rocksdb/util/cache_test.cc

428 lines
11 KiB
C++
Raw Normal View History

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "rocksdb/cache.h"
#include <vector>
#include <string>
#include <iostream>
#include "util/coding.h"
#include "util/testharness.h"
namespace rocksdb {
// Conversions between numeric keys/values and the types expected by Cache.
static std::string EncodeKey(int k) {
std::string result;
PutFixed32(&result, k);
return result;
}
static int DecodeKey(const Slice& k) {
assert(k.size() == 4);
return DecodeFixed32(k.data());
}
static void* EncodeValue(uintptr_t v) { return reinterpret_cast<void*>(v); }
static int DecodeValue(void* v) { return reinterpret_cast<uintptr_t>(v); }
class CacheTest {
public:
static CacheTest* current_;
static void Deleter(const Slice& key, void* v) {
current_->deleted_keys_.push_back(DecodeKey(key));
current_->deleted_values_.push_back(DecodeValue(v));
}
static const int kCacheSize = 1000;
static const int kNumShardBits = 4;
static const int kRemoveScanCountLimit = 16;
static const int kCacheSize2 = 100;
static const int kNumShardBits2 = 2;
static const int kRemoveScanCountLimit2 = 200;
std::vector<int> deleted_keys_;
std::vector<int> deleted_values_;
shared_ptr<Cache> cache_;
shared_ptr<Cache> cache2_;
CacheTest() :
cache_(NewLRUCache(kCacheSize, kNumShardBits, kRemoveScanCountLimit)),
cache2_(NewLRUCache(kCacheSize2, kNumShardBits2,
kRemoveScanCountLimit2)) {
current_ = this;
}
~CacheTest() {
}
int Lookup(shared_ptr<Cache> cache, int key) {
Cache::Handle* handle = cache->Lookup(EncodeKey(key));
const int r = (handle == nullptr) ? -1 : DecodeValue(cache->Value(handle));
if (handle != nullptr) {
cache->Release(handle);
}
return r;
}
void Insert(shared_ptr<Cache> cache, int key, int value, int charge = 1) {
cache->Release(cache->Insert(EncodeKey(key), EncodeValue(value), charge,
&CacheTest::Deleter));
}
void Erase(shared_ptr<Cache> cache, int key) {
cache->Erase(EncodeKey(key));
}
int Lookup(int key) {
return Lookup(cache_, key);
}
void Insert(int key, int value, int charge = 1) {
Insert(cache_, key, value, charge);
}
void Erase(int key) {
Erase(cache_, key);
}
int Lookup2(int key) {
return Lookup(cache2_, key);
}
void Insert2(int key, int value, int charge = 1) {
Insert(cache2_, key, value, charge);
}
void Erase2(int key) {
Erase(cache2_, key);
}
};
CacheTest* CacheTest::current_;
namespace {
void dumbDeleter(const Slice& key, void* value) { }
} // namespace
TEST(CacheTest, UsageTest) {
// cache is shared_ptr and will be automatically cleaned up.
const uint64_t kCapacity = 100000;
auto cache = NewLRUCache(kCapacity, 8, 200);
size_t usage = 0;
const char* value = "abcdef";
// make sure everything will be cached
for (int i = 1; i < 100; ++i) {
std::string key(i, 'a');
auto kv_size = key.size() + 5;
cache->Release(
cache->Insert(key, (void*)value, kv_size, dumbDeleter)
);
usage += kv_size;
ASSERT_EQ(usage, cache->GetUsage());
}
// make sure the cache will be overloaded
for (uint64_t i = 1; i < kCapacity; ++i) {
auto key = std::to_string(i);
cache->Release(
cache->Insert(key, (void*)value, key.size() + 5, dumbDeleter)
);
}
// the usage should be close to the capacity
ASSERT_GT(kCapacity, cache->GetUsage());
ASSERT_LT(kCapacity * 0.95, cache->GetUsage());
}
TEST(CacheTest, HitAndMiss) {
ASSERT_EQ(-1, Lookup(100));
Insert(100, 101);
ASSERT_EQ(101, Lookup(100));
ASSERT_EQ(-1, Lookup(200));
ASSERT_EQ(-1, Lookup(300));
Insert(200, 201);
ASSERT_EQ(101, Lookup(100));
ASSERT_EQ(201, Lookup(200));
ASSERT_EQ(-1, Lookup(300));
Insert(100, 102);
ASSERT_EQ(102, Lookup(100));
ASSERT_EQ(201, Lookup(200));
ASSERT_EQ(-1, Lookup(300));
ASSERT_EQ(1U, deleted_keys_.size());
ASSERT_EQ(100, deleted_keys_[0]);
ASSERT_EQ(101, deleted_values_[0]);
}
TEST(CacheTest, Erase) {
Erase(200);
ASSERT_EQ(0U, deleted_keys_.size());
Insert(100, 101);
Insert(200, 201);
Erase(100);
ASSERT_EQ(-1, Lookup(100));
ASSERT_EQ(201, Lookup(200));
ASSERT_EQ(1U, deleted_keys_.size());
ASSERT_EQ(100, deleted_keys_[0]);
ASSERT_EQ(101, deleted_values_[0]);
Erase(100);
ASSERT_EQ(-1, Lookup(100));
ASSERT_EQ(201, Lookup(200));
ASSERT_EQ(1U, deleted_keys_.size());
}
TEST(CacheTest, EntriesArePinned) {
Insert(100, 101);
Cache::Handle* h1 = cache_->Lookup(EncodeKey(100));
ASSERT_EQ(101, DecodeValue(cache_->Value(h1)));
Insert(100, 102);
Cache::Handle* h2 = cache_->Lookup(EncodeKey(100));
ASSERT_EQ(102, DecodeValue(cache_->Value(h2)));
ASSERT_EQ(0U, deleted_keys_.size());
cache_->Release(h1);
ASSERT_EQ(1U, deleted_keys_.size());
ASSERT_EQ(100, deleted_keys_[0]);
ASSERT_EQ(101, deleted_values_[0]);
Erase(100);
ASSERT_EQ(-1, Lookup(100));
ASSERT_EQ(1U, deleted_keys_.size());
cache_->Release(h2);
ASSERT_EQ(2U, deleted_keys_.size());
ASSERT_EQ(100, deleted_keys_[1]);
ASSERT_EQ(102, deleted_values_[1]);
}
TEST(CacheTest, EvictionPolicy) {
Insert(100, 101);
Insert(200, 201);
// Frequently used entry must be kept around
for (int i = 0; i < kCacheSize + 100; i++) {
Insert(1000+i, 2000+i);
ASSERT_EQ(2000+i, Lookup(1000+i));
ASSERT_EQ(101, Lookup(100));
}
ASSERT_EQ(101, Lookup(100));
ASSERT_EQ(-1, Lookup(200));
}
TEST(CacheTest, EvictionPolicyRef) {
Insert(100, 101);
Insert(101, 102);
Insert(102, 103);
Insert(103, 104);
Insert(200, 101);
Insert(201, 102);
Insert(202, 103);
Insert(203, 104);
Cache::Handle* h201 = cache_->Lookup(EncodeKey(200));
Cache::Handle* h202 = cache_->Lookup(EncodeKey(201));
Cache::Handle* h203 = cache_->Lookup(EncodeKey(202));
Cache::Handle* h204 = cache_->Lookup(EncodeKey(203));
Insert(300, 101);
Insert(301, 102);
Insert(302, 103);
Insert(303, 104);
// Insert entries much more than Cache capacity
for (int i = 0; i < kCacheSize + 100; i++) {
Insert(1000 + i, 2000 + i);
}
// Check whether the entries inserted in the beginning
// are evicted. Ones without extra ref are evicted and
// those with are not.
ASSERT_EQ(-1, Lookup(100));
ASSERT_EQ(-1, Lookup(101));
ASSERT_EQ(-1, Lookup(102));
ASSERT_EQ(-1, Lookup(103));
ASSERT_EQ(-1, Lookup(300));
ASSERT_EQ(-1, Lookup(301));
ASSERT_EQ(-1, Lookup(302));
ASSERT_EQ(-1, Lookup(303));
ASSERT_EQ(101, Lookup(200));
ASSERT_EQ(102, Lookup(201));
ASSERT_EQ(103, Lookup(202));
ASSERT_EQ(104, Lookup(203));
// Cleaning up all the handles
cache_->Release(h201);
cache_->Release(h202);
cache_->Release(h203);
cache_->Release(h204);
}
TEST(CacheTest, EvictionPolicyRef2) {
std::vector<Cache::Handle*> handles;
Insert(100, 101);
// Insert entries much more than Cache capacity
for (int i = 0; i < kCacheSize + 100; i++) {
Insert(1000 + i, 2000 + i);
if (i < kCacheSize ) {
handles.push_back(cache_->Lookup(EncodeKey(1000 + i)));
}
}
// Make sure referenced keys are also possible to be deleted
// if there are not sufficient non-referenced keys
for (int i = 0; i < 5; i++) {
ASSERT_EQ(-1, Lookup(1000 + i));
}
for (int i = kCacheSize; i < kCacheSize + 100; i++) {
ASSERT_EQ(2000 + i, Lookup(1000 + i));
}
ASSERT_EQ(-1, Lookup(100));
// Cleaning up all the handles
while (handles.size() > 0) {
cache_->Release(handles.back());
handles.pop_back();
}
}
TEST(CacheTest, EvictionPolicyRefLargeScanLimit) {
std::vector<Cache::Handle*> handles2;
// Cache2 has a cache RemoveScanCountLimit higher than cache size
// so it would trigger a boundary condition.
// Populate the cache with 10 more keys than its size.
// Reference all keys except one close to the end.
for (int i = 0; i < kCacheSize2 + 10; i++) {
Insert2(1000 + i, 2000+i);
if (i != kCacheSize2 ) {
handles2.push_back(cache2_->Lookup(EncodeKey(1000 + i)));
}
}
// Make sure referenced keys are also possible to be deleted
// if there are not sufficient non-referenced keys
for (int i = 0; i < 3; i++) {
ASSERT_EQ(-1, Lookup2(1000 + i));
}
// The non-referenced value is deleted even if it's accessed
// recently.
ASSERT_EQ(-1, Lookup2(1000 + kCacheSize2));
// Other values recently accessed are not deleted since they
// are referenced.
for (int i = kCacheSize2 - 10; i < kCacheSize2 + 10; i++) {
if (i != kCacheSize2) {
ASSERT_EQ(2000 + i, Lookup2(1000 + i));
}
}
// Cleaning up all the handles
while (handles2.size() > 0) {
cache2_->Release(handles2.back());
handles2.pop_back();
}
}
TEST(CacheTest, HeavyEntries) {
// Add a bunch of light and heavy entries and then count the combined
// size of items still in the cache, which must be approximately the
// same as the total capacity.
const int kLight = 1;
const int kHeavy = 10;
int added = 0;
int index = 0;
while (added < 2*kCacheSize) {
const int weight = (index & 1) ? kLight : kHeavy;
Insert(index, 1000+index, weight);
added += weight;
index++;
}
int cached_weight = 0;
for (int i = 0; i < index; i++) {
const int weight = (i & 1 ? kLight : kHeavy);
int r = Lookup(i);
if (r >= 0) {
cached_weight += weight;
ASSERT_EQ(1000+i, r);
}
}
ASSERT_LE(cached_weight, kCacheSize + kCacheSize/10);
}
TEST(CacheTest, NewId) {
uint64_t a = cache_->NewId();
uint64_t b = cache_->NewId();
ASSERT_NE(a, b);
}
class Value {
private:
int v_;
public:
explicit Value(int v) : v_(v) { }
~Value() { std::cout << v_ << " is destructed\n"; }
};
namespace {
void deleter(const Slice& key, void* value) {
delete (Value *)value;
}
} // namespace
TEST(CacheTest, BadEviction) {
int n = 10;
// a LRUCache with n entries and one shard only
std::shared_ptr<Cache> cache = NewLRUCache(n, 0);
std::vector<Cache::Handle*> handles(n+1);
// Insert n+1 entries, but not releasing.
for (int i = 0; i < n+1; i++) {
std::string key = std::to_string(i+1);
handles[i] = cache->Insert(key, new Value(i+1), 1, &deleter);
}
// Guess what's in the cache now?
for (int i = 0; i < n+1; i++) {
std::string key = std::to_string(i+1);
auto h = cache->Lookup(key);
std::cout << key << (h?" found\n":" not found\n");
// Only the first entry should be missing
ASSERT_TRUE(h || i == 0);
if (h) cache->Release(h);
}
for (int i = 0; i < n+1; i++) {
cache->Release(handles[i]);
}
std::cout << "Poor entries\n";
}
} // namespace rocksdb
int main(int argc, char** argv) {
return rocksdb::test::RunAllTests();
}