2016-02-09 23:12:00 +00:00
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
2017-07-15 23:03:42 +00:00
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
2014-08-03 20:11:44 +00:00
//
// This file implements the callback "bridge" between Java and C++ for
// rocksdb::Comparator.
# include "rocksjni/comparatorjnicallback.h"
2014-08-21 20:55:51 +00:00
# include "rocksjni/portal.h"
2014-08-03 20:11:44 +00:00
namespace rocksdb {
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
ComparatorJniCallback : : ComparatorJniCallback (
JNIEnv * env , jobject jcomparator ,
const ComparatorJniCallbackOptions * options )
: JniCallback ( env , jcomparator ) ,
m_options ( options ) {
// cache the AbstractComparatorJniBridge class as we will reuse it many times for each callback
m_abstract_comparator_jni_bridge_clazz =
static_cast < jclass > ( env - > NewGlobalRef ( AbstractComparatorJniBridge : : getJClass ( env ) ) ) ;
2014-08-03 20:11:44 +00:00
// Note: The name of a Comparator will not change during it's lifetime,
// so we cache it in a global var
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
jmethodID jname_mid = AbstractComparatorJni : : getNameMethodId ( env ) ;
if ( jname_mid = = nullptr ) {
2017-02-28 00:26:12 +00:00
// exception thrown: NoSuchMethodException or OutOfMemoryError
return ;
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
jstring js_name = ( jstring ) env - > CallObjectMethod ( m_jcallback_obj , jname_mid ) ;
if ( env - > ExceptionCheck ( ) ) {
2017-02-28 00:26:12 +00:00
// exception thrown
return ;
}
jboolean has_exception = JNI_FALSE ;
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
m_name = JniUtil : : copyString ( env , js_name ,
2017-02-28 00:26:12 +00:00
& has_exception ) ; // also releases jsName
if ( has_exception = = JNI_TRUE ) {
// exception thrown
return ;
}
2014-08-03 20:11:44 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
// cache the ByteBuffer class as we will reuse it many times for each callback
m_jbytebuffer_clazz =
static_cast < jclass > ( env - > NewGlobalRef ( ByteBufferJni : : getJClass ( env ) ) ) ;
m_jcompare_mid = AbstractComparatorJniBridge : : getCompareInternalMethodId (
env , m_abstract_comparator_jni_bridge_clazz ) ;
if ( m_jcompare_mid = = nullptr ) {
2017-02-28 00:26:12 +00:00
// exception thrown: NoSuchMethodException or OutOfMemoryError
return ;
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
m_jshortest_mid =
AbstractComparatorJniBridge : : getFindShortestSeparatorInternalMethodId (
env , m_abstract_comparator_jni_bridge_clazz ) ;
if ( m_jshortest_mid = = nullptr ) {
2017-02-28 00:26:12 +00:00
// exception thrown: NoSuchMethodException or OutOfMemoryError
return ;
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
m_jshort_mid =
AbstractComparatorJniBridge : : getFindShortSuccessorInternalMethodId ( env ,
m_abstract_comparator_jni_bridge_clazz ) ;
if ( m_jshort_mid = = nullptr ) {
2017-02-28 00:26:12 +00:00
// exception thrown: NoSuchMethodException or OutOfMemoryError
return ;
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
// do we need reusable buffers?
if ( m_options - > max_reused_buffer_size > - 1 ) {
if ( m_options - > reused_synchronisation_type
= = ReusedSynchronisationType : : THREAD_LOCAL ) {
// buffers reused per thread
UnrefHandler unref = [ ] ( void * ptr ) {
ThreadLocalBuf * tlb = reinterpret_cast < ThreadLocalBuf * > ( ptr ) ;
jboolean attached_thread = JNI_FALSE ;
JNIEnv * _env = JniUtil : : getJniEnv ( tlb - > jvm , & attached_thread ) ;
if ( _env ! = nullptr ) {
if ( tlb - > direct_buffer ) {
void * buf = _env - > GetDirectBufferAddress ( tlb - > jbuf ) ;
delete [ ] static_cast < char * > ( buf ) ;
}
_env - > DeleteGlobalRef ( tlb - > jbuf ) ;
JniUtil : : releaseJniEnv ( tlb - > jvm , attached_thread ) ;
}
} ;
m_tl_buf_a = new ThreadLocalPtr ( unref ) ;
m_tl_buf_b = new ThreadLocalPtr ( unref ) ;
m_jcompare_buf_a = nullptr ;
m_jcompare_buf_b = nullptr ;
m_jshortest_buf_start = nullptr ;
m_jshortest_buf_limit = nullptr ;
m_jshort_buf_key = nullptr ;
} else {
//buffers reused and shared across threads
const bool adaptive =
m_options - > reused_synchronisation_type = = ReusedSynchronisationType : : ADAPTIVE_MUTEX ;
mtx_compare = std : : unique_ptr < port : : Mutex > ( new port : : Mutex ( adaptive ) ) ;
mtx_shortest = std : : unique_ptr < port : : Mutex > ( new port : : Mutex ( adaptive ) ) ;
mtx_short = std : : unique_ptr < port : : Mutex > ( new port : : Mutex ( adaptive ) ) ;
m_jcompare_buf_a = env - > NewGlobalRef ( ByteBufferJni : : construct (
env , m_options - > direct_buffer , m_options - > max_reused_buffer_size ,
m_jbytebuffer_clazz ) ) ;
if ( m_jcompare_buf_a = = nullptr ) {
// exception thrown: OutOfMemoryError
return ;
}
m_jcompare_buf_b = env - > NewGlobalRef ( ByteBufferJni : : construct (
env , m_options - > direct_buffer , m_options - > max_reused_buffer_size ,
m_jbytebuffer_clazz ) ) ;
if ( m_jcompare_buf_b = = nullptr ) {
// exception thrown: OutOfMemoryError
return ;
}
m_jshortest_buf_start = env - > NewGlobalRef ( ByteBufferJni : : construct (
env , m_options - > direct_buffer , m_options - > max_reused_buffer_size ,
m_jbytebuffer_clazz ) ) ;
if ( m_jshortest_buf_start = = nullptr ) {
// exception thrown: OutOfMemoryError
return ;
}
m_jshortest_buf_limit = env - > NewGlobalRef ( ByteBufferJni : : construct (
env , m_options - > direct_buffer , m_options - > max_reused_buffer_size ,
m_jbytebuffer_clazz ) ) ;
if ( m_jshortest_buf_limit = = nullptr ) {
// exception thrown: OutOfMemoryError
return ;
}
m_jshort_buf_key = env - > NewGlobalRef ( ByteBufferJni : : construct (
env , m_options - > direct_buffer , m_options - > max_reused_buffer_size ,
m_jbytebuffer_clazz ) ) ;
if ( m_jshort_buf_key = = nullptr ) {
// exception thrown: OutOfMemoryError
return ;
}
m_tl_buf_a = nullptr ;
m_tl_buf_b = nullptr ;
}
} else {
m_jcompare_buf_a = nullptr ;
m_jcompare_buf_b = nullptr ;
m_jshortest_buf_start = nullptr ;
m_jshortest_buf_limit = nullptr ;
m_jshort_buf_key = nullptr ;
m_tl_buf_a = nullptr ;
m_tl_buf_b = nullptr ;
}
}
ComparatorJniCallback : : ~ ComparatorJniCallback ( ) {
jboolean attached_thread = JNI_FALSE ;
JNIEnv * env = getJniEnv ( & attached_thread ) ;
assert ( env ! = nullptr ) ;
env - > DeleteGlobalRef ( m_abstract_comparator_jni_bridge_clazz ) ;
env - > DeleteGlobalRef ( m_jbytebuffer_clazz ) ;
if ( m_jcompare_buf_a ! = nullptr ) {
if ( m_options - > direct_buffer ) {
void * buf = env - > GetDirectBufferAddress ( m_jcompare_buf_a ) ;
delete [ ] static_cast < char * > ( buf ) ;
}
env - > DeleteGlobalRef ( m_jcompare_buf_a ) ;
}
if ( m_jcompare_buf_b ! = nullptr ) {
if ( m_options - > direct_buffer ) {
void * buf = env - > GetDirectBufferAddress ( m_jcompare_buf_b ) ;
delete [ ] static_cast < char * > ( buf ) ;
}
env - > DeleteGlobalRef ( m_jcompare_buf_b ) ;
}
if ( m_jshortest_buf_start ! = nullptr ) {
if ( m_options - > direct_buffer ) {
void * buf = env - > GetDirectBufferAddress ( m_jshortest_buf_start ) ;
delete [ ] static_cast < char * > ( buf ) ;
}
env - > DeleteGlobalRef ( m_jshortest_buf_start ) ;
}
if ( m_jshortest_buf_limit ! = nullptr ) {
if ( m_options - > direct_buffer ) {
void * buf = env - > GetDirectBufferAddress ( m_jshortest_buf_limit ) ;
delete [ ] static_cast < char * > ( buf ) ;
}
env - > DeleteGlobalRef ( m_jshortest_buf_limit ) ;
}
if ( m_jshort_buf_key ! = nullptr ) {
if ( m_options - > direct_buffer ) {
void * buf = env - > GetDirectBufferAddress ( m_jshort_buf_key ) ;
delete [ ] static_cast < char * > ( buf ) ;
}
env - > DeleteGlobalRef ( m_jshort_buf_key ) ;
}
if ( m_tl_buf_a ! = nullptr ) {
delete m_tl_buf_a ;
}
if ( m_tl_buf_b ! = nullptr ) {
delete m_tl_buf_b ;
}
releaseJniEnv ( attached_thread ) ;
2014-08-21 20:55:51 +00:00
}
2014-08-03 20:11:44 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
const char * ComparatorJniCallback : : Name ( ) const {
2017-10-12 18:06:51 +00:00
return m_name . get ( ) ;
2014-08-03 20:11:44 +00:00
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
int ComparatorJniCallback : : Compare ( const Slice & a , const Slice & b ) const {
2017-02-28 00:26:12 +00:00
jboolean attached_thread = JNI_FALSE ;
2017-10-12 18:06:51 +00:00
JNIEnv * env = getJniEnv ( & attached_thread ) ;
2017-02-28 00:26:12 +00:00
assert ( env ! = nullptr ) ;
2014-08-03 20:11:44 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
const bool reuse_jbuf_a =
static_cast < int64_t > ( a . size ( ) ) < = m_options - > max_reused_buffer_size ;
const bool reuse_jbuf_b =
static_cast < int64_t > ( b . size ( ) ) < = m_options - > max_reused_buffer_size ;
MaybeLockForReuse ( mtx_compare , reuse_jbuf_a | | reuse_jbuf_b ) ;
jobject jcompare_buf_a = GetBuffer ( env , a , reuse_jbuf_a , m_tl_buf_a , m_jcompare_buf_a ) ;
if ( jcompare_buf_a = = nullptr ) {
// exception occurred
MaybeUnlockForReuse ( mtx_compare , reuse_jbuf_a | | reuse_jbuf_b ) ;
env - > ExceptionDescribe ( ) ; // print out exception to stderr
2017-10-12 18:06:51 +00:00
releaseJniEnv ( attached_thread ) ;
2017-02-28 00:26:12 +00:00
return 0 ;
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
jobject jcompare_buf_b = GetBuffer ( env , b , reuse_jbuf_b , m_tl_buf_b , m_jcompare_buf_b ) ;
if ( jcompare_buf_b = = nullptr ) {
// exception occurred
if ( ! reuse_jbuf_a ) {
DeleteBuffer ( env , jcompare_buf_a ) ;
2017-02-28 00:26:12 +00:00
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
MaybeUnlockForReuse ( mtx_compare , reuse_jbuf_a | | reuse_jbuf_b ) ;
env - > ExceptionDescribe ( ) ; // print out exception to stderr
2017-10-12 18:06:51 +00:00
releaseJniEnv ( attached_thread ) ;
2017-02-28 00:26:12 +00:00
return 0 ;
}
2017-10-12 18:06:51 +00:00
2014-08-21 20:55:51 +00:00
jint result =
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
env - > CallStaticIntMethod (
m_abstract_comparator_jni_bridge_clazz , m_jcompare_mid ,
m_jcallback_obj ,
jcompare_buf_a , reuse_jbuf_a ? a . size ( ) : - 1 ,
jcompare_buf_b , reuse_jbuf_b ? b . size ( ) : - 1 ) ;
2014-08-15 12:34:10 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
if ( env - > ExceptionCheck ( ) ) {
2017-02-28 00:26:12 +00:00
// exception thrown from CallIntMethod
env - > ExceptionDescribe ( ) ; // print out exception to stderr
result = 0 ; // we could not get a result from java callback so use 0
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
if ( ! reuse_jbuf_a ) {
DeleteBuffer ( env , jcompare_buf_a ) ;
}
if ( ! reuse_jbuf_b ) {
DeleteBuffer ( env , jcompare_buf_b ) ;
}
MaybeUnlockForReuse ( mtx_compare , reuse_jbuf_a | | reuse_jbuf_b ) ;
2017-10-12 18:06:51 +00:00
releaseJniEnv ( attached_thread ) ;
2014-08-03 20:11:44 +00:00
return result ;
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
void ComparatorJniCallback : : FindShortestSeparator (
2017-10-12 18:06:51 +00:00
std : : string * start , const Slice & limit ) const {
2014-08-03 20:11:44 +00:00
if ( start = = nullptr ) {
return ;
}
2017-02-28 00:26:12 +00:00
jboolean attached_thread = JNI_FALSE ;
2017-10-12 18:06:51 +00:00
JNIEnv * env = getJniEnv ( & attached_thread ) ;
2017-02-28 00:26:12 +00:00
assert ( env ! = nullptr ) ;
2014-08-03 20:11:44 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
const bool reuse_jbuf_start =
static_cast < int64_t > ( start - > length ( ) ) < = m_options - > max_reused_buffer_size ;
const bool reuse_jbuf_limit =
static_cast < int64_t > ( limit . size ( ) ) < = m_options - > max_reused_buffer_size ;
MaybeLockForReuse ( mtx_shortest , reuse_jbuf_start | | reuse_jbuf_limit ) ;
Slice sstart ( start - > data ( ) , start - > length ( ) ) ;
jobject j_start_buf = GetBuffer ( env , sstart , reuse_jbuf_start , m_tl_buf_a , m_jshortest_buf_start ) ;
if ( j_start_buf = = nullptr ) {
// exception occurred
MaybeUnlockForReuse ( mtx_shortest , reuse_jbuf_start | | reuse_jbuf_limit ) ;
2017-02-28 00:26:12 +00:00
env - > ExceptionDescribe ( ) ; // print out exception to stderr
2017-10-12 18:06:51 +00:00
releaseJniEnv ( attached_thread ) ;
2017-02-28 00:26:12 +00:00
return ;
}
2014-08-03 20:11:44 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
jobject j_limit_buf = GetBuffer ( env , limit , reuse_jbuf_limit , m_tl_buf_b , m_jshortest_buf_limit ) ;
if ( j_limit_buf = = nullptr ) {
// exception occurred
if ( ! reuse_jbuf_start ) {
DeleteBuffer ( env , j_start_buf ) ;
2017-02-28 00:26:12 +00:00
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
MaybeUnlockForReuse ( mtx_shortest , reuse_jbuf_start | | reuse_jbuf_limit ) ;
env - > ExceptionDescribe ( ) ; // print out exception to stderr
2017-10-12 18:06:51 +00:00
releaseJniEnv ( attached_thread ) ;
2017-02-28 00:26:12 +00:00
return ;
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
jint jstart_len = env - > CallStaticIntMethod (
m_abstract_comparator_jni_bridge_clazz , m_jshortest_mid ,
m_jcallback_obj ,
j_start_buf , reuse_jbuf_start ? start - > length ( ) : - 1 ,
j_limit_buf , reuse_jbuf_limit ? limit . size ( ) : - 1 ) ;
2014-08-03 20:11:44 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
if ( env - > ExceptionCheck ( ) ) {
// exception thrown from CallIntMethod
env - > ExceptionDescribe ( ) ; // print out exception to stderr
2017-02-28 00:26:12 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
} else if ( static_cast < size_t > ( jstart_len ) ! = start - > length ( ) ) {
// start buffer has changed in Java, so update `start` with the result
bool copy_from_non_direct = false ;
if ( reuse_jbuf_start ) {
// reused a buffer
if ( m_options - > direct_buffer ) {
// reused direct buffer
void * start_buf = env - > GetDirectBufferAddress ( j_start_buf ) ;
if ( start_buf = = nullptr ) {
if ( ! reuse_jbuf_start ) {
DeleteBuffer ( env , j_start_buf ) ;
}
if ( ! reuse_jbuf_limit ) {
DeleteBuffer ( env , j_limit_buf ) ;
}
MaybeUnlockForReuse ( mtx_shortest , reuse_jbuf_start | | reuse_jbuf_limit ) ;
rocksdb : : RocksDBExceptionJni : : ThrowNew ( env , " Unable to get Direct Buffer Address " ) ;
env - > ExceptionDescribe ( ) ; // print out exception to stderr
releaseJniEnv ( attached_thread ) ;
return ;
}
start - > assign ( static_cast < const char * > ( start_buf ) , jstart_len ) ;
} else {
// reused non-direct buffer
copy_from_non_direct = true ;
}
} else {
// there was a new buffer
if ( m_options - > direct_buffer ) {
// it was direct... don't forget to potentially truncate the `start` string
start - > resize ( jstart_len ) ;
} else {
// it was non-direct
copy_from_non_direct = true ;
}
}
2014-08-03 20:11:44 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
if ( copy_from_non_direct ) {
jbyteArray jarray = ByteBufferJni : : array ( env , j_start_buf ,
m_jbytebuffer_clazz ) ;
if ( jarray = = nullptr ) {
if ( ! reuse_jbuf_start ) {
DeleteBuffer ( env , j_start_buf ) ;
}
if ( ! reuse_jbuf_limit ) {
DeleteBuffer ( env , j_limit_buf ) ;
}
MaybeUnlockForReuse ( mtx_shortest , reuse_jbuf_start | | reuse_jbuf_limit ) ;
env - > ExceptionDescribe ( ) ; // print out exception to stderr
releaseJniEnv ( attached_thread ) ;
return ;
}
jboolean has_exception = JNI_FALSE ;
JniUtil : : byteString < std : : string > ( env , jarray , [ start , jstart_len ] ( const char * data , const size_t ) {
return start - > assign ( data , static_cast < size_t > ( jstart_len ) ) ;
} , & has_exception ) ;
env - > DeleteLocalRef ( jarray ) ;
if ( has_exception = = JNI_TRUE ) {
if ( ! reuse_jbuf_start ) {
DeleteBuffer ( env , j_start_buf ) ;
}
if ( ! reuse_jbuf_limit ) {
DeleteBuffer ( env , j_limit_buf ) ;
}
2017-02-28 00:26:12 +00:00
env - > ExceptionDescribe ( ) ; // print out exception to stderr
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
MaybeUnlockForReuse ( mtx_shortest , reuse_jbuf_start | | reuse_jbuf_limit ) ;
releaseJniEnv ( attached_thread ) ;
return ;
2017-02-28 00:26:12 +00:00
}
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
}
2017-02-28 00:26:12 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
if ( ! reuse_jbuf_start ) {
DeleteBuffer ( env , j_start_buf ) ;
}
if ( ! reuse_jbuf_limit ) {
DeleteBuffer ( env , j_limit_buf ) ;
2014-08-03 20:11:44 +00:00
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
MaybeUnlockForReuse ( mtx_shortest , reuse_jbuf_start | | reuse_jbuf_limit ) ;
2017-10-12 18:06:51 +00:00
releaseJniEnv ( attached_thread ) ;
2014-08-03 20:11:44 +00:00
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
void ComparatorJniCallback : : FindShortSuccessor (
2017-10-12 18:06:51 +00:00
std : : string * key ) const {
2014-08-03 20:11:44 +00:00
if ( key = = nullptr ) {
return ;
}
2017-02-28 00:26:12 +00:00
jboolean attached_thread = JNI_FALSE ;
2017-10-12 18:06:51 +00:00
JNIEnv * env = getJniEnv ( & attached_thread ) ;
2017-02-28 00:26:12 +00:00
assert ( env ! = nullptr ) ;
2014-08-03 20:11:44 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
const bool reuse_jbuf_key =
static_cast < int64_t > ( key - > length ( ) ) < = m_options - > max_reused_buffer_size ;
MaybeLockForReuse ( mtx_short , reuse_jbuf_key ) ;
Slice skey ( key - > data ( ) , key - > length ( ) ) ;
jobject j_key_buf = GetBuffer ( env , skey , reuse_jbuf_key , m_tl_buf_a , m_jshort_buf_key ) ;
if ( j_key_buf = = nullptr ) {
// exception occurred
MaybeUnlockForReuse ( mtx_short , reuse_jbuf_key ) ;
2017-02-28 00:26:12 +00:00
env - > ExceptionDescribe ( ) ; // print out exception to stderr
2017-10-12 18:06:51 +00:00
releaseJniEnv ( attached_thread ) ;
2017-02-28 00:26:12 +00:00
return ;
}
2014-08-03 20:11:44 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
jint jkey_len = env - > CallStaticIntMethod (
m_abstract_comparator_jni_bridge_clazz , m_jshort_mid ,
m_jcallback_obj ,
j_key_buf , reuse_jbuf_key ? key - > length ( ) : - 1 ) ;
2014-08-03 20:11:44 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
if ( env - > ExceptionCheck ( ) ) {
2017-02-28 00:26:12 +00:00
// exception thrown from CallObjectMethod
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
if ( ! reuse_jbuf_key ) {
DeleteBuffer ( env , j_key_buf ) ;
}
MaybeUnlockForReuse ( mtx_short , reuse_jbuf_key ) ;
env - > ExceptionDescribe ( ) ; // print out exception to stderr
2017-10-12 18:06:51 +00:00
releaseJniEnv ( attached_thread ) ;
2017-02-28 00:26:12 +00:00
return ;
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
2017-02-28 00:26:12 +00:00
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
if ( static_cast < size_t > ( jkey_len ) ! = key - > length ( ) ) {
// key buffer has changed in Java, so update `key` with the result
bool copy_from_non_direct = false ;
if ( reuse_jbuf_key ) {
// reused a buffer
if ( m_options - > direct_buffer ) {
// reused direct buffer
void * key_buf = env - > GetDirectBufferAddress ( j_key_buf ) ;
if ( key_buf = = nullptr ) {
rocksdb : : RocksDBExceptionJni : : ThrowNew ( env , " Unable to get Direct Buffer Address " ) ;
if ( ! reuse_jbuf_key ) {
DeleteBuffer ( env , j_key_buf ) ;
}
MaybeUnlockForReuse ( mtx_short , reuse_jbuf_key ) ;
env - > ExceptionDescribe ( ) ; // print out exception to stderr
releaseJniEnv ( attached_thread ) ;
return ;
}
key - > assign ( static_cast < const char * > ( key_buf ) , jkey_len ) ;
} else {
// reused non-direct buffer
copy_from_non_direct = true ;
}
} else {
// there was a new buffer
if ( m_options - > direct_buffer ) {
// it was direct... don't forget to potentially truncate the `key` string
key - > resize ( jkey_len ) ;
} else {
// it was non-direct
copy_from_non_direct = true ;
}
}
if ( copy_from_non_direct ) {
jbyteArray jarray = ByteBufferJni : : array ( env , j_key_buf ,
m_jbytebuffer_clazz ) ;
if ( jarray = = nullptr ) {
2014-08-03 20:11:44 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
if ( ! reuse_jbuf_key ) {
DeleteBuffer ( env , j_key_buf ) ;
}
MaybeUnlockForReuse ( mtx_short , reuse_jbuf_key ) ;
env - > ExceptionDescribe ( ) ; // print out exception to stderr
releaseJniEnv ( attached_thread ) ;
return ;
}
jboolean has_exception = JNI_FALSE ;
JniUtil : : byteString < std : : string > ( env , jarray , [ key , jkey_len ] ( const char * data , const size_t ) {
return key - > assign ( data , static_cast < size_t > ( jkey_len ) ) ;
} , & has_exception ) ;
env - > DeleteLocalRef ( jarray ) ;
if ( has_exception = = JNI_TRUE ) {
if ( ! reuse_jbuf_key ) {
DeleteBuffer ( env , j_key_buf ) ;
}
MaybeUnlockForReuse ( mtx_short , reuse_jbuf_key ) ;
2017-02-28 00:26:12 +00:00
env - > ExceptionDescribe ( ) ; // print out exception to stderr
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
releaseJniEnv ( attached_thread ) ;
return ;
2017-02-28 00:26:12 +00:00
}
}
}
2014-08-03 20:11:44 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
if ( ! reuse_jbuf_key ) {
DeleteBuffer ( env , j_key_buf ) ;
2017-02-28 00:26:12 +00:00
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
MaybeUnlockForReuse ( mtx_short , reuse_jbuf_key ) ;
2017-02-28 00:26:12 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
releaseJniEnv ( attached_thread ) ;
2014-08-03 20:11:44 +00:00
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
inline void ComparatorJniCallback : : MaybeLockForReuse (
const std : : unique_ptr < port : : Mutex > & mutex , const bool cond ) const {
// no need to lock if using thread_local
if ( m_options - > reused_synchronisation_type ! = ReusedSynchronisationType : : THREAD_LOCAL
& & cond ) {
mutex . get ( ) - > Lock ( ) ;
2017-02-28 00:26:12 +00:00
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
}
2017-02-28 00:26:12 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
inline void ComparatorJniCallback : : MaybeUnlockForReuse (
const std : : unique_ptr < port : : Mutex > & mutex , const bool cond ) const {
// no need to unlock if using thread_local
if ( m_options - > reused_synchronisation_type ! = ReusedSynchronisationType : : THREAD_LOCAL
& & cond ) {
mutex . get ( ) - > Unlock ( ) ;
2017-02-28 00:26:12 +00:00
}
2014-10-06 17:35:53 +00:00
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
jobject ComparatorJniCallback : : GetBuffer ( JNIEnv * env , const Slice & src ,
bool reuse_buffer , ThreadLocalPtr * tl_buf , jobject jreuse_buffer ) const {
if ( reuse_buffer ) {
if ( m_options - > reused_synchronisation_type
= = ReusedSynchronisationType : : THREAD_LOCAL ) {
// reuse thread-local bufffer
ThreadLocalBuf * tlb = reinterpret_cast < ThreadLocalBuf * > ( tl_buf - > Get ( ) ) ;
if ( tlb = = nullptr ) {
// thread-local buffer has not yet been created, so create it
jobject jtl_buf = env - > NewGlobalRef ( ByteBufferJni : : construct (
env , m_options - > direct_buffer , m_options - > max_reused_buffer_size ,
m_jbytebuffer_clazz ) ) ;
if ( jtl_buf = = nullptr ) {
// exception thrown: OutOfMemoryError
return nullptr ;
}
tlb = new ThreadLocalBuf ( m_jvm , m_options - > direct_buffer , jtl_buf ) ;
tl_buf - > Reset ( tlb ) ;
}
return ReuseBuffer ( env , src , tlb - > jbuf ) ;
} else {
2017-02-28 00:26:12 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
// reuse class member buffer
return ReuseBuffer ( env , src , jreuse_buffer ) ;
}
} else {
2017-02-28 00:26:12 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
// new buffer
return NewBuffer ( env , src ) ;
2017-02-28 00:26:12 +00:00
}
2014-08-03 20:11:44 +00:00
}
2014-10-06 17:35:53 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
jobject ComparatorJniCallback : : ReuseBuffer (
JNIEnv * env , const Slice & src , jobject jreuse_buffer ) const {
// we can reuse the buffer
if ( m_options - > direct_buffer ) {
// copy into direct buffer
void * buf = env - > GetDirectBufferAddress ( jreuse_buffer ) ;
if ( buf = = nullptr ) {
// either memory region is undefined, given object is not a direct java.nio.Buffer, or JNI access to direct buffers is not supported by this virtual machine.
rocksdb : : RocksDBExceptionJni : : ThrowNew ( env , " Unable to get Direct Buffer Address " ) ;
return nullptr ;
}
memcpy ( buf , src . data ( ) , src . size ( ) ) ;
} else {
// copy into non-direct buffer
const jbyteArray jarray = ByteBufferJni : : array ( env , jreuse_buffer ,
m_jbytebuffer_clazz ) ;
if ( jarray = = nullptr ) {
// exception occurred
return nullptr ;
}
env - > SetByteArrayRegion ( jarray , 0 , static_cast < jsize > ( src . size ( ) ) ,
const_cast < jbyte * > ( reinterpret_cast < const jbyte * > ( src . data ( ) ) ) ) ;
if ( env - > ExceptionCheck ( ) ) {
// exception occurred
env - > DeleteLocalRef ( jarray ) ;
return nullptr ;
}
env - > DeleteLocalRef ( jarray ) ;
2017-02-28 00:26:12 +00:00
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
return jreuse_buffer ;
}
2017-02-28 00:26:12 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
jobject ComparatorJniCallback : : NewBuffer ( JNIEnv * env , const Slice & src ) const {
// we need a new buffer
jobject jbuf = ByteBufferJni : : constructWith ( env , m_options - > direct_buffer ,
src . data ( ) , src . size ( ) , m_jbytebuffer_clazz ) ;
if ( jbuf = = nullptr ) {
// exception occurred
return nullptr ;
2017-02-28 00:26:12 +00:00
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
return jbuf ;
}
2017-02-28 00:26:12 +00:00
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
void ComparatorJniCallback : : DeleteBuffer ( JNIEnv * env , jobject jbuffer ) const {
env - > DeleteLocalRef ( jbuffer ) ;
2014-10-06 17:35:53 +00:00
}
Improve RocksJava Comparator (#6252)
Summary:
This is a redesign of the API for RocksJava comparators with the aim of improving performance. It also simplifies the class hierarchy.
**NOTE**: This breaks backwards compatibility for existing 3rd party Comparators implemented in Java... so we need to consider carefully which release branches this goes into.
Previously when implementing a comparator in Java the developer had a choice of subclassing either `DirectComparator` or `Comparator` which would use direct and non-direct byte-buffers resepectively (via `DirectSlice` and `Slice`).
In this redesign there we have eliminated the overhead of using the Java Slice classes, and just use `ByteBuffer`s. The `ComparatorOptions` supplied when constructing a Comparator allow you to choose between direct and non-direct byte buffers by setting `useDirect`.
In addition, the `ComparatorOptions` now allow you to choose whether a ByteBuffer is reused over multiple comparator calls, by setting `maxReusedBufferSize > 0`. When buffers are reused, ComparatorOptions provides a choice of mutex type by setting `useAdaptiveMutex`.
---
[JMH benchmarks previously indicated](https://github.com/facebook/rocksdb/pull/6241#issue-356398306) that the difference between C++ and Java for implementing a comparator was ~7x slowdown in Java.
With these changes, when reusing buffers and guarding access to them via mutexes the slowdown is approximately the same. However, these changes offer a new facility to not reuse mutextes, which reduces the slowdown to ~5.5x in Java. We also offer a `thread_local` mechanism for reusing buffers, which reduces slowdown to ~5.2x in Java (closes https://github.com/facebook/rocksdb/pull/4425).
These changes also form a good base for further optimisation work such as further JNI lookup caching, and JNI critical.
---
These numbers were captured without jemalloc. With jemalloc, the performance improves for all tests, and the Java slowdown reduces to between 4.8x and 5.x.
```
ComparatorBenchmarks.put native_bytewise thrpt 25 124483.795 ± 2032.443 ops/s
ComparatorBenchmarks.put native_reverse_bytewise thrpt 25 114414.536 ± 3486.156 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 17228.250 ± 1288.546 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 16035.865 ± 1248.099 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_reused-64_thread-local thrpt 25 21571.500 ± 871.521 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_adaptive-mutex thrpt 25 23613.773 ± 8465.660 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 16768.172 ± 5618.489 ops/s
ComparatorBenchmarks.put java_bytewise_direct_reused-64_thread-local thrpt 25 23921.164 ± 8734.742 ops/s
ComparatorBenchmarks.put java_bytewise_non-direct_no-reuse thrpt 25 17899.684 ± 839.679 ops/s
ComparatorBenchmarks.put java_bytewise_direct_no-reuse thrpt 25 22148.316 ± 1215.527 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_adaptive-mutex thrpt 25 11311.126 ± 820.602 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_non-adaptive-mutex thrpt 25 11421.311 ± 807.210 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_reused-64_thread-local thrpt 25 11554.005 ± 960.556 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_adaptive-mutex thrpt 25 22960.523 ± 1673.421 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_non-adaptive-mutex thrpt 25 18293.317 ± 1434.601 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_reused-64_thread-local thrpt 25 24479.361 ± 2157.306 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_non-direct_no-reuse thrpt 25 7942.286 ± 626.170 ops/s
ComparatorBenchmarks.put java_reverse_bytewise_direct_no-reuse thrpt 25 11781.955 ± 1019.843 ops/s
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6252
Differential Revision: D19331064
Pulled By: pdillinger
fbshipit-source-id: 1f3b794e6a14162b2c3ffb943e8c0e64a0c03738
2020-02-03 20:28:25 +00:00
2014-08-03 20:11:44 +00:00
} // namespace rocksdb