rocksdb/table/merger.cc

305 lines
8.1 KiB
C++
Raw Normal View History

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "table/merger.h"
#include <vector>
#include <queue>
#include "rocksdb/comparator.h"
#include "rocksdb/iterator.h"
#include "rocksdb/options.h"
#include "table/iter_heap.h"
#include "table/iterator_wrapper.h"
#include "util/stop_watch.h"
#include "util/perf_context_imp.h"
#include "util/autovector.h"
namespace rocksdb {
namespace {
typedef std::priority_queue<
IteratorWrapper*,
std::vector<IteratorWrapper*>,
MaxIteratorComparator> MaxIterHeap;
typedef std::priority_queue<
IteratorWrapper*,
std::vector<IteratorWrapper*>,
MinIteratorComparator> MinIterHeap;
// Return's a new MaxHeap of IteratorWrapper's using the provided Comparator.
MaxIterHeap NewMaxIterHeap(const Comparator* comparator) {
return MaxIterHeap(MaxIteratorComparator(comparator));
}
// Return's a new MinHeap of IteratorWrapper's using the provided Comparator.
MinIterHeap NewMinIterHeap(const Comparator* comparator) {
return MinIterHeap(MinIteratorComparator(comparator));
}
const size_t kNumIterReserve = 4;
class MergingIterator : public Iterator {
public:
MergingIterator(const Comparator* comparator, Iterator** children, int n)
: comparator_(comparator),
current_(nullptr),
use_heap_(true),
direction_(kForward),
maxHeap_(NewMaxIterHeap(comparator_)),
minHeap_(NewMinIterHeap(comparator_)) {
children_.resize(n);
for (int i = 0; i < n; i++) {
children_[i].Set(children[i]);
}
for (auto& child : children_) {
if (child.Valid()) {
minHeap_.push(&child);
}
}
}
virtual ~MergingIterator() { }
virtual bool Valid() const {
return (current_ != nullptr);
}
virtual void SeekToFirst() {
ClearHeaps();
for (auto& child : children_) {
child.SeekToFirst();
if (child.Valid()) {
minHeap_.push(&child);
}
}
FindSmallest();
direction_ = kForward;
}
virtual void SeekToLast() {
ClearHeaps();
for (auto& child : children_) {
child.SeekToLast();
if (child.Valid()) {
maxHeap_.push(&child);
}
}
FindLargest();
direction_ = kReverse;
}
virtual void Seek(const Slice& target) {
// Invalidate the heap.
use_heap_ = false;
IteratorWrapper* first_child = nullptr;
PERF_TIMER_DECLARE();
for (auto& child : children_) {
PERF_TIMER_START(seek_child_seek_time);
child.Seek(target);
PERF_TIMER_STOP(seek_child_seek_time);
PERF_COUNTER_ADD(seek_child_seek_count, 1);
if (child.Valid()) {
// This child has valid key
if (!use_heap_) {
if (first_child == nullptr) {
// It's the first child has valid key. Only put it int
// current_. Now the values in the heap should be invalid.
first_child = &child;
} else {
// We have more than one children with valid keys. Initialize
// the heap and put the first child into the heap.
PERF_TIMER_START(seek_min_heap_time);
ClearHeaps();
minHeap_.push(first_child);
PERF_TIMER_STOP(seek_min_heap_time);
}
}
if (use_heap_) {
PERF_TIMER_START(seek_min_heap_time);
minHeap_.push(&child);
PERF_TIMER_STOP(seek_min_heap_time);
}
}
}
if (use_heap_) {
// If heap is valid, need to put the smallest key to curent_.
PERF_TIMER_START(seek_min_heap_time);
FindSmallest();
PERF_TIMER_STOP(seek_min_heap_time);
} else {
// The heap is not valid, then the current_ iterator is the first
// one, or null if there is no first child.
current_ = first_child;
}
direction_ = kForward;
}
virtual void Next() {
assert(Valid());
// Ensure that all children are positioned after key().
// If we are moving in the forward direction, it is already
// true for all of the non-current_ children since current_ is
// the smallest child and key() == current_->key(). Otherwise,
// we explicitly position the non-current_ children.
if (direction_ != kForward) {
ClearHeaps();
for (auto& child : children_) {
if (&child != current_) {
child.Seek(key());
if (child.Valid() &&
comparator_->Compare(key(), child.key()) == 0) {
child.Next();
}
if (child.Valid()) {
minHeap_.push(&child);
}
}
}
direction_ = kForward;
}
// as the current points to the current record. move the iterator forward.
// and if it is valid add it to the heap.
current_->Next();
if (use_heap_) {
if (current_->Valid()) {
minHeap_.push(current_);
}
FindSmallest();
} else if (!current_->Valid()) {
current_ = nullptr;
}
}
virtual void Prev() {
assert(Valid());
// Ensure that all children are positioned before key().
// If we are moving in the reverse direction, it is already
// true for all of the non-current_ children since current_ is
// the largest child and key() == current_->key(). Otherwise,
// we explicitly position the non-current_ children.
if (direction_ != kReverse) {
ClearHeaps();
for (auto& child : children_) {
if (&child != current_) {
child.Seek(key());
if (child.Valid()) {
// Child is at first entry >= key(). Step back one to be < key()
child.Prev();
} else {
// Child has no entries >= key(). Position at last entry.
child.SeekToLast();
}
if (child.Valid()) {
maxHeap_.push(&child);
}
}
}
direction_ = kReverse;
}
current_->Prev();
if (current_->Valid()) {
maxHeap_.push(current_);
}
FindLargest();
}
virtual Slice key() const {
assert(Valid());
return current_->key();
}
virtual Slice value() const {
assert(Valid());
return current_->value();
}
virtual Status status() const {
Status status;
for (auto& child : children_) {
status = child.status();
if (!status.ok()) {
break;
}
}
return status;
}
private:
void FindSmallest();
void FindLargest();
void ClearHeaps();
const Comparator* comparator_;
autovector<IteratorWrapper, kNumIterReserve> children_;
IteratorWrapper* current_;
// If the value is true, both of iterators in the heap and current_
// contain valid rows. If it is false, only current_ can possibly contain
// valid rows.
// This flag is always true for reverse direction, as we always use heap for
// the reverse iterating case.
bool use_heap_;
// Which direction is the iterator moving?
enum Direction {
kForward,
kReverse
};
Direction direction_;
MaxIterHeap maxHeap_;
MinIterHeap minHeap_;
};
void MergingIterator::FindSmallest() {
assert(use_heap_);
if (minHeap_.empty()) {
current_ = nullptr;
} else {
current_ = minHeap_.top();
assert(current_->Valid());
minHeap_.pop();
}
}
void MergingIterator::FindLargest() {
assert(use_heap_);
if (maxHeap_.empty()) {
current_ = nullptr;
} else {
current_ = maxHeap_.top();
assert(current_->Valid());
maxHeap_.pop();
}
}
void MergingIterator::ClearHeaps() {
use_heap_ = true;
maxHeap_ = NewMaxIterHeap(comparator_);
minHeap_ = NewMinIterHeap(comparator_);
}
} // namespace
2014-04-08 21:01:09 +00:00
Iterator* NewMergingIterator(const Comparator* cmp, Iterator** list, int n) {
assert(n >= 0);
if (n == 0) {
return NewEmptyIterator();
} else if (n == 1) {
return list[0];
} else {
2014-04-08 21:01:09 +00:00
return new MergingIterator(cmp, list, n);
}
}
} // namespace rocksdb