rocksdb/db/import_column_family_job.cc

432 lines
16 KiB
C++
Raw Normal View History

// Copyright (c) Meta Platforms, Inc. and affiliates.
//
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
Sort L0 files by newly introduced epoch_num (#10922) Summary: **Context:** Sorting L0 files by `largest_seqno` has at least two inconvenience: - File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap. - For example, consider the following sequence of events ("key@n" indicates key at seqno "n") - insert k1@1 to memtable m1 - ingest file s1 with k2@2, ingest file s2 with k3@3 - insert k4@4 to m1 - compact files s1, s2 and result in new file s3 of seqno range [2, 3] - flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1 - However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption. - Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption - For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example) - an existing SST s1 contains only k1@1 - insert k1@2 to memtable m1 - ingest file s2 with k3@3, ingest file s3 with k4@4 - insert single delete k5@5 in m1 - flush m1 and result in new file s4 of seqno range [2, 5] - compact s1, s2, s3 and result in new file s5 of seqno range [1, 4] - compact s4 and result in new file s6 of seqno range [2] due to single delete - By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno` Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways: - In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more. - In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption. **Summary:** - Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`. - `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`) - Compaction output file is assigned with the minimum `epoch_number` among input files' - Refit level: reuse refitted file's epoch_number - Other paths needing `epoch_number` treatment: - Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo` - Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`. - Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair). - Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder. - Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery - Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more - Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag` - Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above - Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`. - Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR. - Misc: - update existing tests with `epoch_number` so make check will pass - update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases - assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber() Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922 Test Plan: - `make check` - New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc` - Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930 - [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox` - [Ongoing] normal db stress test - [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761 Reviewed By: ajkr Differential Revision: D41063187 Pulled By: hx235 fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
#include "db/version_builder.h"
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
#include "db/import_column_family_job.h"
#include <algorithm>
#include <cinttypes>
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
#include <string>
#include <vector>
#include "db/version_edit.h"
#include "file/file_util.h"
#include "file/random_access_file_reader.h"
#include "logging/logging.h"
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
#include "table/merging_iterator.h"
#include "table/scoped_arena_iterator.h"
#include "table/sst_file_writer_collectors.h"
#include "table/table_builder.h"
#include "table/unique_id_impl.h"
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
#include "util/stop_watch.h"
namespace ROCKSDB_NAMESPACE {
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
Status ImportColumnFamilyJob::Prepare(uint64_t next_file_number,
SuperVersion* sv) {
Status status;
std::vector<ColumnFamilyIngestFileInfo> cf_ingest_infos;
for (const auto& metadata_per_cf : metadatas_) {
// Read the information of files we are importing
ColumnFamilyIngestFileInfo cf_file_info;
InternalKey smallest, largest;
int num_files = 0;
std::vector<IngestedFileInfo> files_to_import_per_cf;
for (size_t i = 0; i < metadata_per_cf.size(); i++) {
auto file_metadata = *metadata_per_cf[i];
const auto file_path = file_metadata.db_path + "/" + file_metadata.name;
IngestedFileInfo file_to_import;
status = GetIngestedFileInfo(file_path, next_file_number++, sv,
file_metadata, &file_to_import);
if (!status.ok()) {
return status;
}
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
if (file_to_import.num_entries == 0) {
status = Status::InvalidArgument("File contain no entries");
return status;
}
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
if (!file_to_import.smallest_internal_key.Valid() ||
!file_to_import.largest_internal_key.Valid()) {
status = Status::Corruption("File has corrupted keys");
return status;
}
files_to_import_per_cf.push_back(file_to_import);
num_files++;
// Calculate the smallest and largest keys of all files in this CF
if (i == 0) {
smallest = file_to_import.smallest_internal_key;
largest = file_to_import.largest_internal_key;
} else {
if (cfd_->internal_comparator().Compare(
smallest, file_to_import.smallest_internal_key) < 0) {
smallest = file_to_import.smallest_internal_key;
}
if (cfd_->internal_comparator().Compare(
largest, file_to_import.largest_internal_key) > 0) {
largest = file_to_import.largest_internal_key;
}
}
}
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
if (num_files == 0) {
status = Status::InvalidArgument("The list of files is empty");
return status;
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
}
files_to_import_.push_back(files_to_import_per_cf);
cf_file_info.smallest_internal_key = smallest;
cf_file_info.largest_internal_key = largest;
cf_ingest_infos.push_back(cf_file_info);
}
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
std::sort(cf_ingest_infos.begin(), cf_ingest_infos.end(),
[this](const ColumnFamilyIngestFileInfo& info1,
const ColumnFamilyIngestFileInfo& info2) {
return cfd_->user_comparator()->Compare(
info1.smallest_internal_key.user_key(),
info2.smallest_internal_key.user_key()) < 0;
});
for (size_t i = 0; i + 1 < cf_ingest_infos.size(); i++) {
if (cfd_->user_comparator()->Compare(
cf_ingest_infos[i].largest_internal_key.user_key(),
cf_ingest_infos[i + 1].smallest_internal_key.user_key()) >= 0) {
status = Status::InvalidArgument("CFs have overlapping ranges");
return status;
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
}
}
// Copy/Move external files into DB
auto hardlink_files = import_options_.move_files;
for (auto& files_to_import_per_cf : files_to_import_) {
for (auto& f : files_to_import_per_cf) {
const auto path_outside_db = f.external_file_path;
const auto path_inside_db = TableFileName(
cfd_->ioptions()->cf_paths, f.fd.GetNumber(), f.fd.GetPathId());
if (hardlink_files) {
status = fs_->LinkFile(path_outside_db, path_inside_db, IOOptions(),
nullptr);
if (status.IsNotSupported()) {
// Original file is on a different FS, use copy instead of hard
// linking
hardlink_files = false;
ROCKS_LOG_INFO(db_options_.info_log,
"Try to link file %s but it's not supported : %s",
f.internal_file_path.c_str(),
status.ToString().c_str());
}
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
}
if (!hardlink_files) {
status =
CopyFile(fs_.get(), path_outside_db, path_inside_db, 0,
db_options_.use_fsync, io_tracer_, Temperature::kUnknown);
}
if (!status.ok()) {
break;
}
f.copy_file = !hardlink_files;
f.internal_file_path = path_inside_db;
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
}
if (!status.ok()) {
break;
}
}
if (!status.ok()) {
// We failed, remove all files that we copied into the db
for (auto& files_to_import_per_cf : files_to_import_) {
for (auto& f : files_to_import_per_cf) {
if (f.internal_file_path.empty()) {
break;
}
const auto s =
fs_->DeleteFile(f.internal_file_path, IOOptions(), nullptr);
if (!s.ok()) {
ROCKS_LOG_WARN(db_options_.info_log,
"AddFile() clean up for file %s failed : %s",
f.internal_file_path.c_str(), s.ToString().c_str());
}
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
}
}
}
return status;
}
// REQUIRES: we have become the only writer by entering both write_thread_ and
// nonmem_write_thread_
Status ImportColumnFamilyJob::Run() {
// We use the import time as the ancester time. This is the time the data
// is written to the database.
int64_t temp_current_time = 0;
uint64_t oldest_ancester_time = kUnknownOldestAncesterTime;
uint64_t current_time = kUnknownOldestAncesterTime;
if (clock_->GetCurrentTime(&temp_current_time).ok()) {
current_time = oldest_ancester_time =
static_cast<uint64_t>(temp_current_time);
}
Sort L0 files by newly introduced epoch_num (#10922) Summary: **Context:** Sorting L0 files by `largest_seqno` has at least two inconvenience: - File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap. - For example, consider the following sequence of events ("key@n" indicates key at seqno "n") - insert k1@1 to memtable m1 - ingest file s1 with k2@2, ingest file s2 with k3@3 - insert k4@4 to m1 - compact files s1, s2 and result in new file s3 of seqno range [2, 3] - flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1 - However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption. - Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption - For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example) - an existing SST s1 contains only k1@1 - insert k1@2 to memtable m1 - ingest file s2 with k3@3, ingest file s3 with k4@4 - insert single delete k5@5 in m1 - flush m1 and result in new file s4 of seqno range [2, 5] - compact s1, s2, s3 and result in new file s5 of seqno range [1, 4] - compact s4 and result in new file s6 of seqno range [2] due to single delete - By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno` Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways: - In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more. - In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption. **Summary:** - Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`. - `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`) - Compaction output file is assigned with the minimum `epoch_number` among input files' - Refit level: reuse refitted file's epoch_number - Other paths needing `epoch_number` treatment: - Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo` - Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`. - Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair). - Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder. - Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery - Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more - Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag` - Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above - Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`. - Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR. - Misc: - update existing tests with `epoch_number` so make check will pass - update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases - assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber() Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922 Test Plan: - `make check` - New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc` - Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930 - [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox` - [Ongoing] normal db stress test - [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761 Reviewed By: ajkr Differential Revision: D41063187 Pulled By: hx235 fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
// Recover files' epoch number using dummy VersionStorageInfo
VersionBuilder dummy_version_builder(
cfd_->current()->version_set()->file_options(), cfd_->ioptions(),
cfd_->table_cache(), cfd_->current()->storage_info(),
cfd_->current()->version_set(),
cfd_->GetFileMetadataCacheReservationManager());
Sort L0 files by newly introduced epoch_num (#10922) Summary: **Context:** Sorting L0 files by `largest_seqno` has at least two inconvenience: - File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap. - For example, consider the following sequence of events ("key@n" indicates key at seqno "n") - insert k1@1 to memtable m1 - ingest file s1 with k2@2, ingest file s2 with k3@3 - insert k4@4 to m1 - compact files s1, s2 and result in new file s3 of seqno range [2, 3] - flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1 - However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption. - Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption - For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example) - an existing SST s1 contains only k1@1 - insert k1@2 to memtable m1 - ingest file s2 with k3@3, ingest file s3 with k4@4 - insert single delete k5@5 in m1 - flush m1 and result in new file s4 of seqno range [2, 5] - compact s1, s2, s3 and result in new file s5 of seqno range [1, 4] - compact s4 and result in new file s6 of seqno range [2] due to single delete - By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno` Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways: - In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more. - In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption. **Summary:** - Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`. - `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`) - Compaction output file is assigned with the minimum `epoch_number` among input files' - Refit level: reuse refitted file's epoch_number - Other paths needing `epoch_number` treatment: - Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo` - Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`. - Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair). - Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder. - Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery - Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more - Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag` - Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above - Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`. - Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR. - Misc: - update existing tests with `epoch_number` so make check will pass - update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases - assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber() Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922 Test Plan: - `make check` - New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc` - Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930 - [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox` - [Ongoing] normal db stress test - [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761 Reviewed By: ajkr Differential Revision: D41063187 Pulled By: hx235 fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
VersionStorageInfo dummy_vstorage(
&cfd_->internal_comparator(), cfd_->user_comparator(),
cfd_->NumberLevels(), cfd_->ioptions()->compaction_style,
Sort L0 files by newly introduced epoch_num (#10922) Summary: **Context:** Sorting L0 files by `largest_seqno` has at least two inconvenience: - File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap. - For example, consider the following sequence of events ("key@n" indicates key at seqno "n") - insert k1@1 to memtable m1 - ingest file s1 with k2@2, ingest file s2 with k3@3 - insert k4@4 to m1 - compact files s1, s2 and result in new file s3 of seqno range [2, 3] - flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1 - However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption. - Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption - For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example) - an existing SST s1 contains only k1@1 - insert k1@2 to memtable m1 - ingest file s2 with k3@3, ingest file s3 with k4@4 - insert single delete k5@5 in m1 - flush m1 and result in new file s4 of seqno range [2, 5] - compact s1, s2, s3 and result in new file s5 of seqno range [1, 4] - compact s4 and result in new file s6 of seqno range [2] due to single delete - By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno` Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways: - In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more. - In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption. **Summary:** - Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`. - `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`) - Compaction output file is assigned with the minimum `epoch_number` among input files' - Refit level: reuse refitted file's epoch_number - Other paths needing `epoch_number` treatment: - Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo` - Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`. - Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair). - Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder. - Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery - Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more - Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag` - Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above - Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`. - Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR. - Misc: - update existing tests with `epoch_number` so make check will pass - update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases - assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber() Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922 Test Plan: - `make check` - New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc` - Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930 - [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox` - [Ongoing] normal db stress test - [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761 Reviewed By: ajkr Differential Revision: D41063187 Pulled By: hx235 fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
nullptr /* src_vstorage */, cfd_->ioptions()->force_consistency_checks,
Delay bottommost level single file compactions (#11701) Summary: For leveled compaction, RocksDB has a special kind of compaction with reason "kBottommmostFiles" that compacts bottommost level files to clear data held by snapshots (more detail in https://github.com/facebook/rocksdb/issues/3009). Such compactions can happen soon after a relevant snapshot is released. For some use cases, a bottommost file may contain only a small amount of keys that can be cleared, so compacting such a file has a high write amp. In addition, these bottommost files may be compacted in compactions with reason other than "kBottommmostFiles" if we wait for some time (so that enough data is ingested to trigger such a compaction). This PR introduces an option `bottommost_file_compaction_delay` to specify the delay of these bottommost level single file compactions. * The main change is in `VersionStorageInfo::ComputeBottommostFilesMarkedForCompaction()` where we only add a file to `bottommost_files_marked_for_compaction_` if it oldest_snapshot is larger than its non-zero largest_seqno **and** the file is old enough. Note that if a file is not old enough but its largest_seqno is less than oldest_snapshot, we exclude it from the calculation of `bottommost_files_mark_threshold_`. This makes the change simpler, but such a file's eligibility for compaction will only be checked the next time `ComputeBottommostFilesMarkedForCompaction()` is called. This happens when a new Version is created (compaction, flush, SetOptions()...), a new enough snapshot is released (`VersionStorageInfo::UpdateOldestSnapshot()`) or when a compaction is picked and compaction score has to be re-calculated. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11701 Test Plan: * Add two unit tests to test when bottommost_file_compaction_delay > 0. * Ran crash test with the new option. Reviewed By: jaykorean, ajkr Differential Revision: D48331564 Pulled By: cbi42 fbshipit-source-id: c584f3dc5f6354fce3ed65f4c6366dc450b15ba8
2023-08-17 00:45:44 +00:00
EpochNumberRequirement::kMightMissing, cfd_->ioptions()->clock,
cfd_->GetLatestMutableCFOptions()->bottommost_file_compaction_delay);
Status s;
for (size_t i = 0; s.ok() && i < files_to_import_.size(); ++i) {
for (size_t j = 0; s.ok() && j < files_to_import_[i].size(); ++j) {
const auto& f = files_to_import_[i][j];
const auto& file_metadata = *metadatas_[i][j];
uint64_t tail_size = 0;
bool contain_no_data_blocks = f.table_properties.num_entries > 0 &&
(f.table_properties.num_entries ==
f.table_properties.num_range_deletions);
if (f.table_properties.tail_start_offset > 0 || contain_no_data_blocks) {
uint64_t file_size = f.fd.GetFileSize();
assert(f.table_properties.tail_start_offset <= file_size);
tail_size = file_size - f.table_properties.tail_start_offset;
}
Record and use the tail size to prefetch table tail (#11406) Summary: **Context:** We prefetch the tail part of a SST file (i.e, the blocks after data blocks till the end of the file) during each SST file open in hope to prefetch all the stuff at once ahead of time for later read e.g, footer, meta index, filter/index etc. The existing approach to estimate the tail size to prefetch is through `TailPrefetchStats` heuristics introduced in https://github.com/facebook/rocksdb/pull/4156, which has caused small reads in unlucky case (e.g, small read into the tail buffer during table open in thread 1 under the same BlockBasedTableFactory object can make thread 2's tail prefetching use a small size that it shouldn't) and is hard to debug. Therefore we decide to record the exact tail size and use it directly to prefetch tail of the SST instead of relying heuristics. **Summary:** - Obtain and record in manifest the tail size in `BlockBasedTableBuilder::Finish()` - For backward compatibility, we fall back to TailPrefetchStats and last to simple heuristics that the tail size is a linear portion of the file size - see PR conversation for more. - Make`tail_start_offset` part of the table properties and deduct tail size to record in manifest for external files (e.g, file ingestion, import CF) and db repair (with no access to manifest). Pull Request resolved: https://github.com/facebook/rocksdb/pull/11406 Test Plan: 1. New UT 2. db bench Note: db bench on /tmp/ where direct read is supported is too slow to finish and the default pinning setting in db bench is not helpful to profile # sst read of Get. Therefore I hacked the following to obtain the following comparison. ``` diff --git a/table/block_based/block_based_table_reader.cc b/table/block_based/block_based_table_reader.cc index bd5669f0f..791484c1f 100644 --- a/table/block_based/block_based_table_reader.cc +++ b/table/block_based/block_based_table_reader.cc @@ -838,7 +838,7 @@ Status BlockBasedTable::PrefetchTail( &tail_prefetch_size); // Try file system prefetch - if (!file->use_direct_io() && !force_direct_prefetch) { + if (false && !file->use_direct_io() && !force_direct_prefetch) { if (!file->Prefetch(prefetch_off, prefetch_len, ro.rate_limiter_priority) .IsNotSupported()) { prefetch_buffer->reset(new FilePrefetchBuffer( diff --git a/tools/db_bench_tool.cc b/tools/db_bench_tool.cc index ea40f5fa0..39a0ac385 100644 --- a/tools/db_bench_tool.cc +++ b/tools/db_bench_tool.cc @@ -4191,6 +4191,8 @@ class Benchmark { std::shared_ptr<TableFactory>(NewCuckooTableFactory(table_options)); } else { BlockBasedTableOptions block_based_options; + block_based_options.metadata_cache_options.partition_pinning = + PinningTier::kAll; block_based_options.checksum = static_cast<ChecksumType>(FLAGS_checksum_type); if (FLAGS_use_hash_search) { ``` Create DB ``` ./db_bench --bloom_bits=3 --use_existing_db=1 --seed=1682546046158958 --partition_index_and_filters=1 --statistics=1 -db=/dev/shm/testdb/ -benchmarks=readrandom -key_size=3200 -value_size=512 -num=1000000 -write_buffer_size=6550000 -disable_auto_compactions=false -target_file_size_base=6550000 -compression_type=none ``` ReadRandom ``` ./db_bench --bloom_bits=3 --use_existing_db=1 --seed=1682546046158958 --partition_index_and_filters=1 --statistics=1 -db=/dev/shm/testdb/ -benchmarks=readrandom -key_size=3200 -value_size=512 -num=1000000 -write_buffer_size=6550000 -disable_auto_compactions=false -target_file_size_base=6550000 -compression_type=none ``` (a) Existing (Use TailPrefetchStats for tail size + use seperate prefetch buffer in PartitionedFilter/IndexReader::CacheDependencies()) ``` rocksdb.table.open.prefetch.tail.hit COUNT : 3395 rocksdb.sst.read.micros P50 : 5.655570 P95 : 9.931396 P99 : 14.845454 P100 : 585.000000 COUNT : 999905 SUM : 6590614 ``` (b) This PR (Record tail size + use the same tail buffer in PartitionedFilter/IndexReader::CacheDependencies()) ``` rocksdb.table.open.prefetch.tail.hit COUNT : 14257 rocksdb.sst.read.micros P50 : 5.173347 P95 : 9.015017 P99 : 12.912610 P100 : 228.000000 COUNT : 998547 SUM : 5976540 ``` As we can see, we increase the prefetch tail hit count and decrease SST read count with this PR 3. Test backward compatibility by stepping through reading with post-PR code on a db generated pre-PR. Reviewed By: pdillinger Differential Revision: D45413346 Pulled By: hx235 fbshipit-source-id: 7d5e36a60a72477218f79905168d688452a4c064
2023-05-08 20:14:28 +00:00
VersionEdit dummy_version_edit;
dummy_version_edit.AddFile(
file_metadata.level, f.fd.GetNumber(), f.fd.GetPathId(),
f.fd.GetFileSize(), f.smallest_internal_key, f.largest_internal_key,
file_metadata.smallest_seqno, file_metadata.largest_seqno, false,
file_metadata.temperature, kInvalidBlobFileNumber,
oldest_ancester_time, current_time, file_metadata.epoch_number,
kUnknownFileChecksum, kUnknownFileChecksumFuncName, f.unique_id, 0,
tail_size,
static_cast<bool>(
f.table_properties.user_defined_timestamps_persisted));
s = dummy_version_builder.Apply(&dummy_version_edit);
}
}
if (s.ok()) {
Sort L0 files by newly introduced epoch_num (#10922) Summary: **Context:** Sorting L0 files by `largest_seqno` has at least two inconvenience: - File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap. - For example, consider the following sequence of events ("key@n" indicates key at seqno "n") - insert k1@1 to memtable m1 - ingest file s1 with k2@2, ingest file s2 with k3@3 - insert k4@4 to m1 - compact files s1, s2 and result in new file s3 of seqno range [2, 3] - flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1 - However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption. - Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption - For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example) - an existing SST s1 contains only k1@1 - insert k1@2 to memtable m1 - ingest file s2 with k3@3, ingest file s3 with k4@4 - insert single delete k5@5 in m1 - flush m1 and result in new file s4 of seqno range [2, 5] - compact s1, s2, s3 and result in new file s5 of seqno range [1, 4] - compact s4 and result in new file s6 of seqno range [2] due to single delete - By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno` Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways: - In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more. - In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption. **Summary:** - Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`. - `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`) - Compaction output file is assigned with the minimum `epoch_number` among input files' - Refit level: reuse refitted file's epoch_number - Other paths needing `epoch_number` treatment: - Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo` - Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`. - Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair). - Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder. - Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery - Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more - Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag` - Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above - Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`. - Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR. - Misc: - update existing tests with `epoch_number` so make check will pass - update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases - assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber() Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922 Test Plan: - `make check` - New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc` - Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930 - [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox` - [Ongoing] normal db stress test - [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761 Reviewed By: ajkr Differential Revision: D41063187 Pulled By: hx235 fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
s = dummy_version_builder.SaveTo(&dummy_vstorage);
}
Sort L0 files by newly introduced epoch_num (#10922) Summary: **Context:** Sorting L0 files by `largest_seqno` has at least two inconvenience: - File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap. - For example, consider the following sequence of events ("key@n" indicates key at seqno "n") - insert k1@1 to memtable m1 - ingest file s1 with k2@2, ingest file s2 with k3@3 - insert k4@4 to m1 - compact files s1, s2 and result in new file s3 of seqno range [2, 3] - flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1 - However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption. - Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption - For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example) - an existing SST s1 contains only k1@1 - insert k1@2 to memtable m1 - ingest file s2 with k3@3, ingest file s3 with k4@4 - insert single delete k5@5 in m1 - flush m1 and result in new file s4 of seqno range [2, 5] - compact s1, s2, s3 and result in new file s5 of seqno range [1, 4] - compact s4 and result in new file s6 of seqno range [2] due to single delete - By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno` Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways: - In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more. - In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption. **Summary:** - Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`. - `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`) - Compaction output file is assigned with the minimum `epoch_number` among input files' - Refit level: reuse refitted file's epoch_number - Other paths needing `epoch_number` treatment: - Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo` - Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`. - Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair). - Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder. - Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery - Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more - Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag` - Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above - Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`. - Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR. - Misc: - update existing tests with `epoch_number` so make check will pass - update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases - assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber() Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922 Test Plan: - `make check` - New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc` - Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930 - [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox` - [Ongoing] normal db stress test - [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761 Reviewed By: ajkr Differential Revision: D41063187 Pulled By: hx235 fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
if (s.ok()) {
dummy_vstorage.RecoverEpochNumbers(cfd_);
}
// Record changes from this CF import in VersionEdit, including files with
// recovered epoch numbers
if (s.ok()) {
edit_.SetColumnFamily(cfd_->GetID());
Sort L0 files by newly introduced epoch_num (#10922) Summary: **Context:** Sorting L0 files by `largest_seqno` has at least two inconvenience: - File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap. - For example, consider the following sequence of events ("key@n" indicates key at seqno "n") - insert k1@1 to memtable m1 - ingest file s1 with k2@2, ingest file s2 with k3@3 - insert k4@4 to m1 - compact files s1, s2 and result in new file s3 of seqno range [2, 3] - flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1 - However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption. - Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption - For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example) - an existing SST s1 contains only k1@1 - insert k1@2 to memtable m1 - ingest file s2 with k3@3, ingest file s3 with k4@4 - insert single delete k5@5 in m1 - flush m1 and result in new file s4 of seqno range [2, 5] - compact s1, s2, s3 and result in new file s5 of seqno range [1, 4] - compact s4 and result in new file s6 of seqno range [2] due to single delete - By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno` Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways: - In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more. - In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption. **Summary:** - Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`. - `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`) - Compaction output file is assigned with the minimum `epoch_number` among input files' - Refit level: reuse refitted file's epoch_number - Other paths needing `epoch_number` treatment: - Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo` - Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`. - Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair). - Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder. - Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery - Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more - Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag` - Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above - Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`. - Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR. - Misc: - update existing tests with `epoch_number` so make check will pass - update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases - assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber() Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922 Test Plan: - `make check` - New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc` - Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930 - [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox` - [Ongoing] normal db stress test - [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761 Reviewed By: ajkr Differential Revision: D41063187 Pulled By: hx235 fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
for (int level = 0; level < dummy_vstorage.num_levels(); level++) {
for (FileMetaData* file_meta : dummy_vstorage.LevelFiles(level)) {
edit_.AddFile(level, *file_meta);
// If incoming sequence number is higher, update local sequence number.
if (file_meta->fd.largest_seqno > versions_->LastSequence()) {
versions_->SetLastAllocatedSequence(file_meta->fd.largest_seqno);
versions_->SetLastPublishedSequence(file_meta->fd.largest_seqno);
versions_->SetLastSequence(file_meta->fd.largest_seqno);
}
}
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
}
}
Sort L0 files by newly introduced epoch_num (#10922) Summary: **Context:** Sorting L0 files by `largest_seqno` has at least two inconvenience: - File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap. - For example, consider the following sequence of events ("key@n" indicates key at seqno "n") - insert k1@1 to memtable m1 - ingest file s1 with k2@2, ingest file s2 with k3@3 - insert k4@4 to m1 - compact files s1, s2 and result in new file s3 of seqno range [2, 3] - flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1 - However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption. - Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption - For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example) - an existing SST s1 contains only k1@1 - insert k1@2 to memtable m1 - ingest file s2 with k3@3, ingest file s3 with k4@4 - insert single delete k5@5 in m1 - flush m1 and result in new file s4 of seqno range [2, 5] - compact s1, s2, s3 and result in new file s5 of seqno range [1, 4] - compact s4 and result in new file s6 of seqno range [2] due to single delete - By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno` Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways: - In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more. - In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption. **Summary:** - Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`. - `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`) - Compaction output file is assigned with the minimum `epoch_number` among input files' - Refit level: reuse refitted file's epoch_number - Other paths needing `epoch_number` treatment: - Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo` - Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`. - Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair). - Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder. - Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery - Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more - Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag` - Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above - Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`. - Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR. - Misc: - update existing tests with `epoch_number` so make check will pass - update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases - assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber() Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922 Test Plan: - `make check` - New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc` - Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930 - [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox` - [Ongoing] normal db stress test - [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761 Reviewed By: ajkr Differential Revision: D41063187 Pulled By: hx235 fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
// Release resources occupied by the dummy VersionStorageInfo
for (int level = 0; level < dummy_vstorage.num_levels(); level++) {
for (FileMetaData* file_meta : dummy_vstorage.LevelFiles(level)) {
file_meta->refs--;
if (file_meta->refs <= 0) {
delete file_meta;
}
}
}
return s;
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
}
void ImportColumnFamilyJob::Cleanup(const Status& status) {
if (!status.ok()) {
// We failed to add files to the database remove all the files we copied.
for (auto& files_to_import_per_cf : files_to_import_) {
for (auto& f : files_to_import_per_cf) {
const auto s =
fs_->DeleteFile(f.internal_file_path, IOOptions(), nullptr);
if (!s.ok()) {
ROCKS_LOG_WARN(db_options_.info_log,
"AddFile() clean up for file %s failed : %s",
f.internal_file_path.c_str(), s.ToString().c_str());
}
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
}
}
} else if (status.ok() && import_options_.move_files) {
// The files were moved and added successfully, remove original file links
for (auto& files_to_import_per_cf : files_to_import_) {
for (auto& f : files_to_import_per_cf) {
const auto s =
fs_->DeleteFile(f.external_file_path, IOOptions(), nullptr);
if (!s.ok()) {
ROCKS_LOG_WARN(
db_options_.info_log,
"%s was added to DB successfully but failed to remove original "
"file link : %s",
f.external_file_path.c_str(), s.ToString().c_str());
}
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
}
}
}
}
Status ImportColumnFamilyJob::GetIngestedFileInfo(
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-17 01:13:55 +00:00
const std::string& external_file, uint64_t new_file_number,
SuperVersion* sv, const LiveFileMetaData& file_meta,
IngestedFileInfo* file_to_import) {
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
file_to_import->external_file_path = external_file;
Status status;
if (file_meta.size > 0) {
file_to_import->file_size = file_meta.size;
} else {
// Get external file size
status = fs_->GetFileSize(external_file, IOOptions(),
&file_to_import->file_size, nullptr);
if (!status.ok()) {
return status;
}
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
}
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-17 01:13:55 +00:00
// Assign FD with number
file_to_import->fd =
FileDescriptor(new_file_number, 0, file_to_import->file_size);
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
// Create TableReader for external file
std::unique_ptr<TableReader> table_reader;
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
2019-12-13 22:47:08 +00:00
std::unique_ptr<FSRandomAccessFile> sst_file;
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
std::unique_ptr<RandomAccessFileReader> sst_file_reader;
status =
fs_->NewRandomAccessFile(external_file, env_options_, &sst_file, nullptr);
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
if (!status.ok()) {
return status;
}
sst_file_reader.reset(new RandomAccessFileReader(
std::move(sst_file), external_file, nullptr /*Env*/, io_tracer_));
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
// TODO(yuzhangyu): User-defined timestamps doesn't support importing column
// family. Pass in the correct `user_defined_timestamps_persisted` flag for
// creating `TableReaderOptions` when the support is there.
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
status = cfd_->ioptions()->table_factory->NewTableReader(
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-17 01:13:55 +00:00
TableReaderOptions(
Fast path for detecting unchanged prefix_extractor (#9407) Summary: Fixes a major performance regression in 6.26, where extra CPU is spent in SliceTransform::AsString when reads involve a prefix_extractor (Get, MultiGet, Seek). Common case performance is now better than 6.25. This change creates a "fast path" for verifying that the current prefix extractor is unchanged and compatible with what was used to generate a table file. This fast path detects the common case by pointer comparison on the current prefix_extractor and a "known good" prefix extractor (if applicable) that is saved at the time the table reader is opened. The "known good" prefix extractor is saved as another shared_ptr copy (in an existing field, however) to ensure the pointer is not recycled. When the prefix_extractor has changed to a different instance but same compatible configuration (rare, odd), performance is still a regression compared to 6.25, but this is likely acceptable because of the oddity of such a case. The performance of incompatible prefix_extractor is essentially unchanged. Also fixed a minor case (ForwardIterator) where a prefix_extractor could be used via a raw pointer after being freed as a shared_ptr, if replaced via SetOptions. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9407 Test Plan: ## Performance Populate DB with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Running head-to-head comparisons simultaneously with `TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=seekrandom -num=10000000 -duration=20 -disable_wal=1 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -prefix_size=12` Below each is compared by ops/sec vs. baseline which is version 6.25 (multiple baseline runs because of variable machine load) v6.26: 4833 vs. 6698 (<- major regression!) v6.27: 4737 vs. 6397 (still) New: 6704 vs. 6461 (better than baseline in common case) Disabled fastpath: 4843 vs. 6389 (e.g. if prefix extractor instance changes but is still compatible) Changed prefix size (no usable filter) in new: 787 vs. 5927 Changed prefix size (no usable filter) in new & baseline: 773 vs. 784 Reviewed By: mrambacher Differential Revision: D33677812 Pulled By: pdillinger fbshipit-source-id: 571d9711c461fb97f957378a061b7e7dbc4d6a76
2022-01-21 19:36:36 +00:00
*cfd_->ioptions(), sv->mutable_cf_options.prefix_extractor,
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-17 01:13:55 +00:00
env_options_, cfd_->internal_comparator(),
Block per key-value checksum (#11287) Summary: add option `block_protection_bytes_per_key` and implementation for block per key-value checksum. The main changes are 1. checksum construction and verification in block.cc/h 2. pass the option `block_protection_bytes_per_key` around (mainly for methods defined in table_cache.h) 3. unit tests/crash test updates Tests: * Added unit tests * Crash test: `python3 tools/db_crashtest.py blackbox --simple --block_protection_bytes_per_key=1 --write_buffer_size=1048576` Follow up (maybe as a separate PR): make sure corruption status returned from BlockIters are correctly handled. Performance: Turning on block per KV protection has a non-trivial negative impact on read performance and costs additional memory. For memory, each block includes additional 24 bytes for checksum-related states beside checksum itself. For CPU, I set up a DB of size ~1.2GB with 5M keys (32 bytes key and 200 bytes value) which compacts to ~5 SST files (target file size 256 MB) in L6 without compression. I tested readrandom performance with various block cache size (to mimic various cache hit rates): ``` SETUP make OPTIMIZE_LEVEL="-O3" USE_LTO=1 DEBUG_LEVEL=0 -j32 db_bench ./db_bench -benchmarks=fillseq,compact0,waitforcompaction,compact,waitforcompaction -write_buffer_size=33554432 -level_compaction_dynamic_level_bytes=true -max_background_jobs=8 -target_file_size_base=268435456 --num=5000000 --key_size=32 --value_size=200 --compression_type=none BENCHMARK ./db_bench --use_existing_db -benchmarks=readtocache,readrandom[-X10] --num=5000000 --key_size=32 --disable_auto_compactions --reads=1000000 --block_protection_bytes_per_key=[0|1] --cache_size=$CACHESIZE The readrandom ops/sec looks like the following: Block cache size: 2GB 1.2GB * 0.9 1.2GB * 0.8 1.2GB * 0.5 8MB Main 240805 223604 198176 161653 139040 PR prot_bytes=0 238691 226693 200127 161082 141153 PR prot_bytes=1 214983 193199 178532 137013 108211 prot_bytes=1 vs -10% -15% -10.8% -15% -23% prot_bytes=0 ``` The benchmark has a lot of variance, but there was a 5% to 25% regression in this benchmark with different cache hit rates. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11287 Reviewed By: ajkr Differential Revision: D43970708 Pulled By: cbi42 fbshipit-source-id: ef98d898b71779846fa74212b9ec9e08b7183940
2023-04-25 19:08:23 +00:00
sv->mutable_cf_options.block_protection_bytes_per_key,
New stable, fixed-length cache keys (#9126) Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-17 01:13:55 +00:00
/*skip_filters*/ false, /*immortal*/ false,
/*force_direct_prefetch*/ false, /*level*/ -1,
/*block_cache_tracer*/ nullptr,
/*max_file_size_for_l0_meta_pin*/ 0, versions_->DbSessionId(),
/*cur_file_num*/ new_file_number),
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
std::move(sst_file_reader), file_to_import->file_size, &table_reader);
if (!status.ok()) {
return status;
}
// Get the external file properties
auto props = table_reader->GetTableProperties();
// Set original_seqno to 0.
file_to_import->original_seqno = 0;
// Get number of entries in table
file_to_import->num_entries = props->num_entries;
// If the importing files were exported with Checkpoint::ExportColumnFamily(),
// we cannot simply recompute smallest and largest used to truncate range
// tombstones from file content, and we expect smallest and largest populated
// in file_meta.
if (file_meta.smallest.empty()) {
assert(file_meta.largest.empty());
Group rocksdb.sst.read.micros stat by IOActivity flush and compaction (#11288) Summary: **Context:** The existing stat rocksdb.sst.read.micros does not reflect each of compaction and flush cases but aggregate them, which is not so helpful for us to understand IO read behavior of each of them. **Summary** - Update `StopWatch` and `RandomAccessFileReader` to record `rocksdb.sst.read.micros` and `rocksdb.file.{flush/compaction}.read.micros` - Fixed the default histogram in `RandomAccessFileReader` - New field `ReadOptions/IOOptions::io_activity`; Pass `ReadOptions` through paths under db open, flush and compaction to where we can prepare `IOOptions` and pass it to `RandomAccessFileReader` - Use `thread_status_util` for assertion in `DbStressFSWrapper` for continuous testing on we are passing correct `io_activity` under db open, flush and compaction Pull Request resolved: https://github.com/facebook/rocksdb/pull/11288 Test Plan: - **Stress test** - **Db bench 1: rocksdb.sst.read.micros COUNT ≈ sum of rocksdb.file.read.flush.micros's and rocksdb.file.read.compaction.micros's.** (without blob) - May not be exactly the same due to `HistogramStat::Add` only guarantees atomic not accuracy across threads. ``` ./db_bench -db=/dev/shm/testdb/ -statistics=true -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -target_file_size_base=655 -disable_auto_compactions=false -compression_type=none -bloom_bits=3 (-use_plain_table=1 -prefix_size=10) ``` ``` // BlockBasedTable rocksdb.sst.read.micros P50 : 2.009374 P95 : 4.968548 P99 : 8.110362 P100 : 43.000000 COUNT : 40456 SUM : 114805 rocksdb.file.read.flush.micros P50 : 1.871841 P95 : 3.872407 P99 : 5.540541 P100 : 43.000000 COUNT : 2250 SUM : 6116 rocksdb.file.read.compaction.micros P50 : 2.023109 P95 : 5.029149 P99 : 8.196910 P100 : 26.000000 COUNT : 38206 SUM : 108689 // PlainTable Does not apply ``` - **Db bench 2: performance** **Read** SETUP: db with 900 files ``` ./db_bench -db=/dev/shm/testdb/ -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -disable_auto_compactions=true -target_file_size_base=655 -compression_type=none ```run till convergence ``` ./db_bench -seed=1678564177044286 -use_existing_db=true -db=/dev/shm/testdb -benchmarks=readrandom[-X60] -statistics=true -num=1000000 -disable_auto_compactions=true -compression_type=none -bloom_bits=3 ``` Pre-change `readrandom [AVG 60 runs] : 21568 (± 248) ops/sec` Post-change (no regression, -0.3%) `readrandom [AVG 60 runs] : 21486 (± 236) ops/sec` **Compaction/Flush**run till convergence ``` ./db_bench -db=/dev/shm/testdb2/ -seed=1678564177044286 -benchmarks="fillseq[-X60]" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -disable_auto_compactions=false -target_file_size_base=655 -compression_type=none rocksdb.sst.read.micros COUNT : 33820 rocksdb.sst.read.flush.micros COUNT : 1800 rocksdb.sst.read.compaction.micros COUNT : 32020 ``` Pre-change `fillseq [AVG 46 runs] : 1391 (± 214) ops/sec; 0.7 (± 0.1) MB/sec` Post-change (no regression, ~-0.4%) `fillseq [AVG 46 runs] : 1385 (± 216) ops/sec; 0.7 (± 0.1) MB/sec` Reviewed By: ajkr Differential Revision: D44007011 Pulled By: hx235 fbshipit-source-id: a54c89e4846dfc9a135389edf3f3eedfea257132
2023-04-21 16:07:18 +00:00
// TODO: plumb Env::IOActivity
ReadOptions ro;
std::unique_ptr<InternalIterator> iter(table_reader->NewIterator(
ro, sv->mutable_cf_options.prefix_extractor.get(), /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kExternalSSTIngestion));
// Get first (smallest) key from file
iter->SeekToFirst();
bool bound_set = false;
if (iter->Valid()) {
file_to_import->smallest_internal_key.DecodeFrom(iter->key());
iter->SeekToLast();
file_to_import->largest_internal_key.DecodeFrom(iter->key());
bound_set = true;
}
std::unique_ptr<InternalIterator> range_del_iter{
table_reader->NewRangeTombstoneIterator(ro)};
if (range_del_iter != nullptr) {
range_del_iter->SeekToFirst();
if (range_del_iter->Valid()) {
ParsedInternalKey key;
Status pik_status = ParseInternalKey(range_del_iter->key(), &key,
db_options_.allow_data_in_errors);
if (!pik_status.ok()) {
return Status::Corruption("Corrupted key in external file. ",
pik_status.getState());
}
RangeTombstone first_tombstone(key, range_del_iter->value());
InternalKey start_key = first_tombstone.SerializeKey();
const InternalKeyComparator* icmp = &cfd_->internal_comparator();
if (!bound_set ||
icmp->Compare(start_key, file_to_import->smallest_internal_key) <
0) {
file_to_import->smallest_internal_key = start_key;
}
range_del_iter->SeekToLast();
pik_status = ParseInternalKey(range_del_iter->key(), &key,
db_options_.allow_data_in_errors);
if (!pik_status.ok()) {
return Status::Corruption("Corrupted key in external file. ",
pik_status.getState());
}
RangeTombstone last_tombstone(key, range_del_iter->value());
InternalKey end_key = last_tombstone.SerializeEndKey();
if (!bound_set ||
icmp->Compare(end_key, file_to_import->largest_internal_key) > 0) {
file_to_import->largest_internal_key = end_key;
}
bound_set = true;
}
}
assert(bound_set);
} else {
assert(!file_meta.largest.empty());
file_to_import->smallest_internal_key.DecodeFrom(file_meta.smallest);
file_to_import->largest_internal_key.DecodeFrom(file_meta.largest);
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
}
file_to_import->cf_id = static_cast<uint32_t>(props->column_family_id);
file_to_import->table_properties = *props;
auto s = GetSstInternalUniqueId(props->db_id, props->db_session_id,
props->orig_file_number,
&(file_to_import->unique_id));
if (!s.ok()) {
ROCKS_LOG_WARN(db_options_.info_log,
"Failed to get SST unique id for file %s",
file_to_import->internal_file_path.c_str());
}
Export Import sst files (#5495) Summary: Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135 This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469 "Add support for taking snapshot of a column family and creating column family from a given CF snapshot" We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality. (1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below. // Exports all live SST files of a specified Column Family onto export_dir, // returning SST files information in metadata. // - SST files will be created as hard links when the directory specified // is in the same partition as the db directory, copied otherwise. // - export_dir should not already exist and will be created by this API. // - Always triggers a flush. virtual Status ExportColumnFamily(ColumnFamilyHandle* handle, const std::string& export_dir, ExportImportFilesMetaData** metadata); Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by returning the list of file metadata. (2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below. // CreateColumnFamilyWithImport() will create a new column family with // column_family_name and import external SST files specified in metadata into // this column family. // (1) External SST files can be created using SstFileWriter. // (2) External SST files can be exported from a particular column family in // an existing DB. // Option in import_options specifies whether the external files are copied or // moved (default is copy). When option specifies copy, managing files at // external_file_path is caller's responsibility. When option specifies a // move, the call ensures that the specified files at external_file_path are // deleted on successful return and files are not modified on any error // return. // On error return, column family handle returned will be nullptr. // ColumnFamily will be present on successful return and will not be present // on error return. ColumnFamily may be present on any crash during this call. virtual Status CreateColumnFamilyWithImport( const ColumnFamilyOptions& options, const std::string& column_family_name, const ImportColumnFamilyOptions& import_options, const ExportImportFilesMetaData& metadata, ColumnFamilyHandle** handle); Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported. If incoming sequence number is higher than current local sequence number, local sequence number is updated to reflect this. Note, as the sst files is are being moved across Column Families, Column Family name in sst file will no longer match the actual column family on destination DB. The API does not modify Column Family name or id in the sst files being imported. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495 Differential Revision: D16018881 fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
return status;
}
} // namespace ROCKSDB_NAMESPACE