rocksdb/file/file_util.h

114 lines
4.6 KiB
C
Raw Normal View History

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
#pragma once
#include <string>
#include "file/filename.h"
#include "options/db_options.h"
#include "rocksdb/env.h"
Introduce a new storage specific Env API (#5761) Summary: The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc. This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO. The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before. This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection. The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761 Differential Revision: D18868376 Pulled By: anand1976 fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
2019-12-13 22:47:08 +00:00
#include "rocksdb/file_system.h"
Ingest SST files with checksum information (#6891) Summary: Application can ingest SST files with file checksum information, such that during ingestion, DB is able to check data integrity and identify of the SST file. The PR introduces generate_and_verify_file_checksum to IngestExternalFileOption to control if the ingested checksum information should be verified with the generated checksum. 1. If generate_and_verify_file_checksum options is *FALSE*: *1)* if DB does not enable SST file checksum, the checksum information ingested will be ignored; *2)* if DB enables the SST file checksum and the checksum function name matches the checksum function name in DB, we trust the ingested checksum, store it in Manifest. If the checksum function name does not match, we treat that as an error and fail the IngestExternalFile() call. 2. If generate_and_verify_file_checksum options is *TRUE*: *1)* if DB does not enable SST file checksum, the checksum information ingested will be ignored; *2)* if DB enable the SST file checksum, we will use the checksum generator from DB to calculate the checksum for each ingested SST files after they are copied or moved. Then, compare the checksum results with the ingested checksum information: _A)_ if the checksum function name does not match, _verification always report true_ and we store the DB generated checksum information in Manifest. _B)_ if the checksum function name mach, and checksum match, ingestion continues and stores the checksum information in the Manifest. Otherwise, terminate file ingestion and report file corruption. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6891 Test Plan: added unit test, pass make asan_check Reviewed By: pdillinger Differential Revision: D21935988 Pulled By: zhichao-cao fbshipit-source-id: 7b55f486632db467e76d72602218d0658aa7f6ed
2020-06-11 21:25:01 +00:00
#include "rocksdb/sst_file_writer.h"
#include "rocksdb/statistics.h"
#include "rocksdb/status.h"
#include "rocksdb/system_clock.h"
#include "rocksdb/types.h"
#include "trace_replay/io_tracer.h"
namespace ROCKSDB_NAMESPACE {
// use_fsync maps to options.use_fsync, which determines the way that
// the file is synced after copying.
IOStatus CopyFile(FileSystem* fs, const std::string& source,
Fix/improve temperature handling for file ingestion (#12402) Summary: Partly following up on leftovers from https://github.com/facebook/rocksdb/issues/12388 In terms of public API: * Make it clear that IngestExternalFileArg::file_temperature is just a hint for opening the existing file, though it was previously used for both copy-from temp hint and copy-to temp, which was bizarre. * Specify how IngestExternalFile assigns temperature to file ingested into DB. (See details in comments.) This approach is not perfect in terms of matching how the DB assigns temperatures, but was the simplest way to get close. The key complication for matching DB temperature assignments is that ingestion files are copied (to a destination temp) before their target level is determined (in general). * Add a temperature option to SstFileWriter::Open so that files intended for ingestion can be initially written to a chosen temperature. * Note that "fail_if_not_bottommost_level" is obsolete/confusing use of "bottommost" In terms of the implementation, there was a similar bit of oddness with the internal CopyFile API, which only took one temperature, ambiguously applicable to the source, destination, or both. This is also fixed. Eventual suggested follow-up: * Before copying files for ingestion, determine a tentative level assignment to use for destination temperature, and keep that even if final level assignment happens to be different at commit time (rare). * More temperature handling for CreateColumnFamilyWithImport and Checkpoints. Pull Request resolved: https://github.com/facebook/rocksdb/pull/12402 Test Plan: Deeply revamped ExternalSSTFileBasicTest.IngestWithTemperature to test the new changes. Previously this test was insufficient because it was only looking at temperatures according to the DB manifest. Incorporating FileTemperatureTestFS allows us to also test the temperatures in the storage layer. Used macros instead of functions for better tracing to critical source location on test failures. Some enhancements to FileTemperatureTestFS in the process of developing the revamped test. Reviewed By: jowlyzhang Differential Revision: D54442794 Pulled By: pdillinger fbshipit-source-id: 41d9d0afdc073e6a983304c10bbc07c70cc7e995
2024-03-06 00:56:08 +00:00
Temperature src_temp_hint,
std::unique_ptr<WritableFileWriter>& dest_writer,
uint64_t size, bool use_fsync,
Fix/improve temperature handling for file ingestion (#12402) Summary: Partly following up on leftovers from https://github.com/facebook/rocksdb/issues/12388 In terms of public API: * Make it clear that IngestExternalFileArg::file_temperature is just a hint for opening the existing file, though it was previously used for both copy-from temp hint and copy-to temp, which was bizarre. * Specify how IngestExternalFile assigns temperature to file ingested into DB. (See details in comments.) This approach is not perfect in terms of matching how the DB assigns temperatures, but was the simplest way to get close. The key complication for matching DB temperature assignments is that ingestion files are copied (to a destination temp) before their target level is determined (in general). * Add a temperature option to SstFileWriter::Open so that files intended for ingestion can be initially written to a chosen temperature. * Note that "fail_if_not_bottommost_level" is obsolete/confusing use of "bottommost" In terms of the implementation, there was a similar bit of oddness with the internal CopyFile API, which only took one temperature, ambiguously applicable to the source, destination, or both. This is also fixed. Eventual suggested follow-up: * Before copying files for ingestion, determine a tentative level assignment to use for destination temperature, and keep that even if final level assignment happens to be different at commit time (rare). * More temperature handling for CreateColumnFamilyWithImport and Checkpoints. Pull Request resolved: https://github.com/facebook/rocksdb/pull/12402 Test Plan: Deeply revamped ExternalSSTFileBasicTest.IngestWithTemperature to test the new changes. Previously this test was insufficient because it was only looking at temperatures according to the DB manifest. Incorporating FileTemperatureTestFS allows us to also test the temperatures in the storage layer. Used macros instead of functions for better tracing to critical source location on test failures. Some enhancements to FileTemperatureTestFS in the process of developing the revamped test. Reviewed By: jowlyzhang Differential Revision: D54442794 Pulled By: pdillinger fbshipit-source-id: 41d9d0afdc073e6a983304c10bbc07c70cc7e995
2024-03-06 00:56:08 +00:00
const std::shared_ptr<IOTracer>& io_tracer);
IOStatus CopyFile(FileSystem* fs, const std::string& source,
Fix/improve temperature handling for file ingestion (#12402) Summary: Partly following up on leftovers from https://github.com/facebook/rocksdb/issues/12388 In terms of public API: * Make it clear that IngestExternalFileArg::file_temperature is just a hint for opening the existing file, though it was previously used for both copy-from temp hint and copy-to temp, which was bizarre. * Specify how IngestExternalFile assigns temperature to file ingested into DB. (See details in comments.) This approach is not perfect in terms of matching how the DB assigns temperatures, but was the simplest way to get close. The key complication for matching DB temperature assignments is that ingestion files are copied (to a destination temp) before their target level is determined (in general). * Add a temperature option to SstFileWriter::Open so that files intended for ingestion can be initially written to a chosen temperature. * Note that "fail_if_not_bottommost_level" is obsolete/confusing use of "bottommost" In terms of the implementation, there was a similar bit of oddness with the internal CopyFile API, which only took one temperature, ambiguously applicable to the source, destination, or both. This is also fixed. Eventual suggested follow-up: * Before copying files for ingestion, determine a tentative level assignment to use for destination temperature, and keep that even if final level assignment happens to be different at commit time (rare). * More temperature handling for CreateColumnFamilyWithImport and Checkpoints. Pull Request resolved: https://github.com/facebook/rocksdb/pull/12402 Test Plan: Deeply revamped ExternalSSTFileBasicTest.IngestWithTemperature to test the new changes. Previously this test was insufficient because it was only looking at temperatures according to the DB manifest. Incorporating FileTemperatureTestFS allows us to also test the temperatures in the storage layer. Used macros instead of functions for better tracing to critical source location on test failures. Some enhancements to FileTemperatureTestFS in the process of developing the revamped test. Reviewed By: jowlyzhang Differential Revision: D54442794 Pulled By: pdillinger fbshipit-source-id: 41d9d0afdc073e6a983304c10bbc07c70cc7e995
2024-03-06 00:56:08 +00:00
Temperature src_temp_hint, const std::string& destination,
Temperature dst_temp, uint64_t size, bool use_fsync,
const std::shared_ptr<IOTracer>& io_tracer);
Create a CustomEnv class; Add WinFileSystem; Make LegacyFileSystemWrapper private (#7703) Summary: This PR does the following: -> Creates a WinFileSystem class. This class is the Windows equivalent of the PosixFileSystem and will be used on Windows systems. -> Introduces a CustomEnv class. A CustomEnv is an Env that takes a FileSystem as constructor argument. I believe there will only ever be two implementations of this class (PosixEnv and WinEnv). There is still a CustomEnvWrapper class that takes an Env and a FileSystem and wraps the Env calls with the input Env but uses the FileSystem for the FileSystem calls -> Eliminates the public uses of the LegacyFileSystemWrapper. With this change in place, there are effectively the following patterns of Env: - "Base Env classes" (PosixEnv, WinEnv). These classes implement the core Env functions (e.g. Threads) and have a hard-coded input FileSystem. These classes inherit from CompositeEnv, implement the core Env functions (threads) and delegate the FileSystem-like calls to the input file system. - Wrapped Composite Env classes (MemEnv). These classes take in an Env and a FileSystem. The core env functions are re-directed to the wrapped env. The file system calls are redirected to the input file system - Legacy Wrapped Env classes. These classes take in an Env input (but no FileSystem). The core env functions are re-directed to the wrapped env. A "Legacy File System" is created using this env and the file system calls directed to the env itself. With these changes in place, the PosixEnv becomes a singleton -- there is only ever one created. Any other use of the PosixEnv is via another wrapped env. This cleans up some of the issues with the env construction and destruction. Additionally, there were places in the code that required had an Env when they required a FileSystem. Many of these places would wrap the Env with a LegacyFileSystemWrapper instead of using the env->GetFileSystem(). These places were changed, thereby removing layers of additional redirection (LegacyFileSystem --> Env --> Env::FileSystem). Pull Request resolved: https://github.com/facebook/rocksdb/pull/7703 Reviewed By: zhichao-cao Differential Revision: D25762190 Pulled By: anand1976 fbshipit-source-id: 1a088e97fc916f28ac69c149cd1dcad0ab31704b
2021-01-06 18:48:24 +00:00
inline IOStatus CopyFile(const std::shared_ptr<FileSystem>& fs,
Fix/improve temperature handling for file ingestion (#12402) Summary: Partly following up on leftovers from https://github.com/facebook/rocksdb/issues/12388 In terms of public API: * Make it clear that IngestExternalFileArg::file_temperature is just a hint for opening the existing file, though it was previously used for both copy-from temp hint and copy-to temp, which was bizarre. * Specify how IngestExternalFile assigns temperature to file ingested into DB. (See details in comments.) This approach is not perfect in terms of matching how the DB assigns temperatures, but was the simplest way to get close. The key complication for matching DB temperature assignments is that ingestion files are copied (to a destination temp) before their target level is determined (in general). * Add a temperature option to SstFileWriter::Open so that files intended for ingestion can be initially written to a chosen temperature. * Note that "fail_if_not_bottommost_level" is obsolete/confusing use of "bottommost" In terms of the implementation, there was a similar bit of oddness with the internal CopyFile API, which only took one temperature, ambiguously applicable to the source, destination, or both. This is also fixed. Eventual suggested follow-up: * Before copying files for ingestion, determine a tentative level assignment to use for destination temperature, and keep that even if final level assignment happens to be different at commit time (rare). * More temperature handling for CreateColumnFamilyWithImport and Checkpoints. Pull Request resolved: https://github.com/facebook/rocksdb/pull/12402 Test Plan: Deeply revamped ExternalSSTFileBasicTest.IngestWithTemperature to test the new changes. Previously this test was insufficient because it was only looking at temperatures according to the DB manifest. Incorporating FileTemperatureTestFS allows us to also test the temperatures in the storage layer. Used macros instead of functions for better tracing to critical source location on test failures. Some enhancements to FileTemperatureTestFS in the process of developing the revamped test. Reviewed By: jowlyzhang Differential Revision: D54442794 Pulled By: pdillinger fbshipit-source-id: 41d9d0afdc073e6a983304c10bbc07c70cc7e995
2024-03-06 00:56:08 +00:00
const std::string& source, Temperature src_temp_hint,
const std::string& destination, Temperature dst_temp,
uint64_t size, bool use_fsync,
const std::shared_ptr<IOTracer>& io_tracer) {
return CopyFile(fs.get(), source, src_temp_hint, destination, dst_temp, size,
use_fsync, io_tracer);
Create a CustomEnv class; Add WinFileSystem; Make LegacyFileSystemWrapper private (#7703) Summary: This PR does the following: -> Creates a WinFileSystem class. This class is the Windows equivalent of the PosixFileSystem and will be used on Windows systems. -> Introduces a CustomEnv class. A CustomEnv is an Env that takes a FileSystem as constructor argument. I believe there will only ever be two implementations of this class (PosixEnv and WinEnv). There is still a CustomEnvWrapper class that takes an Env and a FileSystem and wraps the Env calls with the input Env but uses the FileSystem for the FileSystem calls -> Eliminates the public uses of the LegacyFileSystemWrapper. With this change in place, there are effectively the following patterns of Env: - "Base Env classes" (PosixEnv, WinEnv). These classes implement the core Env functions (e.g. Threads) and have a hard-coded input FileSystem. These classes inherit from CompositeEnv, implement the core Env functions (threads) and delegate the FileSystem-like calls to the input file system. - Wrapped Composite Env classes (MemEnv). These classes take in an Env and a FileSystem. The core env functions are re-directed to the wrapped env. The file system calls are redirected to the input file system - Legacy Wrapped Env classes. These classes take in an Env input (but no FileSystem). The core env functions are re-directed to the wrapped env. A "Legacy File System" is created using this env and the file system calls directed to the env itself. With these changes in place, the PosixEnv becomes a singleton -- there is only ever one created. Any other use of the PosixEnv is via another wrapped env. This cleans up some of the issues with the env construction and destruction. Additionally, there were places in the code that required had an Env when they required a FileSystem. Many of these places would wrap the Env with a LegacyFileSystemWrapper instead of using the env->GetFileSystem(). These places were changed, thereby removing layers of additional redirection (LegacyFileSystem --> Env --> Env::FileSystem). Pull Request resolved: https://github.com/facebook/rocksdb/pull/7703 Reviewed By: zhichao-cao Differential Revision: D25762190 Pulled By: anand1976 fbshipit-source-id: 1a088e97fc916f28ac69c149cd1dcad0ab31704b
2021-01-06 18:48:24 +00:00
}
IOStatus CreateFile(FileSystem* fs, const std::string& destination,
const std::string& contents, bool use_fsync);
Create a CustomEnv class; Add WinFileSystem; Make LegacyFileSystemWrapper private (#7703) Summary: This PR does the following: -> Creates a WinFileSystem class. This class is the Windows equivalent of the PosixFileSystem and will be used on Windows systems. -> Introduces a CustomEnv class. A CustomEnv is an Env that takes a FileSystem as constructor argument. I believe there will only ever be two implementations of this class (PosixEnv and WinEnv). There is still a CustomEnvWrapper class that takes an Env and a FileSystem and wraps the Env calls with the input Env but uses the FileSystem for the FileSystem calls -> Eliminates the public uses of the LegacyFileSystemWrapper. With this change in place, there are effectively the following patterns of Env: - "Base Env classes" (PosixEnv, WinEnv). These classes implement the core Env functions (e.g. Threads) and have a hard-coded input FileSystem. These classes inherit from CompositeEnv, implement the core Env functions (threads) and delegate the FileSystem-like calls to the input file system. - Wrapped Composite Env classes (MemEnv). These classes take in an Env and a FileSystem. The core env functions are re-directed to the wrapped env. The file system calls are redirected to the input file system - Legacy Wrapped Env classes. These classes take in an Env input (but no FileSystem). The core env functions are re-directed to the wrapped env. A "Legacy File System" is created using this env and the file system calls directed to the env itself. With these changes in place, the PosixEnv becomes a singleton -- there is only ever one created. Any other use of the PosixEnv is via another wrapped env. This cleans up some of the issues with the env construction and destruction. Additionally, there were places in the code that required had an Env when they required a FileSystem. Many of these places would wrap the Env with a LegacyFileSystemWrapper instead of using the env->GetFileSystem(). These places were changed, thereby removing layers of additional redirection (LegacyFileSystem --> Env --> Env::FileSystem). Pull Request resolved: https://github.com/facebook/rocksdb/pull/7703 Reviewed By: zhichao-cao Differential Revision: D25762190 Pulled By: anand1976 fbshipit-source-id: 1a088e97fc916f28ac69c149cd1dcad0ab31704b
2021-01-06 18:48:24 +00:00
inline IOStatus CreateFile(const std::shared_ptr<FileSystem>& fs,
const std::string& destination,
const std::string& contents, bool use_fsync) {
return CreateFile(fs.get(), destination, contents, use_fsync);
}
// Delete a DB file, if this file is a SST file or Blob file and SstFileManager
// is used, it should have already been tracked by SstFileManager via its
// `OnFileAdd` API before passing to this API to be deleted, to ensure
// SstFileManager and its DeleteScheduler are tracking DB size and trash size
// properly.
Status DeleteDBFile(const ImmutableDBOptions* db_options,
const std::string& fname, const std::string& path_to_sync,
const bool force_bg, const bool force_fg);
// TODO(hx235): pass the whole DBOptions intead of its individual fields
IOStatus GenerateOneFileChecksum(
Ingest SST files with checksum information (#6891) Summary: Application can ingest SST files with file checksum information, such that during ingestion, DB is able to check data integrity and identify of the SST file. The PR introduces generate_and_verify_file_checksum to IngestExternalFileOption to control if the ingested checksum information should be verified with the generated checksum. 1. If generate_and_verify_file_checksum options is *FALSE*: *1)* if DB does not enable SST file checksum, the checksum information ingested will be ignored; *2)* if DB enables the SST file checksum and the checksum function name matches the checksum function name in DB, we trust the ingested checksum, store it in Manifest. If the checksum function name does not match, we treat that as an error and fail the IngestExternalFile() call. 2. If generate_and_verify_file_checksum options is *TRUE*: *1)* if DB does not enable SST file checksum, the checksum information ingested will be ignored; *2)* if DB enable the SST file checksum, we will use the checksum generator from DB to calculate the checksum for each ingested SST files after they are copied or moved. Then, compare the checksum results with the ingested checksum information: _A)_ if the checksum function name does not match, _verification always report true_ and we store the DB generated checksum information in Manifest. _B)_ if the checksum function name mach, and checksum match, ingestion continues and stores the checksum information in the Manifest. Otherwise, terminate file ingestion and report file corruption. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6891 Test Plan: added unit test, pass make asan_check Reviewed By: pdillinger Differential Revision: D21935988 Pulled By: zhichao-cao fbshipit-source-id: 7b55f486632db467e76d72602218d0658aa7f6ed
2020-06-11 21:25:01 +00:00
FileSystem* fs, const std::string& file_path,
FileChecksumGenFactory* checksum_factory,
const std::string& requested_checksum_func_name, std::string* file_checksum,
Ingest SST files with checksum information (#6891) Summary: Application can ingest SST files with file checksum information, such that during ingestion, DB is able to check data integrity and identify of the SST file. The PR introduces generate_and_verify_file_checksum to IngestExternalFileOption to control if the ingested checksum information should be verified with the generated checksum. 1. If generate_and_verify_file_checksum options is *FALSE*: *1)* if DB does not enable SST file checksum, the checksum information ingested will be ignored; *2)* if DB enables the SST file checksum and the checksum function name matches the checksum function name in DB, we trust the ingested checksum, store it in Manifest. If the checksum function name does not match, we treat that as an error and fail the IngestExternalFile() call. 2. If generate_and_verify_file_checksum options is *TRUE*: *1)* if DB does not enable SST file checksum, the checksum information ingested will be ignored; *2)* if DB enable the SST file checksum, we will use the checksum generator from DB to calculate the checksum for each ingested SST files after they are copied or moved. Then, compare the checksum results with the ingested checksum information: _A)_ if the checksum function name does not match, _verification always report true_ and we store the DB generated checksum information in Manifest. _B)_ if the checksum function name mach, and checksum match, ingestion continues and stores the checksum information in the Manifest. Otherwise, terminate file ingestion and report file corruption. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6891 Test Plan: added unit test, pass make asan_check Reviewed By: pdillinger Differential Revision: D21935988 Pulled By: zhichao-cao fbshipit-source-id: 7b55f486632db467e76d72602218d0658aa7f6ed
2020-06-11 21:25:01 +00:00
std::string* file_checksum_func_name,
size_t verify_checksums_readahead_size, bool allow_mmap_reads,
Add rate limiter priority to ReadOptions (#9424) Summary: Users can set the priority for file reads associated with their operation by setting `ReadOptions::rate_limiter_priority` to something other than `Env::IO_TOTAL`. Rate limiting `VerifyChecksum()` and `VerifyFileChecksums()` is the motivation for this PR, so it also includes benchmarks and minor bug fixes to get that working. `RandomAccessFileReader::Read()` already had support for rate limiting compaction reads. I changed that rate limiting to be non-specific to compaction, but rather performed according to the passed in `Env::IOPriority`. Now the compaction read rate limiting is supported by setting `rate_limiter_priority = Env::IO_LOW` on its `ReadOptions`. There is no default value for the new `Env::IOPriority` parameter to `RandomAccessFileReader::Read()`. That means this PR goes through all callers (in some cases multiple layers up the call stack) to find a `ReadOptions` to provide the priority. There are TODOs for cases I believe it would be good to let user control the priority some day (e.g., file footer reads), and no TODO in cases I believe it doesn't matter (e.g., trace file reads). The API doc only lists the missing cases where a file read associated with a provided `ReadOptions` cannot be rate limited. For cases like file ingestion checksum calculation, there is no API to provide `ReadOptions` or `Env::IOPriority`, so I didn't count that as missing. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9424 Test Plan: - new unit tests - new benchmarks on ~50MB database with 1MB/s read rate limit and 100ms refill interval; verified with strace reads are chunked (at 0.1MB per chunk) and spaced roughly 100ms apart. - setup command: `./db_bench -benchmarks=fillrandom,compact -db=/tmp/testdb -target_file_size_base=1048576 -disable_auto_compactions=true -file_checksum=true` - benchmarks command: `strace -ttfe pread64 ./db_bench -benchmarks=verifychecksum,verifyfilechecksums -use_existing_db=true -db=/tmp/testdb -rate_limiter_bytes_per_sec=1048576 -rate_limit_bg_reads=1 -rate_limit_user_ops=true -file_checksum=true` - crash test using IO_USER priority on non-validation reads with https://github.com/facebook/rocksdb/issues/9567 reverted: `python3 tools/db_crashtest.py blackbox --max_key=1000000 --write_buffer_size=524288 --target_file_size_base=524288 --level_compaction_dynamic_level_bytes=true --duration=3600 --rate_limit_bg_reads=true --rate_limit_user_ops=true --rate_limiter_bytes_per_sec=10485760 --interval=10` Reviewed By: hx235 Differential Revision: D33747386 Pulled By: ajkr fbshipit-source-id: a2d985e97912fba8c54763798e04f006ccc56e0c
2022-02-17 07:17:03 +00:00
std::shared_ptr<IOTracer>& io_tracer, RateLimiter* rate_limiter,
const ReadOptions& read_options, Statistics* stats, SystemClock* clock);
Create a CustomEnv class; Add WinFileSystem; Make LegacyFileSystemWrapper private (#7703) Summary: This PR does the following: -> Creates a WinFileSystem class. This class is the Windows equivalent of the PosixFileSystem and will be used on Windows systems. -> Introduces a CustomEnv class. A CustomEnv is an Env that takes a FileSystem as constructor argument. I believe there will only ever be two implementations of this class (PosixEnv and WinEnv). There is still a CustomEnvWrapper class that takes an Env and a FileSystem and wraps the Env calls with the input Env but uses the FileSystem for the FileSystem calls -> Eliminates the public uses of the LegacyFileSystemWrapper. With this change in place, there are effectively the following patterns of Env: - "Base Env classes" (PosixEnv, WinEnv). These classes implement the core Env functions (e.g. Threads) and have a hard-coded input FileSystem. These classes inherit from CompositeEnv, implement the core Env functions (threads) and delegate the FileSystem-like calls to the input file system. - Wrapped Composite Env classes (MemEnv). These classes take in an Env and a FileSystem. The core env functions are re-directed to the wrapped env. The file system calls are redirected to the input file system - Legacy Wrapped Env classes. These classes take in an Env input (but no FileSystem). The core env functions are re-directed to the wrapped env. A "Legacy File System" is created using this env and the file system calls directed to the env itself. With these changes in place, the PosixEnv becomes a singleton -- there is only ever one created. Any other use of the PosixEnv is via another wrapped env. This cleans up some of the issues with the env construction and destruction. Additionally, there were places in the code that required had an Env when they required a FileSystem. Many of these places would wrap the Env with a LegacyFileSystemWrapper instead of using the env->GetFileSystem(). These places were changed, thereby removing layers of additional redirection (LegacyFileSystem --> Env --> Env::FileSystem). Pull Request resolved: https://github.com/facebook/rocksdb/pull/7703 Reviewed By: zhichao-cao Differential Revision: D25762190 Pulled By: anand1976 fbshipit-source-id: 1a088e97fc916f28ac69c149cd1dcad0ab31704b
2021-01-06 18:48:24 +00:00
inline IOStatus PrepareIOFromReadOptions(const ReadOptions& ro,
SystemClock* clock, IOOptions& opts) {
if (ro.deadline.count()) {
std::chrono::microseconds now =
std::chrono::microseconds(clock->NowMicros());
// Ensure there is atleast 1us available. We don't want to pass a value of
// 0 as that means no timeout
if (now >= ro.deadline) {
return IOStatus::TimedOut("Deadline exceeded");
}
opts.timeout = ro.deadline - now;
}
if (ro.io_timeout.count() &&
(!opts.timeout.count() || ro.io_timeout < opts.timeout)) {
opts.timeout = ro.io_timeout;
}
Set Read rate limiter priority dynamically and pass it to FS (#9996) Summary: ### Context: Background compactions and flush generate large reads and writes, and can be long running, especially for universal compaction. In some cases, this can impact foreground reads and writes by users. ### Solution User, Flush, and Compaction reads share some code path. For this task, we update the rate_limiter_priority in ReadOptions for code paths (e.g. FindTable (mainly in BlockBasedTable::Open()) and various iterators), and eventually update the rate_limiter_priority in IOOptions for FSRandomAccessFile. **This PR is for the Read path.** The **Read:** dynamic priority for different state are listed as follows: | State | Normal | Delayed | Stalled | | ----- | ------ | ------- | ------- | | Flush (verification read in BuildTable()) | IO_USER | IO_USER | IO_USER | | Compaction | IO_LOW | IO_USER | IO_USER | | User | User provided | User provided | User provided | We will respect the read_options that the user provided and will not set it. The only sst read for Flush is the verification read in BuildTable(). It claims to be "regard as user read". **Details** 1. Set read_options.rate_limiter_priority dynamically: - User: Do not update the read_options. Use the read_options that the user provided. - Compaction: Update read_options in CompactionJob::ProcessKeyValueCompaction(). - Flush: Update read_options in BuildTable(). 2. Pass the rate limiter priority to FSRandomAccessFile functions: - After calling the FindTable(), read_options is passed through GetTableReader(table_cache.cc), BlockBasedTableFactory::NewTableReader(block_based_table_factory.cc), and BlockBasedTable::Open(). The Open() needs some updates for the ReadOptions variable and the updates are also needed for the called functions, including PrefetchTail(), PrepareIOOptions(), ReadFooterFromFile(), ReadMetaIndexblock(), ReadPropertiesBlock(), PrefetchIndexAndFilterBlocks(), and ReadRangeDelBlock(). - In RandomAccessFileReader, the functions to be updated include Read(), MultiRead(), ReadAsync(), and Prefetch(). - Update the downstream functions of NewIndexIterator(), NewDataBlockIterator(), and BlockBasedTableIterator(). ### Test Plans Add unit tests. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9996 Reviewed By: anand1976 Differential Revision: D36452483 Pulled By: gitbw95 fbshipit-source-id: 60978204a4f849bb9261cb78d9bc1cb56d6008cf
2022-05-19 02:41:44 +00:00
opts.rate_limiter_priority = ro.rate_limiter_priority;
Group rocksdb.sst.read.micros stat by IOActivity flush and compaction (#11288) Summary: **Context:** The existing stat rocksdb.sst.read.micros does not reflect each of compaction and flush cases but aggregate them, which is not so helpful for us to understand IO read behavior of each of them. **Summary** - Update `StopWatch` and `RandomAccessFileReader` to record `rocksdb.sst.read.micros` and `rocksdb.file.{flush/compaction}.read.micros` - Fixed the default histogram in `RandomAccessFileReader` - New field `ReadOptions/IOOptions::io_activity`; Pass `ReadOptions` through paths under db open, flush and compaction to where we can prepare `IOOptions` and pass it to `RandomAccessFileReader` - Use `thread_status_util` for assertion in `DbStressFSWrapper` for continuous testing on we are passing correct `io_activity` under db open, flush and compaction Pull Request resolved: https://github.com/facebook/rocksdb/pull/11288 Test Plan: - **Stress test** - **Db bench 1: rocksdb.sst.read.micros COUNT ≈ sum of rocksdb.file.read.flush.micros's and rocksdb.file.read.compaction.micros's.** (without blob) - May not be exactly the same due to `HistogramStat::Add` only guarantees atomic not accuracy across threads. ``` ./db_bench -db=/dev/shm/testdb/ -statistics=true -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -target_file_size_base=655 -disable_auto_compactions=false -compression_type=none -bloom_bits=3 (-use_plain_table=1 -prefix_size=10) ``` ``` // BlockBasedTable rocksdb.sst.read.micros P50 : 2.009374 P95 : 4.968548 P99 : 8.110362 P100 : 43.000000 COUNT : 40456 SUM : 114805 rocksdb.file.read.flush.micros P50 : 1.871841 P95 : 3.872407 P99 : 5.540541 P100 : 43.000000 COUNT : 2250 SUM : 6116 rocksdb.file.read.compaction.micros P50 : 2.023109 P95 : 5.029149 P99 : 8.196910 P100 : 26.000000 COUNT : 38206 SUM : 108689 // PlainTable Does not apply ``` - **Db bench 2: performance** **Read** SETUP: db with 900 files ``` ./db_bench -db=/dev/shm/testdb/ -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -disable_auto_compactions=true -target_file_size_base=655 -compression_type=none ```run till convergence ``` ./db_bench -seed=1678564177044286 -use_existing_db=true -db=/dev/shm/testdb -benchmarks=readrandom[-X60] -statistics=true -num=1000000 -disable_auto_compactions=true -compression_type=none -bloom_bits=3 ``` Pre-change `readrandom [AVG 60 runs] : 21568 (± 248) ops/sec` Post-change (no regression, -0.3%) `readrandom [AVG 60 runs] : 21486 (± 236) ops/sec` **Compaction/Flush**run till convergence ``` ./db_bench -db=/dev/shm/testdb2/ -seed=1678564177044286 -benchmarks="fillseq[-X60]" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -disable_auto_compactions=false -target_file_size_base=655 -compression_type=none rocksdb.sst.read.micros COUNT : 33820 rocksdb.sst.read.flush.micros COUNT : 1800 rocksdb.sst.read.compaction.micros COUNT : 32020 ``` Pre-change `fillseq [AVG 46 runs] : 1391 (± 214) ops/sec; 0.7 (± 0.1) MB/sec` Post-change (no regression, ~-0.4%) `fillseq [AVG 46 runs] : 1385 (± 216) ops/sec; 0.7 (± 0.1) MB/sec` Reviewed By: ajkr Differential Revision: D44007011 Pulled By: hx235 fbshipit-source-id: a54c89e4846dfc9a135389edf3f3eedfea257132
2023-04-21 16:07:18 +00:00
opts.io_activity = ro.io_activity;
return IOStatus::OK();
}
Group SST write in flush, compaction and db open with new stats (#11910) Summary: ## Context/Summary Similar to https://github.com/facebook/rocksdb/pull/11288, https://github.com/facebook/rocksdb/pull/11444, categorizing SST/blob file write according to different io activities allows more insight into the activity. For that, this PR does the following: - Tag different write IOs by passing down and converting WriteOptions to IOOptions - Add new SST_WRITE_MICROS histogram in WritableFileWriter::Append() and breakdown FILE_WRITE_{FLUSH|COMPACTION|DB_OPEN}_MICROS Some related code refactory to make implementation cleaner: - Blob stats - Replace high-level write measurement with low-level WritableFileWriter::Append() measurement for BLOB_DB_BLOB_FILE_WRITE_MICROS. This is to make FILE_WRITE_{FLUSH|COMPACTION|DB_OPEN}_MICROS include blob file. As a consequence, this introduces some behavioral changes on it, see HISTORY and db bench test plan below for more info. - Fix bugs where BLOB_DB_BLOB_FILE_SYNCED/BLOB_DB_BLOB_FILE_BYTES_WRITTEN include file failed to sync and bytes failed to write. - Refactor WriteOptions constructor for easier construction with io_activity and rate_limiter_priority - Refactor DBImpl::~DBImpl()/BlobDBImpl::Close() to bypass thread op verification - Build table - TableBuilderOptions now includes Read/WriteOpitons so BuildTable() do not need to take these two variables - Replace the io_priority passed into BuildTable() with TableBuilderOptions::WriteOpitons::rate_limiter_priority. Similar for BlobFileBuilder. This parameter is used for dynamically changing file io priority for flush, see https://github.com/facebook/rocksdb/pull/9988?fbclid=IwAR1DtKel6c-bRJAdesGo0jsbztRtciByNlvokbxkV6h_L-AE9MACzqRTT5s for more - Update ThreadStatus::FLUSH_BYTES_WRITTEN to use io_activity to track flush IO in flush job and db open instead of io_priority ## Test ### db bench Flush ``` ./db_bench --statistics=1 --benchmarks=fillseq --num=100000 --write_buffer_size=100 rocksdb.sst.write.micros P50 : 1.830863 P95 : 4.094720 P99 : 6.578947 P100 : 26.000000 COUNT : 7875 SUM : 20377 rocksdb.file.write.flush.micros P50 : 1.830863 P95 : 4.094720 P99 : 6.578947 P100 : 26.000000 COUNT : 7875 SUM : 20377 rocksdb.file.write.compaction.micros P50 : 0.000000 P95 : 0.000000 P99 : 0.000000 P100 : 0.000000 COUNT : 0 SUM : 0 rocksdb.file.write.db.open.micros P50 : 0.000000 P95 : 0.000000 P99 : 0.000000 P100 : 0.000000 COUNT : 0 SUM : 0 ``` compaction, db oopen ``` Setup: ./db_bench --statistics=1 --benchmarks=fillseq --num=10000 --disable_auto_compactions=1 -write_buffer_size=100 --db=../db_bench Run:./db_bench --statistics=1 --benchmarks=compact --db=../db_bench --use_existing_db=1 rocksdb.sst.write.micros P50 : 2.675325 P95 : 9.578788 P99 : 18.780000 P100 : 314.000000 COUNT : 638 SUM : 3279 rocksdb.file.write.flush.micros P50 : 0.000000 P95 : 0.000000 P99 : 0.000000 P100 : 0.000000 COUNT : 0 SUM : 0 rocksdb.file.write.compaction.micros P50 : 2.757353 P95 : 9.610687 P99 : 19.316667 P100 : 314.000000 COUNT : 615 SUM : 3213 rocksdb.file.write.db.open.micros P50 : 2.055556 P95 : 3.925000 P99 : 9.000000 P100 : 9.000000 COUNT : 23 SUM : 66 ``` blob stats - just to make sure they aren't broken by this PR ``` Integrated Blob DB Setup: ./db_bench --enable_blob_files=1 --statistics=1 --benchmarks=fillseq --num=10000 --disable_auto_compactions=1 -write_buffer_size=100 --db=../db_bench Run:./db_bench --enable_blob_files=1 --statistics=1 --benchmarks=compact --db=../db_bench --use_existing_db=1 pre-PR: rocksdb.blobdb.blob.file.write.micros P50 : 7.298246 P95 : 9.771930 P99 : 9.991813 P100 : 16.000000 COUNT : 235 SUM : 1600 rocksdb.blobdb.blob.file.synced COUNT : 1 rocksdb.blobdb.blob.file.bytes.written COUNT : 34842 post-PR: rocksdb.blobdb.blob.file.write.micros P50 : 2.000000 P95 : 2.829360 P99 : 2.993779 P100 : 9.000000 COUNT : 707 SUM : 1614 - COUNT is higher and values are smaller as it includes header and footer write - COUNT is 3X higher due to each Append() count as one post-PR, while in pre-PR, 3 Append()s counts as one. See https://github.com/facebook/rocksdb/pull/11910/files#diff-32b811c0a1c000768cfb2532052b44dc0b3bf82253f3eab078e15ff201a0dabfL157-L164 rocksdb.blobdb.blob.file.synced COUNT : 1 (stay the same) rocksdb.blobdb.blob.file.bytes.written COUNT : 34842 (stay the same) ``` ``` Stacked Blob DB Run: ./db_bench --use_blob_db=1 --statistics=1 --benchmarks=fillseq --num=10000 --disable_auto_compactions=1 -write_buffer_size=100 --db=../db_bench pre-PR: rocksdb.blobdb.blob.file.write.micros P50 : 12.808042 P95 : 19.674497 P99 : 28.539683 P100 : 51.000000 COUNT : 10000 SUM : 140876 rocksdb.blobdb.blob.file.synced COUNT : 8 rocksdb.blobdb.blob.file.bytes.written COUNT : 1043445 post-PR: rocksdb.blobdb.blob.file.write.micros P50 : 1.657370 P95 : 2.952175 P99 : 3.877519 P100 : 24.000000 COUNT : 30001 SUM : 67924 - COUNT is higher and values are smaller as it includes header and footer write - COUNT is 3X higher due to each Append() count as one post-PR, while in pre-PR, 3 Append()s counts as one. See https://github.com/facebook/rocksdb/pull/11910/files#diff-32b811c0a1c000768cfb2532052b44dc0b3bf82253f3eab078e15ff201a0dabfL157-L164 rocksdb.blobdb.blob.file.synced COUNT : 8 (stay the same) rocksdb.blobdb.blob.file.bytes.written COUNT : 1043445 (stay the same) ``` ### Rehearsal CI stress test Trigger 3 full runs of all our CI stress tests ### Performance Flush ``` TEST_TMPDIR=/dev/shm ./db_basic_bench_pre_pr --benchmark_filter=ManualFlush/key_num:524288/per_key_size:256 --benchmark_repetitions=1000 -- default: 1 thread is used to run benchmark; enable_statistics = true Pre-pr: avg 507515519.3 ns 497686074,499444327,500862543,501389862,502994471,503744435,504142123,504224056,505724198,506610393,506837742,506955122,507695561,507929036,508307733,508312691,508999120,509963561,510142147,510698091,510743096,510769317,510957074,511053311,511371367,511409911,511432960,511642385,511691964,511730908, Post-pr: avg 511971266.5 ns, regressed 0.88% 502744835,506502498,507735420,507929724,508313335,509548582,509994942,510107257,510715603,511046955,511352639,511458478,512117521,512317380,512766303,512972652,513059586,513804934,513808980,514059409,514187369,514389494,514447762,514616464,514622882,514641763,514666265,514716377,514990179,515502408, ``` Compaction ``` TEST_TMPDIR=/dev/shm ./db_basic_bench_{pre|post}_pr --benchmark_filter=ManualCompaction/comp_style:0/max_data:134217728/per_key_size:256/enable_statistics:1 --benchmark_repetitions=1000 -- default: 1 thread is used to run benchmark Pre-pr: avg 495346098.30 ns 492118301,493203526,494201411,494336607,495269217,495404950,496402598,497012157,497358370,498153846 Post-pr: avg 504528077.20, regressed 1.85%. "ManualCompaction" include flush so the isolated regression for compaction should be around 1.85-0.88 = 0.97% 502465338,502485945,502541789,502909283,503438601,504143885,506113087,506629423,507160414,507393007 ``` Put with WAL (in case passing WriteOptions slows down this path even without collecting SST write stats) ``` TEST_TMPDIR=/dev/shm ./db_basic_bench_pre_pr --benchmark_filter=DBPut/comp_style:0/max_data:107374182400/per_key_size:256/enable_statistics:1/wal:1 --benchmark_repetitions=1000 -- default: 1 thread is used to run benchmark Pre-pr: avg 3848.10 ns 3814,3838,3839,3848,3854,3854,3854,3860,3860,3860 Post-pr: avg 3874.20 ns, regressed 0.68% 3863,3867,3871,3874,3875,3877,3877,3877,3880,3881 ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/11910 Reviewed By: ajkr Differential Revision: D49788060 Pulled By: hx235 fbshipit-source-id: 79e73699cda5be3b66461687e5147c2484fc5eff
2023-12-29 23:29:23 +00:00
inline IOStatus PrepareIOFromWriteOptions(const WriteOptions& wo,
IOOptions& opts) {
opts.rate_limiter_priority = wo.rate_limiter_priority;
opts.io_activity = wo.io_activity;
return IOStatus::OK();
}
// Test method to delete the input directory and all of its contents.
// This method is destructive and is meant for use only in tests!!!
Status DestroyDir(Env* env, const std::string& dir);
inline bool CheckFSFeatureSupport(FileSystem* fs, FSSupportedOps feat) {
int64_t supported_ops = 0;
fs->SupportedOps(supported_ops);
if (supported_ops & (1ULL << feat)) {
return true;
}
return false;
}
} // namespace ROCKSDB_NAMESPACE