-bit UTF-16 data. Default is wchar_t. C++11 may use char16_t instead.
\implements Encoding
*/
template<typename CharType = wchar_t>
struct UTF16 {
typedef CharType Ch;
static Ch* Encode(Ch* buffer, unsigned codepoint) {
if (codepoint <= 0xFFFF) {
RAPIDJSON_ASSERT(codepoint < 0xD800 || codepoint > 0xDFFF); // Code point itself cannot be surrogate pair
*buffer++ = static_cast<Ch>(codepoint);
}
else {
RAPIDJSON_ASSERT(codepoint <= 0x10FFFF);
unsigned v = codepoint - 0x10000;
*buffer++ = static_cast<Ch>((v >> 10) + 0xD800);
*buffer++ = (v & 0x3FF) + 0xDC00;
}
return buffer;
}
};
///////////////////////////////////////////////////////////////////////////////
// UTF32
//! UTF-32 encoding.
/*! http://en.wikipedia.org/wiki/UTF-32
\tparam Ch Type for storing 32-bit UTF-32 data. Default is unsigned. C++11 may use char32_t instead.
\implements Encoding
*/
template<typename CharType = unsigned>
struct UTF32 {
typedef CharType Ch;
static Ch *Encode(Ch* buffer, unsigned codepoint) {
RAPIDJSON_ASSERT(codepoint <= 0x10FFFF);
*buffer++ = codepoint;
return buffer;
}
};
///////////////////////////////////////////////////////////////////////////////
// Stream
/*! \class rapidjson::Stream
\brief Concept for reading and writing characters.
For read-only stream, no need to implement PutBegin(), Put() and PutEnd().
For write-only stream, only need to implement Put().
\code
concept Stream {
typename Ch; //!< Character type of the stream.
//! Read the current character from stream without moving the read cursor.
Ch Peek() const;
//! Read the current character from stream and moving the read cursor to next character.
Ch Take();
//! Get the current read cursor.
//! \return Number of characters read from start.
size_t Tell();
//! Begin writing operation at the current read pointer.
//! \return The begin writer pointer.
Ch* PutBegin();
//! Write a character.
void Put(Ch c);
//! End the writing operation.
//! \param begin The begin write pointer returned by PutBegin().
//! \return Number of characters written.
size_t PutEnd(Ch* begin);
}
\endcode
*/
//! Put N copies of a character to a stream.
template<typename Stream, typename Ch>
inline void PutN(Stream& stream, Ch c, size_t n) {
for (size_t i = 0; i < n; i++)
stream.Put(c);
}
///////////////////////////////////////////////////////////////////////////////
// StringStream
//! Read-only string stream.
/*! \implements Stream
*/
template <typename Encoding>
struct GenericStringStream {
typedef typename Encoding::Ch Ch;
GenericStringStream(const Ch *src) : src_(src), head_(src) {}
Ch Peek() const { return *src_; }
Ch Take() { return *src_++; }
size_t Tell() const { return src_ - head_; }
Ch* PutBegin() { RAPIDJSON_ASSERT(false); return 0; }
void Put(Ch) { RAPIDJSON_ASSERT(false); }
size_t PutEnd(Ch*) { RAPIDJSON_ASSERT(false); return 0; }
const Ch* src_; //!< Current read position.
const Ch* head_; //!< Original head of the string.
};
typedef GenericStringStream<UTF8<> > StringStream;
///////////////////////////////////////////////////////////////////////////////
// InsituStringStream
//! A read-write string stream.
/*! This string stream is particularly designed for in-situ parsing.
\implements Stream
*/
template <typename Encoding>
struct GenericInsituStringStream {
typedef typename Encoding::Ch Ch;
GenericInsituStringStream(Ch *src) : src_(src), dst_(0), head_(src) {}
// Read
Ch Peek() { return *src_; }
Ch Take() { return *src_++; }
size_t Tell() { return src_ - head_; }
// Write
Ch* PutBegin() { return dst_ = src_; }
void Put(Ch c) { RAPIDJSON_ASSERT(dst_ != 0); *dst_++ = c; }
size_t PutEnd(Ch* begin) { return dst_ - begin; }
Ch* src_;
Ch* dst_;
Ch* head_;
};
typedef GenericInsituStringStream<UTF8<> > InsituStringStream;
///////////////////////////////////////////////////////////////////////////////
// Type
//! Type of JSON value
enum Type {
kNullType = 0, //!< null
kFalseType = 1, //!< false
kTrueType = 2, //!< true
kObjectType = 3, //!< object
kArrayType = 4, //!< array
kStringType = 5, //!< string
kNumberType = 6, //!< number
};
} // namespace rapidjson
#endif // RAPIDJSON_RAPIDJSON_H_

683
third-party/rapidjson/reader.h vendored Normal file
View file

@ -0,0 +1,683 @@
#ifndef RAPIDJSON_READER_H_
#define RAPIDJSON_READER_H_
// Copyright (c) 2011 Milo Yip (miloyip@gmail.com)
// Version 0.1
#include "rapidjson.h"
#include "internal/pow10.h"
#include "internal/stack.h"
#include <csetjmp>
#ifdef RAPIDJSON_SSE42
#include <nmmintrin.h>
#elif defined(RAPIDJSON_SSE2)
#include <emmintrin.h>
#endif
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#endif
#ifndef RAPIDJSON_PARSE_ERROR
#define RAPIDJSON_PARSE_ERROR(msg, offset) \
RAPIDJSON_MULTILINEMACRO_BEGIN \
parseError_ = msg; \
errorOffset_ = offset; \
longjmp(jmpbuf_, 1); \
RAPIDJSON_MULTILINEMACRO_END
#endif
namespace rapidjson {
///////////////////////////////////////////////////////////////////////////////
// ParseFlag
//! Combination of parseFlags
enum ParseFlag {
kParseDefaultFlags = 0, //!< Default parse flags. Non-destructive parsing. Text strings are decoded into allocated buffer.
kParseInsituFlag = 1 //!< In-situ(destructive) parsing.
};
///////////////////////////////////////////////////////////////////////////////
// Handler
/*! \class rapidjson::Handler
\brief Concept for receiving events from GenericReader upon parsing.
\code
concept Handler {
typename Ch;
void Null();
void Bool(bool b);
void Int(int i);
void Uint(unsigned i);
void Int64(int64_t i);
void Uint64(uint64_t i);
void Double(double d);
void String(const Ch* str, SizeType length, bool copy);
void StartObject();
void EndObject(SizeType memberCount);
void StartArray();
void EndArray(SizeType elementCount);
};
\endcode
*/
///////////////////////////////////////////////////////////////////////////////
// BaseReaderHandler
//! Default implementation of Handler.
/*! This can be used as base class of any reader handler.
\implements Handler
*/
template<typename Encoding = UTF8<> >
struct BaseReaderHandler {
typedef typename Encoding::Ch Ch;
void Default() {}
void Null() { Default(); }
void Bool(bool) { Default(); }
void Int(int) { Default(); }
void Uint(unsigned) { Default(); }
void Int64(int64_t) { Default(); }
void Uint64(uint64_t) { Default(); }
void Double(double) { Default(); }
void String(const Ch*, SizeType, bool) { Default(); }
void StartObject() { Default(); }
void EndObject(SizeType) { Default(); }
void StartArray() { Default(); }
void EndArray(SizeType) { Default(); }
};
///////////////////////////////////////////////////////////////////////////////
// SkipWhitespace
//! Skip the JSON white spaces in a stream.
/*! \param stream A input stream for skipping white spaces.
\note This function has SSE2/SSE4.2 specialization.
*/
template<typename Stream>
void SkipWhitespace(Stream& stream) {
Stream s = stream; // Use a local copy for optimization
while (s.Peek() == ' ' || s.Peek() == '\n' || s.Peek() == '\r' || s.Peek() == '\t')
s.Take();
stream = s;
}
#ifdef RAPIDJSON_SSE42
//! Skip whitespace with SSE 4.2 pcmpistrm instruction, testing 16 8-byte characters at once.
inline const char *SkipWhitespace_SIMD(const char* p) {
static const char whitespace[16] = " \n\r\t";
__m128i w = _mm_loadu_si128((const __m128i *)&whitespace[0]);
for (;;) {
__m128i s = _mm_loadu_si128((const __m128i *)p);
unsigned r = _mm_cvtsi128_si32(_mm_cmpistrm(w, s, _SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK | _SIDD_NEGATIVE_POLARITY));
if (r == 0) // all 16 characters are whitespace
p += 16;
else { // some of characters may be non-whitespace
#ifdef _MSC_VER // Find the index of first non-whitespace
unsigned long offset;
if (_BitScanForward(&offset, r))
return p + offset;
#else
if (r != 0)
return p + __builtin_ffs(r) - 1;
#endif
}
}
}
#elif defined(RAPIDJSON_SSE2)
//! Skip whitespace with SSE2 instructions, testing 16 8-byte characters at once.
inline const char *SkipWhitespace_SIMD(const char* p) {
static const char whitespaces[4][17] = {
" ",
"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r",
"\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"};
__m128i w0 = _mm_loadu_si128((const __m128i *)&whitespaces[0][0]);
__m128i w1 = _mm_loadu_si128((const __m128i *)&whitespaces[1][0]);
__m128i w2 = _mm_loadu_si128((const __m128i *)&whitespaces[2][0]);
__m128i w3 = _mm_loadu_si128((const __m128i *)&whitespaces[3][0]);
for (;;) {
__m128i s = _mm_loadu_si128((const __m128i *)p);
__m128i x = _mm_cmpeq_epi8(s, w0);
x = _mm_or_si128(x, _mm_cmpeq_epi8(s, w1));
x = _mm_or_si128(x, _mm_cmpeq_epi8(s, w2));
x = _mm_or_si128(x, _mm_cmpeq_epi8(s, w3));
unsigned short r = ~_mm_movemask_epi8(x);
if (r == 0) // all 16 characters are whitespace
p += 16;
else { // some of characters may be non-whitespace
#ifdef _MSC_VER // Find the index of first non-whitespace
unsigned long offset;
if (_BitScanForward(&offset, r))
return p + offset;
#else
if (r != 0)
return p + __builtin_ffs(r) - 1;
#endif
}
}
}
#endif // RAPIDJSON_SSE2
#ifdef RAPIDJSON_SIMD
//! Template function specialization for InsituStringStream
template<> inline void SkipWhitespace(InsituStringStream& stream) {
stream.src_ = const_cast<char*>(SkipWhitespace_SIMD(stream.src_));
}
//! Template function specialization for StringStream
template<> inline void SkipWhitespace(StringStream& stream) {
stream.src_ = SkipWhitespace_SIMD(stream.src_);
}
#endif // RAPIDJSON_SIMD
///////////////////////////////////////////////////////////////////////////////
// GenericReader
//! SAX-style JSON parser. Use Reader for UTF8 encoding and default allocator.
/*! GenericReader parses JSON text from a stream, and send events synchronously to an
object implementing Handler concept.
It needs to allocate a stack for storing a single decoded string during
non-destructive parsing.
For in-situ parsing, the decoded string is directly written to the source
text string, no temporary buffer is required.
A GenericReader object can be reused for parsing multiple JSON text.
\tparam Encoding Encoding of both the stream and the parse output.
\tparam Allocator Allocator type for stack.
*/
template <typename Encoding, typename Allocator = MemoryPoolAllocator<> >
class GenericReader {
public:
typedef typename Encoding::Ch Ch;
//! Constructor.
/*! \param allocator Optional allocator for allocating stack memory. (Only use for non-destructive parsing)
\param stackCapacity stack capacity in bytes for storing a single decoded string. (Only use for non-destructive parsing)
*/
GenericReader(Allocator* allocator = 0, size_t stackCapacity = kDefaultStackCapacity) : stack_(allocator, stackCapacity), parseError_(0), errorOffset_(0) {}
//! Parse JSON text.
/*! \tparam parseFlags Combination of ParseFlag.
\tparam Stream Type of input stream.
\tparam Handler Type of handler which must implement Handler concept.
\param stream Input stream to be parsed.
\param handler The handler to receive events.
\return Whether the parsing is successful.
*/
template <unsigned parseFlags, typename Stream, typename Handler>
bool Parse(Stream& stream, Handler& handler) {
parseError_ = 0;
errorOffset_ = 0;
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4611) // interaction between '_setjmp' and C++ object destruction is non-portable
#endif
if (setjmp(jmpbuf_)) {
#ifdef _MSC_VER
#pragma warning(pop)
#endif
stack_.Clear();
return false;
}
SkipWhitespace(stream);
if (stream.Peek() == '\0')
RAPIDJSON_PARSE_ERROR("Text only contains white space(s)", stream.Tell());
else {
switch (stream.Peek()) {
case '{': ParseObject<parseFlags>(stream, handler); break;
case '[': ParseArray<parseFlags>(stream, handler); break;
default: RAPIDJSON_PARSE_ERROR("Expect either an object or array at root", stream.Tell());
}
SkipWhitespace(stream);
if (stream.Peek() != '\0')
RAPIDJSON_PARSE_ERROR("Nothing should follow the root object or array.", stream.Tell());
}
return true;
}
bool HasParseError() const { return parseError_ != 0; }
const char* GetParseError() const { return parseError_; }
size_t GetErrorOffset() const { return errorOffset_; }
private:
// Parse object: { string : value, ... }
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseObject(Stream& stream, Handler& handler) {
RAPIDJSON_ASSERT(stream.Peek() == '{');
stream.Take(); // Skip '{'
handler.StartObject();
SkipWhitespace(stream);
if (stream.Peek() == '}') {
stream.Take();
handler.EndObject(0); // empty object
return;
}
for (SizeType memberCount = 0;;) {
if (stream.Peek() != '"') {
RAPIDJSON_PARSE_ERROR("Name of an object member must be a string", stream.Tell());
break;
}
ParseString<parseFlags>(stream, handler);
SkipWhitespace(stream);
if (stream.Take() != ':') {
RAPIDJSON_PARSE_ERROR("There must be a colon after the name of object member", stream.Tell());
break;
}
SkipWhitespace(stream);
ParseValue<parseFlags>(stream, handler);
SkipWhitespace(stream);
++memberCount;
switch(stream.Take()) {
case ',': SkipWhitespace(stream); break;
case '}': handler.EndObject(memberCount); return;
default: RAPIDJSON_PARSE_ERROR("Must be a comma or '}' after an object member", stream.Tell());
}
}
}
// Parse array: [ value, ... ]
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseArray(Stream& stream, Handler& handler) {
RAPIDJSON_ASSERT(stream.Peek() == '[');
stream.Take(); // Skip '['
handler.StartArray();
SkipWhitespace(stream);
if (stream.Peek() == ']') {
stream.Take();
handler.EndArray(0); // empty array
return;
}
for (SizeType elementCount = 0;;) {
ParseValue<parseFlags>(stream, handler);
++elementCount;
SkipWhitespace(stream);
switch (stream.Take()) {
case ',': SkipWhitespace(stream); break;
case ']': handler.EndArray(elementCount); return;
default: RAPIDJSON_PARSE_ERROR("Must be a comma or ']' after an array element.", stream.Tell());
}
}
}
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseNull(Stream& stream, Handler& handler) {
RAPIDJSON_ASSERT(stream.Peek() == 'n');
stream.Take();
if (stream.Take() == 'u' && stream.Take() == 'l' && stream.Take() == 'l')
handler.Null();
else
RAPIDJSON_PARSE_ERROR("Invalid value", stream.Tell() - 1);
}
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseTrue(Stream& stream, Handler& handler) {
RAPIDJSON_ASSERT(stream.Peek() == 't');
stream.Take();
if (stream.Take() == 'r' && stream.Take() == 'u' && stream.Take() == 'e')
handler.Bool(true);
else
RAPIDJSON_PARSE_ERROR("Invalid value", stream.Tell());
}
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseFalse(Stream& stream, Handler& handler) {
RAPIDJSON_ASSERT(stream.Peek() == 'f');
stream.Take();
if (stream.Take() == 'a' && stream.Take() == 'l' && stream.Take() == 's' && stream.Take() == 'e')
handler.Bool(false);
else
RAPIDJSON_PARSE_ERROR("Invalid value", stream.Tell() - 1);
}
// Helper function to parse four hexidecimal digits in \uXXXX in ParseString().
template<typename Stream>
unsigned ParseHex4(Stream& stream) {
Stream s = stream; // Use a local copy for optimization
unsigned codepoint = 0;
for (int i = 0; i < 4; i++) {
Ch c = s.Take();
codepoint <<= 4;
codepoint += c;
if (c >= '0' && c <= '9')
codepoint -= '0';
else if (c >= 'A' && c <= 'F')
codepoint -= 'A' - 10;
else if (c >= 'a' && c <= 'f')
codepoint -= 'a' - 10;
else
RAPIDJSON_PARSE_ERROR("Incorrect hex digit after \\u escape", s.Tell() - 1);
}
stream = s; // Restore stream
return codepoint;
}
// Parse string, handling the prefix and suffix double quotes and escaping.
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseString(Stream& stream, Handler& handler) {
#define Z16 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
static const Ch escape[256] = {
Z16, Z16, 0, 0,'\"', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,'/',
Z16, Z16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,'\\', 0, 0, 0,
0, 0,'\b', 0, 0, 0,'\f', 0, 0, 0, 0, 0, 0, 0,'\n', 0,
0, 0,'\r', 0,'\t', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
Z16, Z16, Z16, Z16, Z16, Z16, Z16, Z16
};
#undef Z16
Stream s = stream; // Use a local copy for optimization
RAPIDJSON_ASSERT(s.Peek() == '\"');
s.Take(); // Skip '\"'
Ch *head;
SizeType len;
if (parseFlags & kParseInsituFlag)
head = s.PutBegin();
else
len = 0;
#define RAPIDJSON_PUT(x) \
do { \
if (parseFlags & kParseInsituFlag) \
s.Put(x); \
else { \
*stack_.template Push<Ch>() = x; \
++len; \
} \
} while(false)
for (;;) {
Ch c = s.Take();
if (c == '\\') { // Escape
Ch e = s.Take();
if ((sizeof(Ch) == 1 || e < 256) && escape[(unsigned char)e])
RAPIDJSON_PUT(escape[(unsigned char)e]);
else if (e == 'u') { // Unicode
unsigned codepoint = ParseHex4(s);
if (codepoint >= 0xD800 && codepoint <= 0xDBFF) { // Handle UTF-16 surrogate pair
if (s.Take() != '\\' || s.Take() != 'u') {
RAPIDJSON_PARSE_ERROR("Missing the second \\u in surrogate pair", s.Tell() - 2);
return;
}
unsigned codepoint2 = ParseHex4(s);
if (codepoint2 < 0xDC00 || codepoint2 > 0xDFFF) {
RAPIDJSON_PARSE_ERROR("The second \\u in surrogate pair is invalid", s.Tell() - 2);
return;
}
codepoint = (((codepoint - 0xD800) << 10) | (codepoint2 - 0xDC00)) + 0x10000;
}
Ch buffer[4];
SizeType count = SizeType(Encoding::Encode(buffer, codepoint) - &buffer[0]);
if (parseFlags & kParseInsituFlag)
for (SizeType i = 0; i < count; i++)
s.Put(buffer[i]);
else {
memcpy(stack_.template Push<Ch>(count), buffer, count * sizeof(Ch));
len += count;
}
}
else {
RAPIDJSON_PARSE_ERROR("Unknown escape character", stream.Tell() - 1);
return;
}
}
else if (c == '"') { // Closing double quote
if (parseFlags & kParseInsituFlag) {
size_t length = s.PutEnd(head);
RAPIDJSON_ASSERT(length <= 0xFFFFFFFF);
RAPIDJSON_PUT('\0'); // null-terminate the string
handler.String(head, SizeType(length), false);
}
else {
RAPIDJSON_PUT('\0');
handler.String(stack_.template Pop<Ch>(len), len - 1, true);
}
stream = s; // restore stream
return;
}
else if (c == '\0') {
RAPIDJSON_PARSE_ERROR("lacks ending quotation before the end of string", stream.Tell() - 1);
return;
}
else if ((unsigned)c < 0x20) { // RFC 4627: unescaped = %x20-21 / %x23-5B / %x5D-10FFFF
RAPIDJSON_PARSE_ERROR("Incorrect unescaped character in string", stream.Tell() - 1);
return;
}
else
RAPIDJSON_PUT(c); // Normal character, just copy
}
#undef RAPIDJSON_PUT
}
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseNumber(Stream& stream, Handler& handler) {
Stream s = stream; // Local copy for optimization
// Parse minus
bool minus = false;
if (s.Peek() == '-') {
minus = true;
s.Take();
}
// Parse int: zero / ( digit1-9 *DIGIT )
unsigned i;
bool try64bit = false;
if (s.Peek() == '0') {
i = 0;
s.Take();
}
else if (s.Peek() >= '1' && s.Peek() <= '9') {
i = s.Take() - '0';
if (minus)
while (s.Peek() >= '0' && s.Peek() <= '9') {
if (i >= 214748364) { // 2^31 = 2147483648
if (i != 214748364 || s.Peek() > '8') {
try64bit = true;
break;
}
}
i = i * 10 + (s.Take() - '0');
}
else
while (s.Peek() >= '0' && s.Peek() <= '9') {
if (i >= 429496729) { // 2^32 - 1 = 4294967295
if (i != 429496729 || s.Peek() > '5') {
try64bit = true;
break;
}
}
i = i * 10 + (s.Take() - '0');
}
}
else {
RAPIDJSON_PARSE_ERROR("Expect a value here.", stream.Tell());
return;
}
// Parse 64bit int
uint64_t i64 = 0;
bool useDouble = false;
if (try64bit) {
i64 = i;
if (minus)
while (s.Peek() >= '0' && s.Peek() <= '9') {
if (i64 >= 922337203685477580uLL) // 2^63 = 9223372036854775808
if (i64 != 922337203685477580uLL || s.Peek() > '8') {
useDouble = true;
break;
}
i64 = i64 * 10 + (s.Take() - '0');
}
else
while (s.Peek() >= '0' && s.Peek() <= '9') {
if (i64 >= 1844674407370955161uLL) // 2^64 - 1 = 18446744073709551615
if (i64 != 1844674407370955161uLL || s.Peek() > '5') {
useDouble = true;
break;
}
i64 = i64 * 10 + (s.Take() - '0');
}
}
// Force double for big integer
double d = 0.0;
if (useDouble) {
d = (double)i64;
while (s.Peek() >= '0' && s.Peek() <= '9') {
if (d >= 1E307) {
RAPIDJSON_PARSE_ERROR("Number too big to store in double", stream.Tell());
return;
}
d = d * 10 + (s.Take() - '0');
}
}
// Parse frac = decimal-point 1*DIGIT
int expFrac = 0;
if (s.Peek() == '.') {
if (!useDouble) {
d = try64bit ? (double)i64 : (double)i;
useDouble = true;
}
s.Take();
if (s.Peek() >= '0' && s.Peek() <= '9') {
d = d * 10 + (s.Take() - '0');
--expFrac;
}
else {
RAPIDJSON_PARSE_ERROR("At least one digit in fraction part", stream.Tell());
return;
}
while (s.Peek() >= '0' && s.Peek() <= '9') {
if (expFrac > -16) {
d = d * 10 + (s.Peek() - '0');
--expFrac;
}
s.Take();
}
}
// Parse exp = e [ minus / plus ] 1*DIGIT
int exp = 0;
if (s.Peek() == 'e' || s.Peek() == 'E') {
if (!useDouble) {
d = try64bit ? (double)i64 : (double)i;
useDouble = true;
}
s.Take();
bool expMinus = false;
if (s.Peek() == '+')
s.Take();
else if (s.Peek() == '-') {
s.Take();
expMinus = true;
}
if (s.Peek() >= '0' && s.Peek() <= '9') {
exp = s.Take() - '0';
while (s.Peek() >= '0' && s.Peek() <= '9') {
exp = exp * 10 + (s.Take() - '0');
if (exp > 308) {
RAPIDJSON_PARSE_ERROR("Number too big to store in double", stream.Tell());
return;
}
}
}
else {
RAPIDJSON_PARSE_ERROR("At least one digit in exponent", s.Tell());
return;
}
if (expMinus)
exp = -exp;
}
// Finish parsing, call event according to the type of number.
if (useDouble) {
d *= internal::Pow10(exp + expFrac);
handler.Double(minus ? -d : d);
}
else {
if (try64bit) {
if (minus)
handler.Int64(-(int64_t)i64);
else
handler.Uint64(i64);
}
else {
if (minus)
handler.Int(-(int)i);
else
handler.Uint(i);
}
}
stream = s; // restore stream
}
// Parse any JSON value
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseValue(Stream& stream, Handler& handler) {
switch (stream.Peek()) {
case 'n': ParseNull <parseFlags>(stream, handler); break;
case 't': ParseTrue <parseFlags>(stream, handler); break;
case 'f': ParseFalse <parseFlags>(stream, handler); break;
case '"': ParseString<parseFlags>(stream, handler); break;
case '{': ParseObject<parseFlags>(stream, handler); break;
case '[': ParseArray <parseFlags>(stream, handler); break;
default : ParseNumber<parseFlags>(stream, handler);
}
}
static const size_t kDefaultStackCapacity = 256; //!< Default stack capacity in bytes for storing a single decoded string.
internal::Stack<Allocator> stack_; //!< A stack for storing decoded string temporarily during non-destructive parsing.
jmp_buf jmpbuf_; //!< setjmp buffer for fast exit from nested parsing function calls.
const char* parseError_;
size_t errorOffset_;
}; // class GenericReader
//! Reader with UTF8 encoding and default allocator.
typedef GenericReader<UTF8<> > Reader;
} // namespace rapidjson
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // RAPIDJSON_READER_H_

49
third-party/rapidjson/stringbuffer.h vendored Normal file
View file

@ -0,0 +1,49 @@
#ifndef RAPIDJSON_STRINGBUFFER_H_
#define RAPIDJSON_STRINGBUFFER_H_
#include "rapidjson.h"
#include "internal/stack.h"
namespace rapidjson {
//! Represents an in-memory output stream.
/*!
\tparam Encoding Encoding of the stream.
\tparam Allocator type for allocating memory buffer.
\implements Stream
*/
template <typename Encoding, typename Allocator = CrtAllocator>
struct GenericStringBuffer {
typedef typename Encoding::Ch Ch;
GenericStringBuffer(Allocator* allocator = 0, size_t capacity = kDefaultCapacity) : stack_(allocator, capacity) {}
void Put(Ch c) { *stack_.template Push<Ch>() = c; }
void Clear() { stack_.Clear(); }
const char* GetString() const {
// Push and pop a null terminator. This is safe.
*stack_.template Push<Ch>() = '\0';
stack_.template Pop<Ch>(1);
return stack_.template Bottom<Ch>();
}
size_t Size() const { return stack_.GetSize(); }
static const size_t kDefaultCapacity = 256;
mutable internal::Stack<Allocator> stack_;
};
typedef GenericStringBuffer<UTF8<> > StringBuffer;
//! Implement specialized version of PutN() with memset() for better performance.
template<>
inline void PutN(GenericStringBuffer<UTF8<> >& stream, char c, size_t n) {
memset(stream.stack_.Push<char>(n), c, n * sizeof(c));
}
} // namespace rapidjson
#endif // RAPIDJSON_STRINGBUFFER_H_

241
third-party/rapidjson/writer.h vendored Normal file
View file

@ -0,0 +1,241 @@
#ifndef RAPIDJSON_WRITER_H_
#define RAPIDJSON_WRITER_H_
#include "rapidjson.h"
#include "internal/stack.h"
#include "internal/strfunc.h"
#include <cstdio> // snprintf() or _sprintf_s()
#include <new> // placement new
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#endif
namespace rapidjson {
//! JSON writer
/*! Writer implements the concept Handler.
It generates JSON text by events to an output stream.
User may programmatically calls the functions of a writer to generate JSON text.
On the other side, a writer can also be passed to objects that generates events,
for example Reader::Parse() and Document::Accept().
\tparam Stream Type of ouptut stream.
\tparam Encoding Encoding of both source strings and output.
\implements Handler
*/
template<typename Stream, typename Encoding = UTF8<>, typename Allocator = MemoryPoolAllocator<> >
class Writer {
public:
typedef typename Encoding::Ch Ch;
Writer(Stream& stream, Allocator* allocator = 0, size_t levelDepth = kDefaultLevelDepth) :
stream_(stream), level_stack_(allocator, levelDepth * sizeof(Level)) {}
//@name Implementation of Handler
//@{
Writer& Null() { Prefix(kNullType); WriteNull(); return *this; }
Writer& Bool(bool b) { Prefix(b ? kTrueType : kFalseType); WriteBool(b); return *this; }
Writer& Int(int i) { Prefix(kNumberType); WriteInt(i); return *this; }
Writer& Uint(unsigned u) { Prefix(kNumberType); WriteUint(u); return *this; }
Writer& Int64(int64_t i64) { Prefix(kNumberType); WriteInt64(i64); return *this; }
Writer& Uint64(uint64_t u64) { Prefix(kNumberType); WriteUint64(u64); return *this; }
Writer& Double(double d) { Prefix(kNumberType); WriteDouble(d); return *this; }
Writer& String(const Ch* str, SizeType length, bool copy = false) {
(void)copy;
Prefix(kStringType);
WriteString(str, length);
return *this;
}
Writer& StartObject() {
Prefix(kObjectType);
new (level_stack_.template Push<Level>()) Level(false);
WriteStartObject();
return *this;
}
Writer& EndObject(SizeType memberCount = 0) {
(void)memberCount;
RAPIDJSON_ASSERT(level_stack_.GetSize() >= sizeof(Level));
RAPIDJSON_ASSERT(!level_stack_.template Top<Level>()->inArray);
level_stack_.template Pop<Level>(1);
WriteEndObject();
return *this;
}
Writer& StartArray() {
Prefix(kArrayType);
new (level_stack_.template Push<Level>()) Level(true);
WriteStartArray();
return *this;
}
Writer& EndArray(SizeType elementCount = 0) {
(void)elementCount;
RAPIDJSON_ASSERT(level_stack_.GetSize() >= sizeof(Level));
RAPIDJSON_ASSERT(level_stack_.template Top<Level>()->inArray);
level_stack_.template Pop<Level>(1);
WriteEndArray();
return *this;
}
//@}
//! Simpler but slower overload.
Writer& String(const Ch* str) { return String(str, internal::StrLen(str)); }
protected:
//! Information for each nested level
struct Level {
Level(bool inArray_) : inArray(inArray_), valueCount(0) {}
bool inArray; //!< true if in array, otherwise in object
size_t valueCount; //!< number of values in this level
};
static const size_t kDefaultLevelDepth = 32;
void WriteNull() {
stream_.Put('n'); stream_.Put('u'); stream_.Put('l'); stream_.Put('l');
}
void WriteBool(bool b) {
if (b) {
stream_.Put('t'); stream_.Put('r'); stream_.Put('u'); stream_.Put('e');
}
else {
stream_.Put('f'); stream_.Put('a'); stream_.Put('l'); stream_.Put('s'); stream_.Put('e');
}
}
void WriteInt(int i) {
if (i < 0) {
stream_.Put('-');
i = -i;
}
WriteUint((unsigned)i);
}
void WriteUint(unsigned u) {
char buffer[10];
char *p = buffer;
do {
*p++ = (u % 10) + '0';
u /= 10;
} while (u > 0);
do {
--p;
stream_.Put(*p);
} while (p != buffer);
}
void WriteInt64(int64_t i64) {
if (i64 < 0) {
stream_.Put('-');
i64 = -i64;
}
WriteUint64((uint64_t)i64);
}
void WriteUint64(uint64_t u64) {
char buffer[20];
char *p = buffer;
do {
*p++ = char(u64 % 10) + '0';
u64 /= 10;
} while (u64 > 0);
do {
--p;
stream_.Put(*p);
} while (p != buffer);
}
//! \todo Optimization with custom double-to-string converter.
void WriteDouble(double d) {
char buffer[100];
#if _MSC_VER
int ret = sprintf_s(buffer, sizeof(buffer), "%g", d);
#else
int ret = snprintf(buffer, sizeof(buffer), "%g", d);
#endif
RAPIDJSON_ASSERT(ret >= 1);
for (int i = 0; i < ret; i++)
stream_.Put(buffer[i]);
}
void WriteString(const Ch* str, SizeType length) {
static const char hexDigits[] = "0123456789ABCDEF";
static const char escape[256] = {
#define Z16 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
//0 1 2 3 4 5 6 7 8 9 A B C D E F
'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'b', 't', 'n', 'u', 'f', 'r', 'u', 'u', // 00
'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', // 10
0, 0, '"', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20
Z16, Z16, // 30~4F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,'\\', 0, 0, 0, // 50
Z16, Z16, Z16, Z16, Z16, Z16, Z16, Z16, Z16, Z16 // 60~FF
#undef Z16
};
stream_.Put('\"');
for (const Ch* p = str; p != str + length; ++p) {
if ((sizeof(Ch) == 1 || *p < 256) && escape[(unsigned char)*p]) {
stream_.Put('\\');
stream_.Put(escape[(unsigned char)*p]);
if (escape[(unsigned char)*p] == 'u') {
stream_.Put('0');
stream_.Put('0');
stream_.Put(hexDigits[(*p) >> 4]);
stream_.Put(hexDigits[(*p) & 0xF]);
}
}
else
stream_.Put(*p);
}
stream_.Put('\"');
}
void WriteStartObject() { stream_.Put('{'); }
void WriteEndObject() { stream_.Put('}'); }
void WriteStartArray() { stream_.Put('['); }
void WriteEndArray() { stream_.Put(']'); }
void Prefix(Type type) {
(void)type;
if (level_stack_.GetSize() != 0) { // this value is not at root
Level* level = level_stack_.template Top<Level>();
if (level->valueCount > 0) {
if (level->inArray)
stream_.Put(','); // add comma if it is not the first element in array
else // in object
stream_.Put((level->valueCount % 2 == 0) ? ',' : ':');
}
if (!level->inArray && level->valueCount % 2 == 0)
RAPIDJSON_ASSERT(type == kStringType); // if it's in object, then even number should be a name
level->valueCount++;
}
else
RAPIDJSON_ASSERT(type == kObjectType || type == kArrayType);
}
Stream& stream_;
internal::Stack<Allocator> level_stack_;
private:
// Prohibit assignment for VC C4512 warning
Writer& operator=(const Writer& w);
};
} // namespace rapidjson
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // RAPIDJSON_RAPIDJSON_H_

View file

@ -4,6 +4,7 @@
// of patent rights can be found in the PATENTS file in the same directory.
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <memory>

View file

@ -14,6 +14,7 @@
namespace rocksdb {
const size_t Arena::kInlineSize;
const size_t Arena::kMinBlockSize = 4096;
const size_t Arena::kMaxBlockSize = 2 << 30;
static const int kAlignUnit = sizeof(void*);
@ -34,6 +35,10 @@ size_t OptimizeBlockSize(size_t block_size) {
Arena::Arena(size_t block_size) : kBlockSize(OptimizeBlockSize(block_size)) {
assert(kBlockSize >= kMinBlockSize && kBlockSize <= kMaxBlockSize &&
kBlockSize % kAlignUnit == 0);
alloc_bytes_remaining_ = sizeof(inline_block_);
blocks_memory_ += alloc_bytes_remaining_;
aligned_alloc_ptr_ = inline_block_;
unaligned_alloc_ptr_ = inline_block_ + alloc_bytes_remaining_;
}
Arena::~Arena() {
@ -71,17 +76,17 @@ char* Arena::AllocateFallback(size_t bytes, bool aligned) {
}
}
char* Arena::AllocateAligned(size_t bytes, size_t huge_page_tlb_size,
char* Arena::AllocateAligned(size_t bytes, size_t huage_page_size,
Logger* logger) {
assert((kAlignUnit & (kAlignUnit - 1)) ==
0); // Pointer size should be a power of 2
#ifdef MAP_HUGETLB
if (huge_page_tlb_size > 0 && bytes > 0) {
if (huage_page_size > 0 && bytes > 0) {
// Allocate from a huge page TBL table.
assert(logger != nullptr); // logger need to be passed in.
size_t reserved_size =
((bytes - 1U) / huge_page_tlb_size + 1U) * huge_page_tlb_size;
((bytes - 1U) / huage_page_size + 1U) * huage_page_size;
assert(reserved_size >= bytes);
void* addr = mmap(nullptr, reserved_size, (PROT_READ | PROT_WRITE),
(MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB), 0, 0);

View file

@ -13,6 +13,7 @@
#pragma once
#include <cstddef>
#include <cerrno>
#include <vector>
#include <assert.h>
#include <stdint.h>
@ -28,6 +29,7 @@ class Arena {
Arena(const Arena&) = delete;
void operator=(const Arena&) = delete;
static const size_t kInlineSize = 2048;
static const size_t kMinBlockSize;
static const size_t kMaxBlockSize;
@ -36,18 +38,19 @@ class Arena {
char* Allocate(size_t bytes);
// huge_page_tlb_size: if >0, allocate bytes from huge page TLB and the size
// of the huge page TLB. Bytes will be rounded up to multiple and 2MB and
// allocate huge pages through mmap anonymous option with huge page on.
// The extra space allocated will be wasted. To enable it, need to reserve
// huge pages for it to be allocated, like:
// huge_page_size: if >0, will try to allocate from huage page TLB.
// The argument will be the size of the page size for huge page TLB. Bytes
// will be rounded up to multiple of the page size to allocate through mmap
// anonymous option with huge page on. The extra space allocated will be
// wasted. If allocation fails, will fall back to normal case. To enable it,
// need to reserve huge pages for it to be allocated, like:
// sysctl -w vm.nr_hugepages=20
// See linux doc Documentation/vm/hugetlbpage.txt for details.
// huge page allocation can fail. In this case it will fail back to
// normal cases. The messages will be logged to logger. So when calling with
// huge_page_tlb_size > 0, we highly recommend a logger is passed in.
// Otherwise, the error message will be printed out to stderr directly.
char* AllocateAligned(size_t bytes, size_t huge_page_tlb_size = 0,
char* AllocateAligned(size_t bytes, size_t huge_page_size = 0,
Logger* logger = nullptr);
// Returns an estimate of the total memory usage of data allocated
@ -69,6 +72,7 @@ class Arena {
size_t BlockSize() const { return kBlockSize; }
private:
char inline_block_[kInlineSize];
// Number of bytes allocated in one block
const size_t kBlockSize;
// Array of new[] allocated memory blocks

View file

@ -31,9 +31,11 @@ TEST(ArenaTest, MemoryAllocatedBytes) {
for (int i = 0; i < N; i++) {
arena.Allocate(req_sz);
}
expected_memory_allocated = req_sz * N;
expected_memory_allocated = req_sz * N + Arena::kInlineSize;
ASSERT_EQ(arena.MemoryAllocatedBytes(), expected_memory_allocated);
arena.Allocate(Arena::kInlineSize - 1);
// requested size < quarter of a block:
// allocate a block with the default size, then try to use unused part
// of the block. So one new block will be allocated for the first
@ -64,12 +66,19 @@ TEST(ArenaTest, ApproximateMemoryUsageTest) {
Arena arena(kBlockSize);
ASSERT_EQ(kZero, arena.ApproximateMemoryUsage());
// allocate inline bytes
arena.AllocateAligned(8);
arena.AllocateAligned(Arena::kInlineSize / 2 - 16);
arena.AllocateAligned(Arena::kInlineSize / 2);
ASSERT_EQ(arena.ApproximateMemoryUsage(), Arena::kInlineSize - 8);
ASSERT_EQ(arena.MemoryAllocatedBytes(), Arena::kInlineSize);
auto num_blocks = kBlockSize / kEntrySize;
// first allocation
arena.AllocateAligned(kEntrySize);
auto mem_usage = arena.MemoryAllocatedBytes();
ASSERT_EQ(mem_usage, kBlockSize);
ASSERT_EQ(mem_usage, kBlockSize + Arena::kInlineSize);
auto usage = arena.ApproximateMemoryUsage();
ASSERT_LT(usage, mem_usage);
for (size_t i = 1; i < num_blocks; ++i) {

View file

@ -18,6 +18,9 @@
#include "hdfs/hdfs.h"
#include "hdfs/env_hdfs.h"
#define HDFS_EXISTS 0
#define HDFS_DOESNT_EXIST 1
//
// This file defines an HDFS environment for rocksdb. It uses the libhdfs
// api to access HDFS. All HDFS files created by one instance of rocksdb
@ -39,7 +42,8 @@ static Logger* mylog = nullptr;
// Used for reading a file from HDFS. It implements both sequential-read
// access methods as well as random read access methods.
class HdfsReadableFile: virtual public SequentialFile, virtual public RandomAccessFile {
class HdfsReadableFile : virtual public SequentialFile,
virtual public RandomAccessFile {
private:
hdfsFS fileSys_;
std::string filename_;
@ -73,17 +77,34 @@ class HdfsReadableFile: virtual public SequentialFile, virtual public RandomAcce
Status s;
Log(mylog, "[hdfs] HdfsReadableFile reading %s %ld\n",
filename_.c_str(), n);
size_t bytes_read = hdfsRead(fileSys_, hfile_, scratch, (tSize)n);
Log(mylog, "[hdfs] HdfsReadableFile read %s\n", filename_.c_str());
*result = Slice(scratch, bytes_read);
if (bytes_read < n) {
if (feof()) {
// We leave status as ok if we hit the end of the file
} else {
// A partial read with an error: return a non-ok status
s = IOError(filename_, errno);
char* buffer = scratch;
size_t total_bytes_read = 0;
tSize bytes_read = 0;
tSize remaining_bytes = (tSize)n;
// Read a total of n bytes repeatedly until we hit error or eof
while (remaining_bytes > 0) {
bytes_read = hdfsRead(fileSys_, hfile_, buffer, remaining_bytes);
if (bytes_read <= 0) {
break;
}
assert(bytes_read <= remaining_bytes);
total_bytes_read += bytes_read;
remaining_bytes -= bytes_read;
buffer += bytes_read;
}
assert(total_bytes_read <= n);
Log(mylog, "[hdfs] HdfsReadableFile read %s\n", filename_.c_str());
if (bytes_read < 0) {
s = IOError(filename_, errno);
} else {
*result = Slice(scratch, total_bytes_read);
}
return s;
}
@ -139,8 +160,7 @@ class HdfsReadableFile: virtual public SequentialFile, virtual public RandomAcce
size = pFileInfo->mSize;
hdfsFreeFileInfo(pFileInfo, 1);
} else {
throw rocksdb::HdfsFatalException("fileSize on unknown file " +
filename_);
throw HdfsFatalException("fileSize on unknown file " + filename_);
}
return size;
}
@ -236,9 +256,8 @@ class HdfsLogger : public Logger {
uint64_t (*gettid_)(); // Return the thread id for the current thread
public:
HdfsLogger(HdfsWritableFile* f, uint64_t (*gettid)(),
const InfoLogLevel log_level = InfoLogLevel::ERROR)
: Logger(log_level), file_(f), gettid_(gettid) {
HdfsLogger(HdfsWritableFile* f, uint64_t (*gettid)())
: file_(f), gettid_(gettid) {
Log(mylog, "[hdfs] HdfsLogger opened %s\n",
file_->getName().c_str());
}
@ -324,40 +343,52 @@ class HdfsLogger : public Logger {
// Finally, the hdfs environment
const std::string HdfsEnv::kProto = "hdfs://";
const std::string HdfsEnv::pathsep = "/";
// open a file for sequential reading
Status HdfsEnv::NewSequentialFile(const std::string& fname,
SequentialFile** result) {
unique_ptr<SequentialFile>* result,
const EnvOptions& options) {
result->reset();
HdfsReadableFile* f = new HdfsReadableFile(fileSys_, fname);
if (f == nullptr) {
if (f == nullptr || !f->isValid()) {
delete f;
*result = nullptr;
return IOError(fname, errno);
}
*result = dynamic_cast<SequentialFile*>(f);
result->reset(dynamic_cast<SequentialFile*>(f));
return Status::OK();
}
// open a file for random reading
Status HdfsEnv::NewRandomAccessFile(const std::string& fname,
RandomAccessFile** result) {
unique_ptr<RandomAccessFile>* result,
const EnvOptions& options) {
result->reset();
HdfsReadableFile* f = new HdfsReadableFile(fileSys_, fname);
if (f == nullptr) {
if (f == nullptr || !f->isValid()) {
delete f;
*result = nullptr;
return IOError(fname, errno);
}
*result = dynamic_cast<RandomAccessFile*>(f);
result->reset(dynamic_cast<RandomAccessFile*>(f));
return Status::OK();
}
// create a new file for writing
Status HdfsEnv::NewWritableFile(const std::string& fname,
WritableFile** result) {
unique_ptr<WritableFile>* result,
const EnvOptions& options) {
result->reset();
Status s;
HdfsWritableFile* f = new HdfsWritableFile(fileSys_, fname);
if (f == nullptr || !f->isValid()) {
delete f;
*result = nullptr;
return IOError(fname, errno);
}
*result = dynamic_cast<WritableFile*>(f);
result->reset(dynamic_cast<WritableFile*>(f));
return Status::OK();
}
@ -367,24 +398,30 @@ Status HdfsEnv::NewRandomRWFile(const std::string& fname,
return Status::NotSupported("NewRandomRWFile not supported on HdfsEnv");
}
virtual Status NewDirectory(const std::string& name,
unique_ptr<Directory>* result) {
return Status::NotSupported("NewDirectory not yet supported on HdfsEnv");
Status HdfsEnv::NewDirectory(const std::string& name,
unique_ptr<Directory>* result) {
return Status::NotSupported("NewDirectory not supported on HdfsEnv");
}
bool HdfsEnv::FileExists(const std::string& fname) {
int value = hdfsExists(fileSys_, fname.c_str());
if (value == 0) {
switch (value) {
case HDFS_EXISTS:
return true;
case HDFS_DOESNT_EXIST:
return false;
default: // anything else should be an error
Log(mylog, "FileExists hdfsExists call failed");
throw HdfsFatalException("hdfsExists call failed with error " +
std::to_string(value) + ".\n");
}
return false;
}
Status HdfsEnv::GetChildren(const std::string& path,
std::vector<std::string>* result) {
int value = hdfsExists(fileSys_, path.c_str());
switch (value) {
case 0: {
case HDFS_EXISTS: { // directory exists
int numEntries = 0;
hdfsFileInfo* pHdfsFileInfo = 0;
pHdfsFileInfo = hdfsListDirectory(fileSys_, path.c_str(), &numEntries);
@ -402,15 +439,17 @@ Status HdfsEnv::GetChildren(const std::string& path,
} else {
// numEntries < 0 indicates error
Log(mylog, "hdfsListDirectory call failed with error ");
throw HdfsFatalException("hdfsListDirectory call failed negative error.\n");
throw HdfsFatalException(
"hdfsListDirectory call failed negative error.\n");
}
break;
}
case 1: // directory does not exist, exit
case HDFS_DOESNT_EXIST: // directory does not exist, exit
break;
default: // anything else should be an error
Log(mylog, "hdfsListDirectory call failed with error ");
throw HdfsFatalException("hdfsListDirectory call failed with error.\n");
Log(mylog, "GetChildren hdfsExists call failed");
throw HdfsFatalException("hdfsExists call failed with error " +
std::to_string(value) + ".\n");
}
return Status::OK();
}
@ -432,10 +471,15 @@ Status HdfsEnv::CreateDir(const std::string& name) {
Status HdfsEnv::CreateDirIfMissing(const std::string& name) {
const int value = hdfsExists(fileSys_, name.c_str());
// Not atomic. state might change b/w hdfsExists and CreateDir.
if (value == 0) {
switch (value) {
case HDFS_EXISTS:
return Status::OK();
} else {
case HDFS_DOESNT_EXIST:
return CreateDir(name);
default: // anything else should be an error
Log(mylog, "CreateDirIfMissing hdfsExists call failed");
throw HdfsFatalException("hdfsExists call failed with error " +
std::to_string(value) + ".\n");
}
};
@ -492,11 +536,12 @@ Status HdfsEnv::NewLogger(const std::string& fname,
shared_ptr<Logger>* result) {
HdfsWritableFile* f = new HdfsWritableFile(fileSys_, fname);
if (f == nullptr || !f->isValid()) {
delete f;
*result = nullptr;
return IOError(fname, errno);
}
HdfsLogger* h = new HdfsLogger(f, &HdfsEnv::gettid);
*result = h;
result->reset(h);
if (mylog == nullptr) {
// mylog = h; // uncomment this for detailed logging
}

View file

@ -8,6 +8,7 @@
#include "rocksdb/env.h"
#include "util/arena.h"
#include "util/autovector.h"
#include <ctime>
namespace rocksdb {

View file

@ -9,6 +9,8 @@
#include "util/logging.h"
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <errno.h>
#include <stdarg.h>
#include <stdio.h>
@ -18,6 +20,26 @@
namespace rocksdb {
// for sizes >=10TB, print "XXTB"
// for sizes >=10GB, print "XXGB"
// etc.
// append file size summary to output and return the len
int AppendHumanBytes(uint64_t bytes, char* output, int len) {
const uint64_t ull10 = 10;
if (bytes >= ull10 << 40) {
return snprintf(output, len, "%" PRIu64 "TB", bytes >> 40);
} else if (bytes >= ull10 << 30) {
return snprintf(output, len, "%" PRIu64 "GB", bytes >> 30);
} else if (bytes >= ull10 << 20) {
return snprintf(output, len, "%" PRIu64 "MB", bytes >> 20);
} else if (bytes >= ull10 << 10) {
return snprintf(output, len, "%" PRIu64 "KB", bytes >> 10);
} else {
return snprintf(output, len, "%" PRIu64 "B", bytes);
}
}
void AppendNumberTo(std::string* str, uint64_t num) {
char buf[30];
snprintf(buf, sizeof(buf), "%llu", (unsigned long long) num);

View file

@ -21,6 +21,9 @@ namespace rocksdb {
class Slice;
class WritableFile;
// Append a human-readable size in bytes
int AppendHumanBytes(uint64_t bytes, char* output, int len);
// Append a human-readable printout of "num" to *str
extern void AppendNumberTo(std::string* str, uint64_t num);