rocksdb/thrift/lib/cpp/async/TNotificationQueue.h

593 lines
19 KiB
C
Raw Normal View History

/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#ifndef THRIFT_ASYNC_TNOTIFICATIONQUEUE_H_
#define THRIFT_ASYNC_TNOTIFICATIONQUEUE_H_ 1
#include "thrift/lib/cpp/Thrift.h"
#include "thrift/lib/cpp/async/TEventBase.h"
#include "thrift/lib/cpp/async/TEventHandler.h"
#include "external/google_base/spinlock.h"
#include "external/glog/logging.h"
#include <deque>
#include "folly/eventfd.h"
namespace apache { namespace thrift { namespace async {
/**
* An exception class to be thrown when a TNotificationQueue is full.
*/
class TQueueFullException : public TLibraryException {
public:
TQueueFullException() :
TLibraryException("unable to add message to TNotificationQueue: "
"queue is full") {}
};
/**
* A producer-consumer queue for passing messages between TEventBase threads.
*
* Messages can be added to the queue from any thread. Multiple consumers may
* listen to the queue from multiple TEventBase threads.
*
* A TNotificationQueue may not be destroyed while there are still consumers
* registered to receive events from the queue. It is the user's
* responsibility to ensure that all consumers are unregistered before the
* queue is destroyed.
*
* MessageT should be MoveConstructible (i.e., must support either a move
* constructor or a copy constructor, or both). Ideally it's move constructor
* (or copy constructor if no move constructor is provided) should never throw
* exceptions. If the constructor may throw, the consumers could end up
* spinning trying to move a message off the queue and failing, and then
* retrying.
*/
template<typename MessageT>
class TNotificationQueue {
public:
/**
* A callback interface for consuming messages from the queue as they arrive.
*/
class Consumer : private TEventHandler {
public:
enum : uint16_t { kDefaultMaxReadAtOnce = 10 };
Consumer()
: queue_(NULL),
destroyedFlagPtr_(NULL),
maxReadAtOnce_(kDefaultMaxReadAtOnce) {}
virtual ~Consumer();
/**
* messageAvailable() will be invoked whenever a new
* message is available from the pipe.
*/
virtual void messageAvailable(MessageT&& message) = 0;
/**
* Begin consuming messages from the specified queue.
*
* messageAvailable() will be called whenever a message is available. This
* consumer will continue to consume messages until stopConsuming() is
* called.
*
* A Consumer may only consume messages from a single TNotificationQueue at
* a time. startConsuming() should not be called if this consumer is
* already consuming.
*/
void startConsuming(TEventBase* eventBase, TNotificationQueue* queue) {
init(eventBase, queue);
registerHandler(READ | PERSIST);
}
/**
* Same as above but registers this event handler as internal so that it
* doesn't count towards the pending reader count for the IOLoop.
*/
void startConsumingInternal(
TEventBase* eventBase, TNotificationQueue* queue) {
init(eventBase, queue);
registerInternalHandler(READ | PERSIST);
}
/**
* Stop consuming messages.
*
* startConsuming() may be called again to resume consumption of messages
* at a later point in time.
*/
void stopConsuming();
/**
* Get the TNotificationQueue that this consumer is currently consuming
* messages from. Returns NULL if the consumer is not currently consuming
* events from any queue.
*/
TNotificationQueue* getCurrentQueue() const {
return queue_;
}
/**
* Set a limit on how many messages this consumer will read each iteration
* around the event loop.
*
* This helps rate-limit how much work the Consumer will do each event loop
* iteration, to prevent it from starving other event handlers.
*
* A limit of 0 means no limit will be enforced. If unset, the limit
* defaults to kDefaultMaxReadAtOnce (defined to 10 above).
*/
void setMaxReadAtOnce(uint32_t maxAtOnce) {
maxReadAtOnce_ = maxAtOnce;
}
uint32_t getMaxReadAtOnce() const {
return maxReadAtOnce_;
}
private:
void init(TEventBase* eventBase, TNotificationQueue* queue);
virtual void handlerReady(uint16_t events) THRIFT_NOEXCEPT;
TNotificationQueue* queue_;
bool* destroyedFlagPtr_;
uint32_t maxReadAtOnce_;
};
enum class FdType {
EVENTFD,
PIPE
};
/**
* Create a new TNotificationQueue.
*
* If the maxSize parameter is specified, this sets the maximum queue size
* that will be enforced by tryPutMessage(). (This size is advisory, and may
* be exceeded if producers explicitly use putMessage() instead of
* tryPutMessage().)
*
* The fdType parameter determines the type of file descriptor used
* internally to signal message availability. The default (eventfd) is
* preferable for performance and because it won't fail when the queue gets
* too long. It is not available on on older and non-linux kernels, however.
* In this case the code will fall back to using a pipe, the parameter is
* mostly for testing purposes.
*/
explicit TNotificationQueue(uint32_t maxSize = 0,
FdType fdType = FdType::EVENTFD)
: spinlock_(),
eventfd_(-1),
pipeFds_{-1, -1},
advisoryMaxQueueSize_(maxSize),
queue_() {
if (fdType == FdType::EVENTFD) {
eventfd_ = folly::eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK | EFD_SEMAPHORE);
if (eventfd_ == -1) {
if (errno == ENOSYS || errno == EINVAL) {
// eventfd not availalble
T_ERROR("failed to create eventfd for TNotificationQueue: %d, "
"falling back to pipe mode", errno);
fdType = FdType::PIPE;
} else {
// some other error
throw TLibraryException("Failed to create eventfd for "
"TNotificationQueue", errno);
}
}
}
if (fdType == FdType::PIPE) {
if (pipe(pipeFds_)) {
throw TLibraryException("Failed to create pipe for TNotificationQueue",
errno);
}
try {
// put both ends of the pipe into non-blocking mode
if (fcntl(pipeFds_[0], F_SETFL, O_RDONLY | O_NONBLOCK) != 0) {
throw TLibraryException("failed to put TNotificationQueue pipe read "
"endpoint into non-blocking mode", errno);
}
if (fcntl(pipeFds_[1], F_SETFL, O_WRONLY | O_NONBLOCK) != 0) {
throw TLibraryException("failed to put TNotificationQueue pipe write "
"endpoint into non-blocking mode", errno);
}
} catch (...) {
::close(pipeFds_[0]);
::close(pipeFds_[1]);
throw;
}
}
}
~TNotificationQueue() {
if (eventfd_ >= 0) {
::close(eventfd_);
eventfd_ = -1;
}
if (pipeFds_[0] >= 0) {
::close(pipeFds_[0]);
pipeFds_[0] = -1;
}
if (pipeFds_[1] >= 0) {
::close(pipeFds_[1]);
pipeFds_[1] = -1;
}
}
/**
* Set the advisory maximum queue size.
*
* This maximum queue size affects calls to tryPutMessage(). Message
* producers can still use the putMessage() call to unconditionally put a
* message on the queue, ignoring the configured maximum queue size. This
* can cause the queue size to exceed the configured maximum.
*/
void setMaxQueueSize(uint32_t max) {
advisoryMaxQueueSize_ = max;
}
/**
* Attempt to put a message on the queue if the queue is not already full.
*
* If the queue is full, a TQueueFullException will be thrown. The
* setMaxQueueSize() function controls the maximum queue size.
*
* This method may contend briefly on a spinlock if many threads are
* concurrently accessing the queue, but for all intents and purposes it will
* immediately place the message on the queue and return.
*
* tryPutMessage() may throw std::bad_alloc if memory allocation fails, and
* may throw any other exception thrown by the MessageT move/copy
* constructor.
*/
void tryPutMessage(MessageT&& message) {
putMessageImpl(std::move(message), advisoryMaxQueueSize_);
}
void tryPutMessage(const MessageT& message) {
putMessageImpl(message, advisoryMaxQueueSize_);
}
/**
* Unconditionally put a message on the queue.
*
* This method is like tryPutMessage(), but ignores the maximum queue size
* and always puts the message on the queue, even if the maximum queue size
* would be exceeded.
*
* putMessage() may throw std::bad_alloc if memory allocation fails, and may
* throw any other exception thrown by the MessageT move/copy constructor.
*/
void putMessage(MessageT&& message) {
putMessageImpl(std::move(message), 0);
}
void putMessage(const MessageT& message) {
putMessageImpl(message, 0);
}
/**
* Put several messages on the queue.
*/
template<typename InputIteratorT>
void putMessages(InputIteratorT first, InputIteratorT last) {
typedef typename std::iterator_traits<InputIteratorT>::iterator_category
IterCategory;
putMessagesImpl(first, last, IterCategory());
}
/**
* Try to immediately pull a message off of the queue, without blocking.
*
* If a message is immediately available, the result parameter will be
* updated to contain the message contents and true will be returned.
*
* If no message is available, false will be returned and result will be left
* unmodified.
*/
bool tryConsume(MessageT& result) {
if (!tryConsumeEvent()) {
return false;
}
try {
facebook::SpinLockHolder guard(&spinlock_);
result = std::move(queue_.front());
queue_.pop_front();
} catch (...) {
// Handle an exception if the assignment operator happens to throw.
// We consumed an event but weren't able to pop the message off the
// queue. Signal the event again since the message is still in the
// queue.
signalEvent(1);
throw;
}
return true;
}
private:
// Forbidden copy constructor and assignment operator
TNotificationQueue(TNotificationQueue const &) = delete;
TNotificationQueue& operator=(TNotificationQueue const &) = delete;
inline void checkQueueSize(size_t maxSize) const {
assert(spinlock_.IsHeld());
if (maxSize > 0 && queue_.size() >= maxSize) {
throw TQueueFullException();
}
}
inline void signalEvent(uint64_t numAdded = 1) const {
static const uint8_t kPipeMessage[] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};
ssize_t bytes_written = 0;
ssize_t bytes_expected = 0;
if (eventfd_ >= 0) {
bytes_expected = static_cast<ssize_t>(sizeof(numAdded));
bytes_written = ::write(eventfd_, &numAdded, sizeof(numAdded));
} else {
// pipe semantics, add one message for each numAdded
bytes_expected = numAdded;
do {
size_t messageSize = std::min(numAdded, sizeof(kPipeMessage));
ssize_t rc = ::write(pipeFds_[1], kPipeMessage, messageSize);
if (rc < 0) {
// TODO: if the pipe is full, write will fail with EAGAIN.
// See task #1044651 for how this could be handled
break;
}
numAdded -= rc;
bytes_written += rc;
} while (numAdded > 0);
}
if (bytes_written != bytes_expected) {
throw TLibraryException("failed to signal TNotificationQueue after "
"write", errno);
}
}
bool tryConsumeEvent() {
uint64_t value = 0;
ssize_t rc = -1;
if (eventfd_ >= 0) {
rc = ::read(eventfd_, &value, sizeof(value));
} else {
uint8_t value8;
rc = ::read(pipeFds_[0], &value8, sizeof(value8));
value = value8;
}
if (rc < 0) {
// EAGAIN should pretty much be the only error we can ever get.
// This means someone else already processed the only available message.
assert(errno == EAGAIN);
return false;
}
assert(value == 1);
return true;
}
void putMessageImpl(MessageT&& message, size_t maxSize) {
{
facebook::SpinLockHolder guard(&spinlock_);
checkQueueSize(maxSize);
queue_.push_back(std::move(message));
}
signalEvent();
}
void putMessageImpl(const MessageT& message, size_t maxSize) {
{
facebook::SpinLockHolder guard(&spinlock_);
checkQueueSize(maxSize);
queue_.push_back(message);
}
signalEvent();
}
template<typename InputIteratorT>
void putMessagesImpl(InputIteratorT first, InputIteratorT last,
std::input_iterator_tag) {
uint64_t numAdded = 0;
{
facebook::SpinLockHolder guard(&spinlock_);
while (first != last) {
queue_.push_back(*first);
++first;
++numAdded;
}
}
signalEvent(numAdded);
}
template<typename InputIteratorT>
void putMessagesImpl(InputIteratorT first, InputIteratorT last,
std::forward_iterator_tag) {
uint64_t numAdded = std::distance(first, last);
{
facebook::SpinLockHolder guard(&spinlock_);
queue_.insert(queue_.end(), first, last);
}
signalEvent(numAdded);
}
facebook::SpinLock spinlock_;
int eventfd_;
int pipeFds_[2]; // to fallback to on older/non-linux systems
uint32_t advisoryMaxQueueSize_;
std::deque<MessageT> queue_;
};
template<typename MessageT>
TNotificationQueue<MessageT>::Consumer::~Consumer() {
// If we are in the middle of a call to handlerReady(), destroyedFlagPtr_
// will be non-NULL. Mark the value that it points to, so that
// handlerReady() will know the callback is destroyed, and that it cannot
// access any member variables anymore.
if (destroyedFlagPtr_) {
*destroyedFlagPtr_ = true;
}
}
template<typename MessageT>
void TNotificationQueue<MessageT>::Consumer::handlerReady(uint16_t events)
THRIFT_NOEXCEPT {
uint32_t numProcessed = 0;
while (true) {
// Try to decrement the eventfd.
//
// We decrement the eventfd before checking the queue, and only pop a
// message off the queue if we read from the eventfd.
//
// Reading the eventfd first allows us to not have to hold the spinlock
// while accessing the eventfd. If we popped from the queue first, we
// would have to hold the lock while reading from or writing to the
// eventfd. (Multiple consumers may be woken up from a single eventfd
// notification. If we popped from the queue first, we could end up
// popping a message from the queue before the eventfd has been notified by
// the producer, unless the consumer and producer both held the spinlock
// around the entire operation.)
if (!queue_->tryConsumeEvent()) {
// no message available right now
return;
}
// Now pop the message off of the queue.
// We successfully consumed the eventfd notification.
// There should be a message available for us to consume.
//
// We have to manually acquire and release the spinlock here, rather than
// using SpinLockHolder since the MessageT has to be constructed while
// holding the spinlock and available after we release it. SpinLockHolder
// unfortunately doesn't provide a release() method. (We can't construct
// MessageT first since we have no guarantee that MessageT has a default
// constructor.
queue_->spinlock_.Lock();
bool locked = true;
try {
// The eventfd is incremented once for every message, and only
// decremented when a message is popped off. There should always be a
// message here to read.
CHECK(!queue_->queue_.empty());
// Pull a message off the queue.
MessageT msg(std::move(queue_->queue_.front()));
queue_->queue_.pop_front();
// Check to see if the queue is empty now.
// We use this as an optimization to see if we should bother trying to
// loop again and read another message after invoking this callback.
bool wasEmpty = queue_->queue_.empty();
// Now unlock the spinlock before we invoke the callback.
queue_->spinlock_.Unlock();
locked = false;
// Call the callback
bool callbackDestroyed = false;
CHECK(destroyedFlagPtr_ == NULL);
destroyedFlagPtr_ = &callbackDestroyed;
messageAvailable(std::move(msg));
// If the callback was destroyed before it returned, we are done
if (callbackDestroyed) {
return;
}
destroyedFlagPtr_ = NULL;
// If the callback is no longer installed, we are done.
if (queue_ == NULL) {
return;
}
// If we have hit maxReadAtOnce_, we are done.
++numProcessed;
if (maxReadAtOnce_ > 0 && numProcessed >= maxReadAtOnce_) {
return;
}
// If the queue was empty before we invoked the callback, it's probable
// that it is still empty now. Just go ahead and return, rather than
// looping again and trying to re-read from the eventfd. (If a new
// message had in fact arrived while we were invoking the callback, we
// will simply be woken up the next time around the event loop and will
// process the message then.)
if (wasEmpty) {
return;
}
} catch (const std::exception& ex) {
// This catch block is really just to handle the case where the MessageT
// constructor throws. The messageAvailable() callback itself is
// declared as noexcept and should never throw.
//
// If the MessageT constructor does throw we try to handle it as best as
// we can, but we can't work miracles. We will just ignore the error for
// now and return. The next time around the event loop we will end up
// trying to read the message again. If MessageT continues to throw we
// will never make forward progress and will keep trying each time around
// the event loop.
if (locked) {
// Unlock the spinlock.
queue_->spinlock_.Unlock();
// Push a notification back on the eventfd since we didn't actually
// read the message off of the queue.
queue_->signalEvent(1);
}
return;
}
}
}
template<typename MessageT>
void TNotificationQueue<MessageT>::Consumer::init(
TEventBase* eventBase,
TNotificationQueue* queue) {
assert(eventBase->isInEventBaseThread());
assert(queue_ == NULL);
assert(!isHandlerRegistered());
queue_ = queue;
if (queue_->eventfd_ >= 0) {
initHandler(eventBase, queue_->eventfd_);
} else {
initHandler(eventBase, queue_->pipeFds_[0]);
}
}
template<typename MessageT>
void TNotificationQueue<MessageT>::Consumer::stopConsuming() {
if (queue_ == NULL) {
assert(!isHandlerRegistered());
return;
}
assert(isHandlerRegistered());
unregisterHandler();
detachEventBase();
queue_ = NULL;
}
}}} // apache::thrift::async
#endif // THRIFT_ASYNC_TNOTIFICATIONQUEUE_H_