rocksdb/db/db_memtable_test.cc

341 lines
11 KiB
C++
Raw Normal View History

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include <memory>
#include <string>
#include "db/db_test_util.h"
#include "db/memtable.h"
#include "db/range_del_aggregator.h"
#include "port/stack_trace.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/slice_transform.h"
namespace ROCKSDB_NAMESPACE {
class DBMemTableTest : public DBTestBase {
public:
DBMemTableTest() : DBTestBase("/db_memtable_test") {}
};
class MockMemTableRep : public MemTableRep {
public:
explicit MockMemTableRep(Allocator* allocator, MemTableRep* rep)
: MemTableRep(allocator), rep_(rep), num_insert_with_hint_(0) {}
KeyHandle Allocate(const size_t len, char** buf) override {
return rep_->Allocate(len, buf);
}
void Insert(KeyHandle handle) override { rep_->Insert(handle); }
void InsertWithHint(KeyHandle handle, void** hint) override {
num_insert_with_hint_++;
EXPECT_NE(nullptr, hint);
last_hint_in_ = *hint;
rep_->InsertWithHint(handle, hint);
last_hint_out_ = *hint;
}
bool Contains(const char* key) const override { return rep_->Contains(key); }
void Get(const LookupKey& k, void* callback_args,
bool (*callback_func)(void* arg, const char* entry)) override {
rep_->Get(k, callback_args, callback_func);
}
size_t ApproximateMemoryUsage() override {
return rep_->ApproximateMemoryUsage();
}
Iterator* GetIterator(Arena* arena) override {
return rep_->GetIterator(arena);
}
void* last_hint_in() { return last_hint_in_; }
void* last_hint_out() { return last_hint_out_; }
int num_insert_with_hint() { return num_insert_with_hint_; }
private:
std::unique_ptr<MemTableRep> rep_;
void* last_hint_in_;
void* last_hint_out_;
int num_insert_with_hint_;
};
class MockMemTableRepFactory : public MemTableRepFactory {
public:
MemTableRep* CreateMemTableRep(const MemTableRep::KeyComparator& cmp,
Allocator* allocator,
const SliceTransform* transform,
Logger* logger) override {
SkipListFactory factory;
MemTableRep* skiplist_rep =
factory.CreateMemTableRep(cmp, allocator, transform, logger);
mock_rep_ = new MockMemTableRep(allocator, skiplist_rep);
return mock_rep_;
}
MemTableRep* CreateMemTableRep(const MemTableRep::KeyComparator& cmp,
Allocator* allocator,
const SliceTransform* transform,
Logger* logger,
uint32_t column_family_id) override {
last_column_family_id_ = column_family_id;
return CreateMemTableRep(cmp, allocator, transform, logger);
}
const char* Name() const override { return "MockMemTableRepFactory"; }
MockMemTableRep* rep() { return mock_rep_; }
bool IsInsertConcurrentlySupported() const override { return false; }
uint32_t GetLastColumnFamilyId() { return last_column_family_id_; }
private:
MockMemTableRep* mock_rep_;
// workaround since there's no port::kMaxUint32 yet.
uint32_t last_column_family_id_ = static_cast<uint32_t>(-1);
};
class TestPrefixExtractor : public SliceTransform {
public:
const char* Name() const override { return "TestPrefixExtractor"; }
Slice Transform(const Slice& key) const override {
const char* p = separator(key);
if (p == nullptr) {
return Slice();
}
return Slice(key.data(), p - key.data() + 1);
}
bool InDomain(const Slice& key) const override {
return separator(key) != nullptr;
}
bool InRange(const Slice& /*key*/) const override { return false; }
private:
const char* separator(const Slice& key) const {
return reinterpret_cast<const char*>(memchr(key.data(), '_', key.size()));
}
};
// Test that ::Add properly returns false when inserting duplicate keys
TEST_F(DBMemTableTest, DuplicateSeq) {
SequenceNumber seq = 123;
std::string value;
Status s;
MergeContext merge_context;
Options options;
InternalKeyComparator ikey_cmp(options.comparator);
ReadRangeDelAggregator range_del_agg(&ikey_cmp,
kMaxSequenceNumber /* upper_bound */);
// Create a MemTable
InternalKeyComparator cmp(BytewiseComparator());
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
ImmutableCFOptions ioptions(options);
WriteBufferManager wb(options.db_write_buffer_size);
MemTable* mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
// Write some keys and make sure it returns false on duplicates
bool res;
res = mem->Add(seq, kTypeValue, "key", "value2");
ASSERT_TRUE(res);
res = mem->Add(seq, kTypeValue, "key", "value2");
ASSERT_FALSE(res);
// Changing the type should still cause the duplicatae key
res = mem->Add(seq, kTypeMerge, "key", "value2");
ASSERT_FALSE(res);
// Changing the seq number will make the key fresh
res = mem->Add(seq + 1, kTypeMerge, "key", "value2");
ASSERT_TRUE(res);
// Test with different types for duplicate keys
res = mem->Add(seq, kTypeDeletion, "key", "");
ASSERT_FALSE(res);
res = mem->Add(seq, kTypeSingleDeletion, "key", "");
ASSERT_FALSE(res);
// Test the duplicate keys under stress
for (int i = 0; i < 10000; i++) {
bool insert_dup = i % 10 == 1;
if (!insert_dup) {
seq++;
}
res = mem->Add(seq, kTypeValue, "foo", "value" + ToString(seq));
if (insert_dup) {
ASSERT_FALSE(res);
} else {
ASSERT_TRUE(res);
}
}
delete mem;
// Test with InsertWithHint
options.memtable_insert_with_hint_prefix_extractor.reset(
new TestPrefixExtractor()); // which uses _ to extract the prefix
ioptions = ImmutableCFOptions(options);
mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
// Insert a duplicate key with _ in it
res = mem->Add(seq, kTypeValue, "key_1", "value");
ASSERT_TRUE(res);
res = mem->Add(seq, kTypeValue, "key_1", "value");
ASSERT_FALSE(res);
delete mem;
// Test when InsertConcurrently will be invoked
options.allow_concurrent_memtable_write = true;
ioptions = ImmutableCFOptions(options);
mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
MemTablePostProcessInfo post_process_info;
res = mem->Add(seq, kTypeValue, "key", "value", true, &post_process_info);
ASSERT_TRUE(res);
res = mem->Add(seq, kTypeValue, "key", "value", true, &post_process_info);
ASSERT_FALSE(res);
delete mem;
}
Unordered Writes (#5218) Summary: Performing unordered writes in rocksdb when unordered_write option is set to true. When enabled the writes to memtable are done without joining any write thread. This offers much higher write throughput since the upcoming writes would not have to wait for the slowest memtable write to finish. The tradeoff is that the writes visible to a snapshot might change over time. If the application cannot tolerate that, it should implement its own mechanisms to work around that. Using TransactionDB with WRITE_PREPARED write policy is one way to achieve that. Doing so increases the max throughput by 2.2x without however compromising the snapshot guarantees. The patch is prepared based on an original by siying Existing unit tests are extended to include unordered_write option. Benchmark Results: ``` TEST_TMPDIR=/dev/shm/ ./db_bench_unordered --benchmarks=fillrandom --threads=32 --num=10000000 -max_write_buffer_number=16 --max_background_jobs=64 --batch_size=8 --writes=3000000 -level0_file_num_compaction_trigger=99999 --level0_slowdown_writes_trigger=99999 --level0_stop_writes_trigger=99999 -enable_pipelined_write=false -disable_auto_compactions --unordered_write=1 ``` With WAL - Vanilla RocksDB: 78.6 MB/s - WRITER_PREPARED with unordered_write: 177.8 MB/s (2.2x) - unordered_write: 368.9 MB/s (4.7x with relaxed snapshot guarantees) Without WAL - Vanilla RocksDB: 111.3 MB/s - WRITER_PREPARED with unordered_write: 259.3 MB/s MB/s (2.3x) - unordered_write: 645.6 MB/s (5.8x with relaxed snapshot guarantees) - WRITER_PREPARED with unordered_write disable concurrency control: 185.3 MB/s MB/s (2.35x) Limitations: - The feature is not yet extended to `max_successive_merges` > 0. The feature is also incompatible with `enable_pipelined_write` = true as well as with `allow_concurrent_memtable_write` = false. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5218 Differential Revision: D15219029 Pulled By: maysamyabandeh fbshipit-source-id: 38f2abc4af8780148c6128acdba2b3227bc81759
2019-05-14 00:43:47 +00:00
// A simple test to verify that the concurrent merge writes is functional
TEST_F(DBMemTableTest, ConcurrentMergeWrite) {
int num_ops = 1000;
std::string value;
Status s;
MergeContext merge_context;
Options options;
// A merge operator that is not sensitive to concurrent writes since in this
// test we don't order the writes.
options.merge_operator = MergeOperators::CreateUInt64AddOperator();
// Create a MemTable
InternalKeyComparator cmp(BytewiseComparator());
auto factory = std::make_shared<SkipListFactory>();
options.memtable_factory = factory;
options.allow_concurrent_memtable_write = true;
ImmutableCFOptions ioptions(options);
WriteBufferManager wb(options.db_write_buffer_size);
MemTable* mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
// Put 0 as the base
PutFixed64(&value, static_cast<uint64_t>(0));
bool res = mem->Add(0, kTypeValue, "key", value);
ASSERT_TRUE(res);
value.clear();
// Write Merge concurrently
ROCKSDB_NAMESPACE::port::Thread write_thread1([&]() {
MemTablePostProcessInfo post_process_info1;
Unordered Writes (#5218) Summary: Performing unordered writes in rocksdb when unordered_write option is set to true. When enabled the writes to memtable are done without joining any write thread. This offers much higher write throughput since the upcoming writes would not have to wait for the slowest memtable write to finish. The tradeoff is that the writes visible to a snapshot might change over time. If the application cannot tolerate that, it should implement its own mechanisms to work around that. Using TransactionDB with WRITE_PREPARED write policy is one way to achieve that. Doing so increases the max throughput by 2.2x without however compromising the snapshot guarantees. The patch is prepared based on an original by siying Existing unit tests are extended to include unordered_write option. Benchmark Results: ``` TEST_TMPDIR=/dev/shm/ ./db_bench_unordered --benchmarks=fillrandom --threads=32 --num=10000000 -max_write_buffer_number=16 --max_background_jobs=64 --batch_size=8 --writes=3000000 -level0_file_num_compaction_trigger=99999 --level0_slowdown_writes_trigger=99999 --level0_stop_writes_trigger=99999 -enable_pipelined_write=false -disable_auto_compactions --unordered_write=1 ``` With WAL - Vanilla RocksDB: 78.6 MB/s - WRITER_PREPARED with unordered_write: 177.8 MB/s (2.2x) - unordered_write: 368.9 MB/s (4.7x with relaxed snapshot guarantees) Without WAL - Vanilla RocksDB: 111.3 MB/s - WRITER_PREPARED with unordered_write: 259.3 MB/s MB/s (2.3x) - unordered_write: 645.6 MB/s (5.8x with relaxed snapshot guarantees) - WRITER_PREPARED with unordered_write disable concurrency control: 185.3 MB/s MB/s (2.35x) Limitations: - The feature is not yet extended to `max_successive_merges` > 0. The feature is also incompatible with `enable_pipelined_write` = true as well as with `allow_concurrent_memtable_write` = false. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5218 Differential Revision: D15219029 Pulled By: maysamyabandeh fbshipit-source-id: 38f2abc4af8780148c6128acdba2b3227bc81759
2019-05-14 00:43:47 +00:00
std::string v1;
for (int seq = 1; seq < num_ops / 2; seq++) {
PutFixed64(&v1, seq);
bool res1 =
mem->Add(seq, kTypeMerge, "key", v1, true, &post_process_info1);
Unordered Writes (#5218) Summary: Performing unordered writes in rocksdb when unordered_write option is set to true. When enabled the writes to memtable are done without joining any write thread. This offers much higher write throughput since the upcoming writes would not have to wait for the slowest memtable write to finish. The tradeoff is that the writes visible to a snapshot might change over time. If the application cannot tolerate that, it should implement its own mechanisms to work around that. Using TransactionDB with WRITE_PREPARED write policy is one way to achieve that. Doing so increases the max throughput by 2.2x without however compromising the snapshot guarantees. The patch is prepared based on an original by siying Existing unit tests are extended to include unordered_write option. Benchmark Results: ``` TEST_TMPDIR=/dev/shm/ ./db_bench_unordered --benchmarks=fillrandom --threads=32 --num=10000000 -max_write_buffer_number=16 --max_background_jobs=64 --batch_size=8 --writes=3000000 -level0_file_num_compaction_trigger=99999 --level0_slowdown_writes_trigger=99999 --level0_stop_writes_trigger=99999 -enable_pipelined_write=false -disable_auto_compactions --unordered_write=1 ``` With WAL - Vanilla RocksDB: 78.6 MB/s - WRITER_PREPARED with unordered_write: 177.8 MB/s (2.2x) - unordered_write: 368.9 MB/s (4.7x with relaxed snapshot guarantees) Without WAL - Vanilla RocksDB: 111.3 MB/s - WRITER_PREPARED with unordered_write: 259.3 MB/s MB/s (2.3x) - unordered_write: 645.6 MB/s (5.8x with relaxed snapshot guarantees) - WRITER_PREPARED with unordered_write disable concurrency control: 185.3 MB/s MB/s (2.35x) Limitations: - The feature is not yet extended to `max_successive_merges` > 0. The feature is also incompatible with `enable_pipelined_write` = true as well as with `allow_concurrent_memtable_write` = false. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5218 Differential Revision: D15219029 Pulled By: maysamyabandeh fbshipit-source-id: 38f2abc4af8780148c6128acdba2b3227bc81759
2019-05-14 00:43:47 +00:00
ASSERT_TRUE(res1);
v1.clear();
}
});
ROCKSDB_NAMESPACE::port::Thread write_thread2([&]() {
MemTablePostProcessInfo post_process_info2;
Unordered Writes (#5218) Summary: Performing unordered writes in rocksdb when unordered_write option is set to true. When enabled the writes to memtable are done without joining any write thread. This offers much higher write throughput since the upcoming writes would not have to wait for the slowest memtable write to finish. The tradeoff is that the writes visible to a snapshot might change over time. If the application cannot tolerate that, it should implement its own mechanisms to work around that. Using TransactionDB with WRITE_PREPARED write policy is one way to achieve that. Doing so increases the max throughput by 2.2x without however compromising the snapshot guarantees. The patch is prepared based on an original by siying Existing unit tests are extended to include unordered_write option. Benchmark Results: ``` TEST_TMPDIR=/dev/shm/ ./db_bench_unordered --benchmarks=fillrandom --threads=32 --num=10000000 -max_write_buffer_number=16 --max_background_jobs=64 --batch_size=8 --writes=3000000 -level0_file_num_compaction_trigger=99999 --level0_slowdown_writes_trigger=99999 --level0_stop_writes_trigger=99999 -enable_pipelined_write=false -disable_auto_compactions --unordered_write=1 ``` With WAL - Vanilla RocksDB: 78.6 MB/s - WRITER_PREPARED with unordered_write: 177.8 MB/s (2.2x) - unordered_write: 368.9 MB/s (4.7x with relaxed snapshot guarantees) Without WAL - Vanilla RocksDB: 111.3 MB/s - WRITER_PREPARED with unordered_write: 259.3 MB/s MB/s (2.3x) - unordered_write: 645.6 MB/s (5.8x with relaxed snapshot guarantees) - WRITER_PREPARED with unordered_write disable concurrency control: 185.3 MB/s MB/s (2.35x) Limitations: - The feature is not yet extended to `max_successive_merges` > 0. The feature is also incompatible with `enable_pipelined_write` = true as well as with `allow_concurrent_memtable_write` = false. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5218 Differential Revision: D15219029 Pulled By: maysamyabandeh fbshipit-source-id: 38f2abc4af8780148c6128acdba2b3227bc81759
2019-05-14 00:43:47 +00:00
std::string v2;
for (int seq = num_ops / 2; seq < num_ops; seq++) {
PutFixed64(&v2, seq);
bool res2 =
mem->Add(seq, kTypeMerge, "key", v2, true, &post_process_info2);
Unordered Writes (#5218) Summary: Performing unordered writes in rocksdb when unordered_write option is set to true. When enabled the writes to memtable are done without joining any write thread. This offers much higher write throughput since the upcoming writes would not have to wait for the slowest memtable write to finish. The tradeoff is that the writes visible to a snapshot might change over time. If the application cannot tolerate that, it should implement its own mechanisms to work around that. Using TransactionDB with WRITE_PREPARED write policy is one way to achieve that. Doing so increases the max throughput by 2.2x without however compromising the snapshot guarantees. The patch is prepared based on an original by siying Existing unit tests are extended to include unordered_write option. Benchmark Results: ``` TEST_TMPDIR=/dev/shm/ ./db_bench_unordered --benchmarks=fillrandom --threads=32 --num=10000000 -max_write_buffer_number=16 --max_background_jobs=64 --batch_size=8 --writes=3000000 -level0_file_num_compaction_trigger=99999 --level0_slowdown_writes_trigger=99999 --level0_stop_writes_trigger=99999 -enable_pipelined_write=false -disable_auto_compactions --unordered_write=1 ``` With WAL - Vanilla RocksDB: 78.6 MB/s - WRITER_PREPARED with unordered_write: 177.8 MB/s (2.2x) - unordered_write: 368.9 MB/s (4.7x with relaxed snapshot guarantees) Without WAL - Vanilla RocksDB: 111.3 MB/s - WRITER_PREPARED with unordered_write: 259.3 MB/s MB/s (2.3x) - unordered_write: 645.6 MB/s (5.8x with relaxed snapshot guarantees) - WRITER_PREPARED with unordered_write disable concurrency control: 185.3 MB/s MB/s (2.35x) Limitations: - The feature is not yet extended to `max_successive_merges` > 0. The feature is also incompatible with `enable_pipelined_write` = true as well as with `allow_concurrent_memtable_write` = false. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5218 Differential Revision: D15219029 Pulled By: maysamyabandeh fbshipit-source-id: 38f2abc4af8780148c6128acdba2b3227bc81759
2019-05-14 00:43:47 +00:00
ASSERT_TRUE(res2);
v2.clear();
}
});
write_thread1.join();
write_thread2.join();
Status status;
ReadOptions roptions;
SequenceNumber max_covering_tombstone_seq = 0;
LookupKey lkey("key", kMaxSequenceNumber);
return timestamp from get (#6409) Summary: Added new Get() methods that return timestamp. Dummy implementation is given so that classes derived from DB don't need to be touched to provide their implementation. MultiGet is not included. ReadRandom perf test (10 minutes) on the same development machine ram drive with the same DB data shows no regression (within marge of error). The test is adapted from https://github.com/facebook/rocksdb/wiki/RocksDB-In-Memory-Workload-Performance-Benchmarks. base line (commit 72ee067b9): 101.712 micros/op 314602 ops/sec; 36.0 MB/s (5658999 of 5658999 found) This PR: 100.288 micros/op 319071 ops/sec; 36.5 MB/s (5674999 of 5674999 found) ./db_bench --db=r:\rocksdb.github --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --cache_size=2147483648 --cache_numshardbits=6 --compression_type=none --compression_ratio=1 --min_level_to_compress=-1 --disable_seek_compaction=1 --hard_rate_limit=2 --write_buffer_size=134217728 --max_write_buffer_number=2 --level0_file_num_compaction_trigger=8 --target_file_size_base=134217728 --max_bytes_for_level_base=1073741824 --disable_wal=0 --wal_dir=r:\rocksdb.github\WAL_LOG --sync=0 --verify_checksum=1 --delete_obsolete_files_period_micros=314572800 --max_background_compactions=4 --max_background_flushes=0 --level0_slowdown_writes_trigger=16 --level0_stop_writes_trigger=24 --statistics=0 --stats_per_interval=0 --stats_interval=1048576 --histogram=0 --use_plain_table=1 --open_files=-1 --mmap_read=1 --mmap_write=0 --memtablerep=prefix_hash --bloom_bits=10 --bloom_locality=1 --duration=600 --benchmarks=readrandom --use_existing_db=1 --num=25000000 --threads=32 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6409 Differential Revision: D20200086 Pulled By: riversand963 fbshipit-source-id: 490edd74d924f62bd8ae9c29c2a6bbbb8410ca50
2020-03-02 23:58:32 +00:00
res = mem->Get(lkey, &value, /*timestamp=*/nullptr, &status, &merge_context,
Unordered Writes (#5218) Summary: Performing unordered writes in rocksdb when unordered_write option is set to true. When enabled the writes to memtable are done without joining any write thread. This offers much higher write throughput since the upcoming writes would not have to wait for the slowest memtable write to finish. The tradeoff is that the writes visible to a snapshot might change over time. If the application cannot tolerate that, it should implement its own mechanisms to work around that. Using TransactionDB with WRITE_PREPARED write policy is one way to achieve that. Doing so increases the max throughput by 2.2x without however compromising the snapshot guarantees. The patch is prepared based on an original by siying Existing unit tests are extended to include unordered_write option. Benchmark Results: ``` TEST_TMPDIR=/dev/shm/ ./db_bench_unordered --benchmarks=fillrandom --threads=32 --num=10000000 -max_write_buffer_number=16 --max_background_jobs=64 --batch_size=8 --writes=3000000 -level0_file_num_compaction_trigger=99999 --level0_slowdown_writes_trigger=99999 --level0_stop_writes_trigger=99999 -enable_pipelined_write=false -disable_auto_compactions --unordered_write=1 ``` With WAL - Vanilla RocksDB: 78.6 MB/s - WRITER_PREPARED with unordered_write: 177.8 MB/s (2.2x) - unordered_write: 368.9 MB/s (4.7x with relaxed snapshot guarantees) Without WAL - Vanilla RocksDB: 111.3 MB/s - WRITER_PREPARED with unordered_write: 259.3 MB/s MB/s (2.3x) - unordered_write: 645.6 MB/s (5.8x with relaxed snapshot guarantees) - WRITER_PREPARED with unordered_write disable concurrency control: 185.3 MB/s MB/s (2.35x) Limitations: - The feature is not yet extended to `max_successive_merges` > 0. The feature is also incompatible with `enable_pipelined_write` = true as well as with `allow_concurrent_memtable_write` = false. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5218 Differential Revision: D15219029 Pulled By: maysamyabandeh fbshipit-source-id: 38f2abc4af8780148c6128acdba2b3227bc81759
2019-05-14 00:43:47 +00:00
&max_covering_tombstone_seq, roptions);
ASSERT_TRUE(res);
uint64_t ivalue = DecodeFixed64(Slice(value).data());
uint64_t sum = 0;
for (int seq = 0; seq < num_ops; seq++) {
sum += seq;
}
ASSERT_EQ(ivalue, sum);
delete mem;
}
TEST_F(DBMemTableTest, InsertWithHint) {
Options options;
options.allow_concurrent_memtable_write = false;
options.create_if_missing = true;
options.memtable_factory.reset(new MockMemTableRepFactory());
options.memtable_insert_with_hint_prefix_extractor.reset(
new TestPrefixExtractor());
options.env = env_;
Reopen(options);
MockMemTableRep* rep =
reinterpret_cast<MockMemTableRepFactory*>(options.memtable_factory.get())
->rep();
ASSERT_OK(Put("foo_k1", "foo_v1"));
ASSERT_EQ(nullptr, rep->last_hint_in());
void* hint_foo = rep->last_hint_out();
ASSERT_OK(Put("foo_k2", "foo_v2"));
ASSERT_EQ(hint_foo, rep->last_hint_in());
ASSERT_EQ(hint_foo, rep->last_hint_out());
ASSERT_OK(Put("foo_k3", "foo_v3"));
ASSERT_EQ(hint_foo, rep->last_hint_in());
ASSERT_EQ(hint_foo, rep->last_hint_out());
ASSERT_OK(Put("bar_k1", "bar_v1"));
ASSERT_EQ(nullptr, rep->last_hint_in());
void* hint_bar = rep->last_hint_out();
ASSERT_NE(hint_foo, hint_bar);
ASSERT_OK(Put("bar_k2", "bar_v2"));
ASSERT_EQ(hint_bar, rep->last_hint_in());
ASSERT_EQ(hint_bar, rep->last_hint_out());
ASSERT_EQ(5, rep->num_insert_with_hint());
ASSERT_OK(Put("NotInPrefixDomain", "vvv"));
ASSERT_EQ(5, rep->num_insert_with_hint());
ASSERT_EQ("foo_v1", Get("foo_k1"));
ASSERT_EQ("foo_v2", Get("foo_k2"));
ASSERT_EQ("foo_v3", Get("foo_k3"));
ASSERT_EQ("bar_v1", Get("bar_k1"));
ASSERT_EQ("bar_v2", Get("bar_k2"));
ASSERT_EQ("vvv", Get("NotInPrefixDomain"));
}
TEST_F(DBMemTableTest, ColumnFamilyId) {
// Verifies MemTableRepFactory is told the right column family id.
Options options;
options.allow_concurrent_memtable_write = false;
options.create_if_missing = true;
options.memtable_factory.reset(new MockMemTableRepFactory());
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
for (uint32_t cf = 0; cf < 2; ++cf) {
ASSERT_OK(Put(cf, "key", "val"));
ASSERT_OK(Flush(cf));
ASSERT_EQ(
cf, static_cast<MockMemTableRepFactory*>(options.memtable_factory.get())
->GetLastColumnFamilyId());
}
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}