rocksdb/db/memtable_list.h

523 lines
22 KiB
C
Raw Normal View History

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
#pragma once
#include <deque>
#include <limits>
#include <list>
#include <set>
#include <string>
#include <vector>
Skip deleted WALs during recovery Summary: This patch record min log number to keep to the manifest while flushing SST files to ignore them and any WAL older than them during recovery. This is to avoid scenarios when we have a gap between the WAL files are fed to the recovery procedure. The gap could happen by for example out-of-order WAL deletion. Such gap could cause problems in 2PC recovery where the prepared and commit entry are placed into two separate WAL and gap in the WALs could result into not processing the WAL with the commit entry and hence breaking the 2PC recovery logic. Before the commit, for 2PC case, we determined which log number to keep in FindObsoleteFiles(). We looked at the earliest logs with outstanding prepare entries, or prepare entries whose respective commit or abort are in memtable. With the commit, the same calculation is done while we apply the SST flush. Just before installing the flush file, we precompute the earliest log file to keep after the flush finishes using the same logic (but skipping the memtables just flushed), record this information to the manifest entry for this new flushed SST file. This pre-computed value is also remembered in memory, and will later be used to determine whether a log file can be deleted. This value is unlikely to change until next flush because the commit entry will stay in memtable. (In WritePrepared, we could have removed the older log files as soon as all prepared entries are committed. It's not yet done anyway. Even if we do it, the only thing we loss with this new approach is earlier log deletion between two flushes, which does not guarantee to happen anyway because the obsolete file clean-up function is only executed after flush or compaction) This min log number to keep is stored in the manifest using the safely-ignore customized field of AddFile entry, in order to guarantee that the DB generated using newer release can be opened by previous releases no older than 4.2. Closes https://github.com/facebook/rocksdb/pull/3765 Differential Revision: D7747618 Pulled By: siying fbshipit-source-id: d00c92105b4f83852e9754a1b70d6b64cb590729
2018-05-03 22:35:11 +00:00
#include "db/logs_with_prep_tracker.h"
#include "db/memtable.h"
#include "db/range_del_aggregator.h"
#include "file/filename.h"
#include "logging/log_buffer.h"
#include "monitoring/instrumented_mutex.h"
#include "rocksdb/db.h"
#include "rocksdb/iterator.h"
#include "rocksdb/options.h"
#include "rocksdb/types.h"
#include "util/autovector.h"
namespace ROCKSDB_NAMESPACE {
class ColumnFamilyData;
class InternalKeyComparator;
class InstrumentedMutex;
class MergeIteratorBuilder;
class MemTableList;
struct FlushJobInfo;
MemTableListVersion Summary: MemTableListVersion is to MemTableList what Version is to VersionSet. I took almost the same ideas to develop MemTableListVersion. The reason is to have copying std::list done in background, while flushing, rather than in foreground (MultiGet() and NewIterator()) under a mutex! Also, whenever we copied MemTableList, we copied also some MemTableList metadata (flush_requested_, commit_in_progress_, etc.), which was wasteful. This diff avoids std::list copy under a mutex in both MultiGet() and NewIterator(). I created a small database with some number of immutable memtables, and creating 100.000 iterators in a single-thread (!) decreased from {188739, 215703, 198028} to {154352, 164035, 159817}. A lot of the savings come from code under a mutex, so we should see much higher savings with multiple threads. Creating new iterator is very important to LogDevice team. I also think this diff will make SuperVersion obsolete for performance reasons. I will try it in the next diff. SuperVersion gave us huge savings on Get() code path, but I think that most of the savings came from copying MemTableList under a mutex. If we had MemTableListVersion, we would never need to copy the entire object (like we still do in NewIterator() and MultiGet()) Test Plan: `make check` works. I will also do `make valgrind_check` before commit Reviewers: dhruba, haobo, kailiu, sdong, emayanke, tnovak Reviewed By: kailiu CC: leveldb Differential Revision: https://reviews.facebook.net/D15255
2014-01-24 22:52:08 +00:00
// keeps a list of immutable memtables in a vector. the list is immutable
// if refcount is bigger than one. It is used as a state for Get() and
// Iterator code paths
//
// This class is not thread-safe. External synchronization is required
// (such as holding the db mutex or being on the write thread).
MemTableListVersion Summary: MemTableListVersion is to MemTableList what Version is to VersionSet. I took almost the same ideas to develop MemTableListVersion. The reason is to have copying std::list done in background, while flushing, rather than in foreground (MultiGet() and NewIterator()) under a mutex! Also, whenever we copied MemTableList, we copied also some MemTableList metadata (flush_requested_, commit_in_progress_, etc.), which was wasteful. This diff avoids std::list copy under a mutex in both MultiGet() and NewIterator(). I created a small database with some number of immutable memtables, and creating 100.000 iterators in a single-thread (!) decreased from {188739, 215703, 198028} to {154352, 164035, 159817}. A lot of the savings come from code under a mutex, so we should see much higher savings with multiple threads. Creating new iterator is very important to LogDevice team. I also think this diff will make SuperVersion obsolete for performance reasons. I will try it in the next diff. SuperVersion gave us huge savings on Get() code path, but I think that most of the savings came from copying MemTableList under a mutex. If we had MemTableListVersion, we would never need to copy the entire object (like we still do in NewIterator() and MultiGet()) Test Plan: `make check` works. I will also do `make valgrind_check` before commit Reviewers: dhruba, haobo, kailiu, sdong, emayanke, tnovak Reviewed By: kailiu CC: leveldb Differential Revision: https://reviews.facebook.net/D15255
2014-01-24 22:52:08 +00:00
class MemTableListVersion {
public:
explicit MemTableListVersion(size_t* parent_memtable_list_memory_usage,
const MemTableListVersion& old);
explicit MemTableListVersion(size_t* parent_memtable_list_memory_usage,
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
int max_write_buffer_number_to_maintain,
int64_t max_write_buffer_size_to_maintain);
MemTableListVersion Summary: MemTableListVersion is to MemTableList what Version is to VersionSet. I took almost the same ideas to develop MemTableListVersion. The reason is to have copying std::list done in background, while flushing, rather than in foreground (MultiGet() and NewIterator()) under a mutex! Also, whenever we copied MemTableList, we copied also some MemTableList metadata (flush_requested_, commit_in_progress_, etc.), which was wasteful. This diff avoids std::list copy under a mutex in both MultiGet() and NewIterator(). I created a small database with some number of immutable memtables, and creating 100.000 iterators in a single-thread (!) decreased from {188739, 215703, 198028} to {154352, 164035, 159817}. A lot of the savings come from code under a mutex, so we should see much higher savings with multiple threads. Creating new iterator is very important to LogDevice team. I also think this diff will make SuperVersion obsolete for performance reasons. I will try it in the next diff. SuperVersion gave us huge savings on Get() code path, but I think that most of the savings came from copying MemTableList under a mutex. If we had MemTableListVersion, we would never need to copy the entire object (like we still do in NewIterator() and MultiGet()) Test Plan: `make check` works. I will also do `make valgrind_check` before commit Reviewers: dhruba, haobo, kailiu, sdong, emayanke, tnovak Reviewed By: kailiu CC: leveldb Differential Revision: https://reviews.facebook.net/D15255
2014-01-24 22:52:08 +00:00
void Ref();
void Unref(autovector<MemTable*>* to_delete = nullptr);
MemTableListVersion Summary: MemTableListVersion is to MemTableList what Version is to VersionSet. I took almost the same ideas to develop MemTableListVersion. The reason is to have copying std::list done in background, while flushing, rather than in foreground (MultiGet() and NewIterator()) under a mutex! Also, whenever we copied MemTableList, we copied also some MemTableList metadata (flush_requested_, commit_in_progress_, etc.), which was wasteful. This diff avoids std::list copy under a mutex in both MultiGet() and NewIterator(). I created a small database with some number of immutable memtables, and creating 100.000 iterators in a single-thread (!) decreased from {188739, 215703, 198028} to {154352, 164035, 159817}. A lot of the savings come from code under a mutex, so we should see much higher savings with multiple threads. Creating new iterator is very important to LogDevice team. I also think this diff will make SuperVersion obsolete for performance reasons. I will try it in the next diff. SuperVersion gave us huge savings on Get() code path, but I think that most of the savings came from copying MemTableList under a mutex. If we had MemTableListVersion, we would never need to copy the entire object (like we still do in NewIterator() and MultiGet()) Test Plan: `make check` works. I will also do `make valgrind_check` before commit Reviewers: dhruba, haobo, kailiu, sdong, emayanke, tnovak Reviewed By: kailiu CC: leveldb Differential Revision: https://reviews.facebook.net/D15255
2014-01-24 22:52:08 +00:00
// Search all the memtables starting from the most recent one.
// Return the most recent value found, if any.
//
// If any operation was found for this key, its most recent sequence number
// will be stored in *seq on success (regardless of whether true/false is
// returned). Otherwise, *seq will be set to kMaxSequenceNumber.
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2022-08-19 18:51:12 +00:00
bool Get(const LookupKey& key, std::string* value,
PinnableWideColumns* columns, std::string* timestamp, Status* s,
MergeContext* merge_context,
Use only "local" range tombstones during Get (#4449) Summary: Previously, range tombstones were accumulated from every level, which was necessary if a range tombstone in a higher level covered a key in a lower level. However, RangeDelAggregator::AddTombstones's complexity is based on the number of tombstones that are currently stored in it, which is wasteful in the Get case, where we only need to know the highest sequence number of range tombstones that cover the key from higher levels, and compute the highest covering sequence number at the current level. This change introduces this optimization, and removes the use of RangeDelAggregator from the Get path. In the benchmark results, the following command was used to initialize the database: ``` ./db_bench -db=/dev/shm/5k-rts -use_existing_db=false -benchmarks=filluniquerandom -write_buffer_size=1048576 -compression_type=lz4 -target_file_size_base=1048576 -max_bytes_for_level_base=4194304 -value_size=112 -key_size=16 -block_size=4096 -level_compaction_dynamic_level_bytes=true -num=5000000 -max_background_jobs=12 -benchmark_write_rate_limit=20971520 -range_tombstone_width=100 -writes_per_range_tombstone=100 -max_num_range_tombstones=50000 -bloom_bits=8 ``` ...and the following command was used to measure read throughput: ``` ./db_bench -db=/dev/shm/5k-rts/ -use_existing_db=true -benchmarks=readrandom -disable_auto_compactions=true -num=5000000 -reads=100000 -threads=32 ``` The filluniquerandom command was only run once, and the resulting database was used to measure read performance before and after the PR. Both binaries were compiled with `DEBUG_LEVEL=0`. Readrandom results before PR: ``` readrandom : 4.544 micros/op 220090 ops/sec; 16.9 MB/s (63103 of 100000 found) ``` Readrandom results after PR: ``` readrandom : 11.147 micros/op 89707 ops/sec; 6.9 MB/s (63103 of 100000 found) ``` So it's actually slower right now, but this PR paves the way for future optimizations (see #4493). ---- Pull Request resolved: https://github.com/facebook/rocksdb/pull/4449 Differential Revision: D10370575 Pulled By: abhimadan fbshipit-source-id: 9a2e152be1ef36969055c0e9eb4beb0d96c11f4d
2018-10-24 19:29:29 +00:00
SequenceNumber* max_covering_tombstone_seq, SequenceNumber* seq,
const ReadOptions& read_opts, ReadCallback* callback = nullptr,
bool* is_blob_index = nullptr);
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2022-08-19 18:51:12 +00:00
bool Get(const LookupKey& key, std::string* value,
PinnableWideColumns* columns, std::string* timestamp, Status* s,
MergeContext* merge_context,
Use only "local" range tombstones during Get (#4449) Summary: Previously, range tombstones were accumulated from every level, which was necessary if a range tombstone in a higher level covered a key in a lower level. However, RangeDelAggregator::AddTombstones's complexity is based on the number of tombstones that are currently stored in it, which is wasteful in the Get case, where we only need to know the highest sequence number of range tombstones that cover the key from higher levels, and compute the highest covering sequence number at the current level. This change introduces this optimization, and removes the use of RangeDelAggregator from the Get path. In the benchmark results, the following command was used to initialize the database: ``` ./db_bench -db=/dev/shm/5k-rts -use_existing_db=false -benchmarks=filluniquerandom -write_buffer_size=1048576 -compression_type=lz4 -target_file_size_base=1048576 -max_bytes_for_level_base=4194304 -value_size=112 -key_size=16 -block_size=4096 -level_compaction_dynamic_level_bytes=true -num=5000000 -max_background_jobs=12 -benchmark_write_rate_limit=20971520 -range_tombstone_width=100 -writes_per_range_tombstone=100 -max_num_range_tombstones=50000 -bloom_bits=8 ``` ...and the following command was used to measure read throughput: ``` ./db_bench -db=/dev/shm/5k-rts/ -use_existing_db=true -benchmarks=readrandom -disable_auto_compactions=true -num=5000000 -reads=100000 -threads=32 ``` The filluniquerandom command was only run once, and the resulting database was used to measure read performance before and after the PR. Both binaries were compiled with `DEBUG_LEVEL=0`. Readrandom results before PR: ``` readrandom : 4.544 micros/op 220090 ops/sec; 16.9 MB/s (63103 of 100000 found) ``` Readrandom results after PR: ``` readrandom : 11.147 micros/op 89707 ops/sec; 6.9 MB/s (63103 of 100000 found) ``` So it's actually slower right now, but this PR paves the way for future optimizations (see #4493). ---- Pull Request resolved: https://github.com/facebook/rocksdb/pull/4449 Differential Revision: D10370575 Pulled By: abhimadan fbshipit-source-id: 9a2e152be1ef36969055c0e9eb4beb0d96c11f4d
2018-10-24 19:29:29 +00:00
SequenceNumber* max_covering_tombstone_seq,
const ReadOptions& read_opts, ReadCallback* callback = nullptr,
bool* is_blob_index = nullptr) {
SequenceNumber seq;
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2022-08-19 18:51:12 +00:00
return Get(key, value, columns, timestamp, s, merge_context,
return timestamp from get (#6409) Summary: Added new Get() methods that return timestamp. Dummy implementation is given so that classes derived from DB don't need to be touched to provide their implementation. MultiGet is not included. ReadRandom perf test (10 minutes) on the same development machine ram drive with the same DB data shows no regression (within marge of error). The test is adapted from https://github.com/facebook/rocksdb/wiki/RocksDB-In-Memory-Workload-Performance-Benchmarks. base line (commit 72ee067b9): 101.712 micros/op 314602 ops/sec; 36.0 MB/s (5658999 of 5658999 found) This PR: 100.288 micros/op 319071 ops/sec; 36.5 MB/s (5674999 of 5674999 found) ./db_bench --db=r:\rocksdb.github --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --cache_size=2147483648 --cache_numshardbits=6 --compression_type=none --compression_ratio=1 --min_level_to_compress=-1 --disable_seek_compaction=1 --hard_rate_limit=2 --write_buffer_size=134217728 --max_write_buffer_number=2 --level0_file_num_compaction_trigger=8 --target_file_size_base=134217728 --max_bytes_for_level_base=1073741824 --disable_wal=0 --wal_dir=r:\rocksdb.github\WAL_LOG --sync=0 --verify_checksum=1 --delete_obsolete_files_period_micros=314572800 --max_background_compactions=4 --max_background_flushes=0 --level0_slowdown_writes_trigger=16 --level0_stop_writes_trigger=24 --statistics=0 --stats_per_interval=0 --stats_interval=1048576 --histogram=0 --use_plain_table=1 --open_files=-1 --mmap_read=1 --mmap_write=0 --memtablerep=prefix_hash --bloom_bits=10 --bloom_locality=1 --duration=600 --benchmarks=readrandom --use_existing_db=1 --num=25000000 --threads=32 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6409 Differential Revision: D20200086 Pulled By: riversand963 fbshipit-source-id: 490edd74d924f62bd8ae9c29c2a6bbbb8410ca50
2020-03-02 23:58:32 +00:00
max_covering_tombstone_seq, &seq, read_opts, callback,
is_blob_index);
}
MultiGet batching in memtable (#5818) Summary: RocksDB has a MultiGet() API that implements batched key lookup for higher performance (https://github.com/facebook/rocksdb/blob/master/include/rocksdb/db.h#L468). Currently, batching is implemented in BlockBasedTableReader::MultiGet() for SST file lookups. One of the ways it improves performance is by pipelining bloom filter lookups (by prefetching required cachelines for all the keys in the batch, and then doing the probe) and thus hiding the cache miss latency. The same concept can be extended to the memtable as well. This PR involves implementing a pipelined bloom filter lookup in DynamicBloom, and implementing MemTable::MultiGet() that can leverage it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5818 Test Plan: Existing tests Performance Test: Ran the below command which fills up the memtable and makes sure there are no flushes and then call multiget. Ran it on master and on the new change and see atleast 1% performance improvement across all the test runs I did. Sometimes the improvement was upto 5%. TEST_TMPDIR=/data/users/$USER/benchmarks/feature/ numactl -C 10 ./db_bench -benchmarks="fillseq,multireadrandom" -num=600000 -compression_type="none" -level_compaction_dynamic_level_bytes -write_buffer_size=200000000 -target_file_size_base=200000000 -max_bytes_for_level_base=16777216 -reads=90000 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 -statistics -memtable_whole_key_filtering=true -memtable_bloom_size_ratio=10 Differential Revision: D17578869 Pulled By: vjnadimpalli fbshipit-source-id: 23dc651d9bf49db11d22375bf435708875a1f192
2019-10-10 16:37:38 +00:00
void MultiGet(const ReadOptions& read_options, MultiGetRange* range,
ReadCallback* callback);
MultiGet batching in memtable (#5818) Summary: RocksDB has a MultiGet() API that implements batched key lookup for higher performance (https://github.com/facebook/rocksdb/blob/master/include/rocksdb/db.h#L468). Currently, batching is implemented in BlockBasedTableReader::MultiGet() for SST file lookups. One of the ways it improves performance is by pipelining bloom filter lookups (by prefetching required cachelines for all the keys in the batch, and then doing the probe) and thus hiding the cache miss latency. The same concept can be extended to the memtable as well. This PR involves implementing a pipelined bloom filter lookup in DynamicBloom, and implementing MemTable::MultiGet() that can leverage it. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5818 Test Plan: Existing tests Performance Test: Ran the below command which fills up the memtable and makes sure there are no flushes and then call multiget. Ran it on master and on the new change and see atleast 1% performance improvement across all the test runs I did. Sometimes the improvement was upto 5%. TEST_TMPDIR=/data/users/$USER/benchmarks/feature/ numactl -C 10 ./db_bench -benchmarks="fillseq,multireadrandom" -num=600000 -compression_type="none" -level_compaction_dynamic_level_bytes -write_buffer_size=200000000 -target_file_size_base=200000000 -max_bytes_for_level_base=16777216 -reads=90000 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4 -statistics -memtable_whole_key_filtering=true -memtable_bloom_size_ratio=10 Differential Revision: D17578869 Pulled By: vjnadimpalli fbshipit-source-id: 23dc651d9bf49db11d22375bf435708875a1f192
2019-10-10 16:37:38 +00:00
New API to get all merge operands for a Key (#5604) Summary: This is a new API added to db.h to allow for fetching all merge operands associated with a Key. The main motivation for this API is to support use cases where doing a full online merge is not necessary as it is performance sensitive. Example use-cases: 1. Update subset of columns and read subset of columns - Imagine a SQL Table, a row is encoded as a K/V pair (as it is done in MyRocks). If there are many columns and users only updated one of them, we can use merge operator to reduce write amplification. While users only read one or two columns in the read query, this feature can avoid a full merging of the whole row, and save some CPU. 2. Updating very few attributes in a value which is a JSON-like document - Updating one attribute can be done efficiently using merge operator, while reading back one attribute can be done more efficiently if we don't need to do a full merge. ---------------------------------------------------------------------------------------------------- API : Status GetMergeOperands( const ReadOptions& options, ColumnFamilyHandle* column_family, const Slice& key, PinnableSlice* merge_operands, GetMergeOperandsOptions* get_merge_operands_options, int* number_of_operands) Example usage : int size = 100; int number_of_operands = 0; std::vector<PinnableSlice> values(size); GetMergeOperandsOptions merge_operands_info; db_->GetMergeOperands(ReadOptions(), db_->DefaultColumnFamily(), "k1", values.data(), merge_operands_info, &number_of_operands); Description : Returns all the merge operands corresponding to the key. If the number of merge operands in DB is greater than merge_operands_options.expected_max_number_of_operands no merge operands are returned and status is Incomplete. Merge operands returned are in the order of insertion. merge_operands-> Points to an array of at-least merge_operands_options.expected_max_number_of_operands and the caller is responsible for allocating it. If the status returned is Incomplete then number_of_operands will contain the total number of merge operands found in DB for key. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5604 Test Plan: Added unit test and perf test in db_bench that can be run using the command: ./db_bench -benchmarks=getmergeoperands --merge_operator=sortlist Differential Revision: D16657366 Pulled By: vjnadimpalli fbshipit-source-id: 0faadd752351745224ee12d4ae9ef3cb529951bf
2019-08-06 21:22:34 +00:00
// Returns all the merge operands corresponding to the key by searching all
// memtables starting from the most recent one.
bool GetMergeOperands(const LookupKey& key, Status* s,
MergeContext* merge_context,
SequenceNumber* max_covering_tombstone_seq,
const ReadOptions& read_opts);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
2015-05-28 23:34:24 +00:00
// Similar to Get(), but searches the Memtable history of memtables that
// have already been flushed. Should only be used from in-memory only
// queries (such as Transaction validation) as the history may contain
// writes that are also present in the SST files.
return timestamp from get (#6409) Summary: Added new Get() methods that return timestamp. Dummy implementation is given so that classes derived from DB don't need to be touched to provide their implementation. MultiGet is not included. ReadRandom perf test (10 minutes) on the same development machine ram drive with the same DB data shows no regression (within marge of error). The test is adapted from https://github.com/facebook/rocksdb/wiki/RocksDB-In-Memory-Workload-Performance-Benchmarks. base line (commit 72ee067b9): 101.712 micros/op 314602 ops/sec; 36.0 MB/s (5658999 of 5658999 found) This PR: 100.288 micros/op 319071 ops/sec; 36.5 MB/s (5674999 of 5674999 found) ./db_bench --db=r:\rocksdb.github --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --cache_size=2147483648 --cache_numshardbits=6 --compression_type=none --compression_ratio=1 --min_level_to_compress=-1 --disable_seek_compaction=1 --hard_rate_limit=2 --write_buffer_size=134217728 --max_write_buffer_number=2 --level0_file_num_compaction_trigger=8 --target_file_size_base=134217728 --max_bytes_for_level_base=1073741824 --disable_wal=0 --wal_dir=r:\rocksdb.github\WAL_LOG --sync=0 --verify_checksum=1 --delete_obsolete_files_period_micros=314572800 --max_background_compactions=4 --max_background_flushes=0 --level0_slowdown_writes_trigger=16 --level0_stop_writes_trigger=24 --statistics=0 --stats_per_interval=0 --stats_interval=1048576 --histogram=0 --use_plain_table=1 --open_files=-1 --mmap_read=1 --mmap_write=0 --memtablerep=prefix_hash --bloom_bits=10 --bloom_locality=1 --duration=600 --benchmarks=readrandom --use_existing_db=1 --num=25000000 --threads=32 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6409 Differential Revision: D20200086 Pulled By: riversand963 fbshipit-source-id: 490edd74d924f62bd8ae9c29c2a6bbbb8410ca50
2020-03-02 23:58:32 +00:00
bool GetFromHistory(const LookupKey& key, std::string* value,
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2022-08-19 18:51:12 +00:00
PinnableWideColumns* columns, std::string* timestamp,
Status* s, MergeContext* merge_context,
Use only "local" range tombstones during Get (#4449) Summary: Previously, range tombstones were accumulated from every level, which was necessary if a range tombstone in a higher level covered a key in a lower level. However, RangeDelAggregator::AddTombstones's complexity is based on the number of tombstones that are currently stored in it, which is wasteful in the Get case, where we only need to know the highest sequence number of range tombstones that cover the key from higher levels, and compute the highest covering sequence number at the current level. This change introduces this optimization, and removes the use of RangeDelAggregator from the Get path. In the benchmark results, the following command was used to initialize the database: ``` ./db_bench -db=/dev/shm/5k-rts -use_existing_db=false -benchmarks=filluniquerandom -write_buffer_size=1048576 -compression_type=lz4 -target_file_size_base=1048576 -max_bytes_for_level_base=4194304 -value_size=112 -key_size=16 -block_size=4096 -level_compaction_dynamic_level_bytes=true -num=5000000 -max_background_jobs=12 -benchmark_write_rate_limit=20971520 -range_tombstone_width=100 -writes_per_range_tombstone=100 -max_num_range_tombstones=50000 -bloom_bits=8 ``` ...and the following command was used to measure read throughput: ``` ./db_bench -db=/dev/shm/5k-rts/ -use_existing_db=true -benchmarks=readrandom -disable_auto_compactions=true -num=5000000 -reads=100000 -threads=32 ``` The filluniquerandom command was only run once, and the resulting database was used to measure read performance before and after the PR. Both binaries were compiled with `DEBUG_LEVEL=0`. Readrandom results before PR: ``` readrandom : 4.544 micros/op 220090 ops/sec; 16.9 MB/s (63103 of 100000 found) ``` Readrandom results after PR: ``` readrandom : 11.147 micros/op 89707 ops/sec; 6.9 MB/s (63103 of 100000 found) ``` So it's actually slower right now, but this PR paves the way for future optimizations (see #4493). ---- Pull Request resolved: https://github.com/facebook/rocksdb/pull/4449 Differential Revision: D10370575 Pulled By: abhimadan fbshipit-source-id: 9a2e152be1ef36969055c0e9eb4beb0d96c11f4d
2018-10-24 19:29:29 +00:00
SequenceNumber* max_covering_tombstone_seq,
SequenceNumber* seq, const ReadOptions& read_opts,
bool* is_blob_index = nullptr);
return timestamp from get (#6409) Summary: Added new Get() methods that return timestamp. Dummy implementation is given so that classes derived from DB don't need to be touched to provide their implementation. MultiGet is not included. ReadRandom perf test (10 minutes) on the same development machine ram drive with the same DB data shows no regression (within marge of error). The test is adapted from https://github.com/facebook/rocksdb/wiki/RocksDB-In-Memory-Workload-Performance-Benchmarks. base line (commit 72ee067b9): 101.712 micros/op 314602 ops/sec; 36.0 MB/s (5658999 of 5658999 found) This PR: 100.288 micros/op 319071 ops/sec; 36.5 MB/s (5674999 of 5674999 found) ./db_bench --db=r:\rocksdb.github --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --cache_size=2147483648 --cache_numshardbits=6 --compression_type=none --compression_ratio=1 --min_level_to_compress=-1 --disable_seek_compaction=1 --hard_rate_limit=2 --write_buffer_size=134217728 --max_write_buffer_number=2 --level0_file_num_compaction_trigger=8 --target_file_size_base=134217728 --max_bytes_for_level_base=1073741824 --disable_wal=0 --wal_dir=r:\rocksdb.github\WAL_LOG --sync=0 --verify_checksum=1 --delete_obsolete_files_period_micros=314572800 --max_background_compactions=4 --max_background_flushes=0 --level0_slowdown_writes_trigger=16 --level0_stop_writes_trigger=24 --statistics=0 --stats_per_interval=0 --stats_interval=1048576 --histogram=0 --use_plain_table=1 --open_files=-1 --mmap_read=1 --mmap_write=0 --memtablerep=prefix_hash --bloom_bits=10 --bloom_locality=1 --duration=600 --benchmarks=readrandom --use_existing_db=1 --num=25000000 --threads=32 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6409 Differential Revision: D20200086 Pulled By: riversand963 fbshipit-source-id: 490edd74d924f62bd8ae9c29c2a6bbbb8410ca50
2020-03-02 23:58:32 +00:00
bool GetFromHistory(const LookupKey& key, std::string* value,
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2022-08-19 18:51:12 +00:00
PinnableWideColumns* columns, std::string* timestamp,
Status* s, MergeContext* merge_context,
Use only "local" range tombstones during Get (#4449) Summary: Previously, range tombstones were accumulated from every level, which was necessary if a range tombstone in a higher level covered a key in a lower level. However, RangeDelAggregator::AddTombstones's complexity is based on the number of tombstones that are currently stored in it, which is wasteful in the Get case, where we only need to know the highest sequence number of range tombstones that cover the key from higher levels, and compute the highest covering sequence number at the current level. This change introduces this optimization, and removes the use of RangeDelAggregator from the Get path. In the benchmark results, the following command was used to initialize the database: ``` ./db_bench -db=/dev/shm/5k-rts -use_existing_db=false -benchmarks=filluniquerandom -write_buffer_size=1048576 -compression_type=lz4 -target_file_size_base=1048576 -max_bytes_for_level_base=4194304 -value_size=112 -key_size=16 -block_size=4096 -level_compaction_dynamic_level_bytes=true -num=5000000 -max_background_jobs=12 -benchmark_write_rate_limit=20971520 -range_tombstone_width=100 -writes_per_range_tombstone=100 -max_num_range_tombstones=50000 -bloom_bits=8 ``` ...and the following command was used to measure read throughput: ``` ./db_bench -db=/dev/shm/5k-rts/ -use_existing_db=true -benchmarks=readrandom -disable_auto_compactions=true -num=5000000 -reads=100000 -threads=32 ``` The filluniquerandom command was only run once, and the resulting database was used to measure read performance before and after the PR. Both binaries were compiled with `DEBUG_LEVEL=0`. Readrandom results before PR: ``` readrandom : 4.544 micros/op 220090 ops/sec; 16.9 MB/s (63103 of 100000 found) ``` Readrandom results after PR: ``` readrandom : 11.147 micros/op 89707 ops/sec; 6.9 MB/s (63103 of 100000 found) ``` So it's actually slower right now, but this PR paves the way for future optimizations (see #4493). ---- Pull Request resolved: https://github.com/facebook/rocksdb/pull/4449 Differential Revision: D10370575 Pulled By: abhimadan fbshipit-source-id: 9a2e152be1ef36969055c0e9eb4beb0d96c11f4d
2018-10-24 19:29:29 +00:00
SequenceNumber* max_covering_tombstone_seq,
const ReadOptions& read_opts,
bool* is_blob_index = nullptr) {
SequenceNumber seq;
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2022-08-19 18:51:12 +00:00
return GetFromHistory(key, value, columns, timestamp, s, merge_context,
Use only "local" range tombstones during Get (#4449) Summary: Previously, range tombstones were accumulated from every level, which was necessary if a range tombstone in a higher level covered a key in a lower level. However, RangeDelAggregator::AddTombstones's complexity is based on the number of tombstones that are currently stored in it, which is wasteful in the Get case, where we only need to know the highest sequence number of range tombstones that cover the key from higher levels, and compute the highest covering sequence number at the current level. This change introduces this optimization, and removes the use of RangeDelAggregator from the Get path. In the benchmark results, the following command was used to initialize the database: ``` ./db_bench -db=/dev/shm/5k-rts -use_existing_db=false -benchmarks=filluniquerandom -write_buffer_size=1048576 -compression_type=lz4 -target_file_size_base=1048576 -max_bytes_for_level_base=4194304 -value_size=112 -key_size=16 -block_size=4096 -level_compaction_dynamic_level_bytes=true -num=5000000 -max_background_jobs=12 -benchmark_write_rate_limit=20971520 -range_tombstone_width=100 -writes_per_range_tombstone=100 -max_num_range_tombstones=50000 -bloom_bits=8 ``` ...and the following command was used to measure read throughput: ``` ./db_bench -db=/dev/shm/5k-rts/ -use_existing_db=true -benchmarks=readrandom -disable_auto_compactions=true -num=5000000 -reads=100000 -threads=32 ``` The filluniquerandom command was only run once, and the resulting database was used to measure read performance before and after the PR. Both binaries were compiled with `DEBUG_LEVEL=0`. Readrandom results before PR: ``` readrandom : 4.544 micros/op 220090 ops/sec; 16.9 MB/s (63103 of 100000 found) ``` Readrandom results after PR: ``` readrandom : 11.147 micros/op 89707 ops/sec; 6.9 MB/s (63103 of 100000 found) ``` So it's actually slower right now, but this PR paves the way for future optimizations (see #4493). ---- Pull Request resolved: https://github.com/facebook/rocksdb/pull/4449 Differential Revision: D10370575 Pulled By: abhimadan fbshipit-source-id: 9a2e152be1ef36969055c0e9eb4beb0d96c11f4d
2018-10-24 19:29:29 +00:00
max_covering_tombstone_seq, &seq, read_opts,
is_blob_index);
}
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
2015-05-28 23:34:24 +00:00
Status AddRangeTombstoneIterators(const ReadOptions& read_opts, Arena* arena,
RangeDelAggregator* range_del_agg);
MemTableListVersion Summary: MemTableListVersion is to MemTableList what Version is to VersionSet. I took almost the same ideas to develop MemTableListVersion. The reason is to have copying std::list done in background, while flushing, rather than in foreground (MultiGet() and NewIterator()) under a mutex! Also, whenever we copied MemTableList, we copied also some MemTableList metadata (flush_requested_, commit_in_progress_, etc.), which was wasteful. This diff avoids std::list copy under a mutex in both MultiGet() and NewIterator(). I created a small database with some number of immutable memtables, and creating 100.000 iterators in a single-thread (!) decreased from {188739, 215703, 198028} to {154352, 164035, 159817}. A lot of the savings come from code under a mutex, so we should see much higher savings with multiple threads. Creating new iterator is very important to LogDevice team. I also think this diff will make SuperVersion obsolete for performance reasons. I will try it in the next diff. SuperVersion gave us huge savings on Get() code path, but I think that most of the savings came from copying MemTableList under a mutex. If we had MemTableListVersion, we would never need to copy the entire object (like we still do in NewIterator() and MultiGet()) Test Plan: `make check` works. I will also do `make valgrind_check` before commit Reviewers: dhruba, haobo, kailiu, sdong, emayanke, tnovak Reviewed By: kailiu CC: leveldb Differential Revision: https://reviews.facebook.net/D15255
2014-01-24 22:52:08 +00:00
void AddIterators(const ReadOptions& options,
Support returning write unix time in iterator property (#12428) Summary: This PR adds support to return data's approximate unix write time in the iterator property API. The general implementation is: 1) If the entry comes from a SST file, the sequence number to time mapping recorded in that file's table properties will be used to deduce the entry's write time from its sequence number. If no such recording is available, `std::numeric_limits<uint64_t>::max()` is returned to indicate the write time is unknown except if the entry's sequence number is zero, in which case, 0 is returned. This also means that even if `preclude_last_level_data_seconds` and `preserve_internal_time_seconds` can be toggled off between DB reopens, as long as the SST file's table property has the mapping available, the entry's write time can be deduced and returned. 2) If the entry comes from memtable, we will use the DB's sequence number to write time mapping to do similar things. A copy of the DB's seqno to write time mapping is kept in SuperVersion to allow iterators to have lock free access. This also means a new `SuperVersion` is installed each time DB's seqno to time mapping updates, which is originally proposed by Peter in https://github.com/facebook/rocksdb/issues/11928 . Similarly, if the feature is not enabled, `std::numeric_limits<uint64_t>::max()` is returned to indicate the write time is unknown. Needed follow up: 1) The write time for `kTypeValuePreferredSeqno` should be special cased, where it's already specified by the user, so we can directly return it. 2) Flush job can be updated to use DB's seqno to time mapping copy in the SuperVersion. 3) Handle the case when `TimedPut` is called with a write time that is `std::numeric_limits<uint64_t>::max()`. We can make it a regular `Put`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/12428 Test Plan: Added unit test Reviewed By: pdillinger Differential Revision: D54967067 Pulled By: jowlyzhang fbshipit-source-id: c795b1b7ec142e09e53f2ed3461cf719833cb37a
2024-03-15 22:37:37 +00:00
UnownedPtr<const SeqnoToTimeMapping> seqno_to_time_mapping,
Steps toward deprecating implicit prefix seek, related fixes (#13026) Summary: With some new use cases onboarding to prefix extractors/seek/filters, one of the risks is existing iterator code, e.g. for maintenance tasks, being unintentionally subject to prefix seek semantics. This is a longstanding known design flaw with prefix seek, and `prefix_same_as_start` and `auto_prefix_mode` were steps in the direction of making that obsolete. However, we can't just immediately set `total_order_seek` to true by default, because that would impact so much code instantly. Here we add a new DB option, `prefix_seek_opt_in_only` that basically allows users to transition to the future behavior when they are ready. When set to true, all iterators will be treated as if `total_order_seek=true` and then the only ways to get prefix seek semantics are with `prefix_same_as_start` or `auto_prefix_mode`. Related fixes / changes: * Make sure that `prefix_same_as_start` and `auto_prefix_mode` are compatible with (or override) `total_order_seek` (depending on your interpretation). * Fix a bug in which a new iterator after dynamically changing the prefix extractor might mix different prefix semantics between memtable and SSTs. Both should use the latest extractor semantics, which means iterators ignoring memtable prefix filters with an old extractor. And that means passing the latest prefix extractor to new memtable iterators that might use prefix seek. (Without the fix, the test added for this fails in many ways.) Suggested follow-up: * Investigate a FIXME where a MergeIteratorBuilder is created in db_impl.cc. No unit test detects a change in value that should impact correctness. * Make memtable prefix bloom compatible with `auto_prefix_mode`, which might require involving the memtablereps because we don't know at iterator creation time (only seek time) whether an auto_prefix_mode seek will be a prefix seek. * Add `prefix_same_as_start` testing to db_stress Pull Request resolved: https://github.com/facebook/rocksdb/pull/13026 Test Plan: tests updated, added. Add combination of `total_order_seek=true` and `auto_prefix_mode=true` to stress test. Ran `make blackbox_crash_test` for a long while. Manually ran tests with `prefix_seek_opt_in_only=true` as default, looking for unexpected issues. I inspected most of the results and migrated many tests to be ready for such a change (but not all). Reviewed By: ltamasi Differential Revision: D63147378 Pulled By: pdillinger fbshipit-source-id: 1f4477b730683d43b4be7e933338583702d3c25e
2024-09-20 22:54:19 +00:00
const SliceTransform* prefix_extractor,
std::vector<InternalIterator*>* iterator_list,
Arena* arena);
MemTableListVersion Summary: MemTableListVersion is to MemTableList what Version is to VersionSet. I took almost the same ideas to develop MemTableListVersion. The reason is to have copying std::list done in background, while flushing, rather than in foreground (MultiGet() and NewIterator()) under a mutex! Also, whenever we copied MemTableList, we copied also some MemTableList metadata (flush_requested_, commit_in_progress_, etc.), which was wasteful. This diff avoids std::list copy under a mutex in both MultiGet() and NewIterator(). I created a small database with some number of immutable memtables, and creating 100.000 iterators in a single-thread (!) decreased from {188739, 215703, 198028} to {154352, 164035, 159817}. A lot of the savings come from code under a mutex, so we should see much higher savings with multiple threads. Creating new iterator is very important to LogDevice team. I also think this diff will make SuperVersion obsolete for performance reasons. I will try it in the next diff. SuperVersion gave us huge savings on Get() code path, but I think that most of the savings came from copying MemTableList under a mutex. If we had MemTableListVersion, we would never need to copy the entire object (like we still do in NewIterator() and MultiGet()) Test Plan: `make check` works. I will also do `make valgrind_check` before commit Reviewers: dhruba, haobo, kailiu, sdong, emayanke, tnovak Reviewed By: kailiu CC: leveldb Differential Revision: https://reviews.facebook.net/D15255
2014-01-24 22:52:08 +00:00
void AddIterators(const ReadOptions& options,
Support returning write unix time in iterator property (#12428) Summary: This PR adds support to return data's approximate unix write time in the iterator property API. The general implementation is: 1) If the entry comes from a SST file, the sequence number to time mapping recorded in that file's table properties will be used to deduce the entry's write time from its sequence number. If no such recording is available, `std::numeric_limits<uint64_t>::max()` is returned to indicate the write time is unknown except if the entry's sequence number is zero, in which case, 0 is returned. This also means that even if `preclude_last_level_data_seconds` and `preserve_internal_time_seconds` can be toggled off between DB reopens, as long as the SST file's table property has the mapping available, the entry's write time can be deduced and returned. 2) If the entry comes from memtable, we will use the DB's sequence number to write time mapping to do similar things. A copy of the DB's seqno to write time mapping is kept in SuperVersion to allow iterators to have lock free access. This also means a new `SuperVersion` is installed each time DB's seqno to time mapping updates, which is originally proposed by Peter in https://github.com/facebook/rocksdb/issues/11928 . Similarly, if the feature is not enabled, `std::numeric_limits<uint64_t>::max()` is returned to indicate the write time is unknown. Needed follow up: 1) The write time for `kTypeValuePreferredSeqno` should be special cased, where it's already specified by the user, so we can directly return it. 2) Flush job can be updated to use DB's seqno to time mapping copy in the SuperVersion. 3) Handle the case when `TimedPut` is called with a write time that is `std::numeric_limits<uint64_t>::max()`. We can make it a regular `Put`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/12428 Test Plan: Added unit test Reviewed By: pdillinger Differential Revision: D54967067 Pulled By: jowlyzhang fbshipit-source-id: c795b1b7ec142e09e53f2ed3461cf719833cb37a
2024-03-15 22:37:37 +00:00
UnownedPtr<const SeqnoToTimeMapping> seqno_to_time_mapping,
Steps toward deprecating implicit prefix seek, related fixes (#13026) Summary: With some new use cases onboarding to prefix extractors/seek/filters, one of the risks is existing iterator code, e.g. for maintenance tasks, being unintentionally subject to prefix seek semantics. This is a longstanding known design flaw with prefix seek, and `prefix_same_as_start` and `auto_prefix_mode` were steps in the direction of making that obsolete. However, we can't just immediately set `total_order_seek` to true by default, because that would impact so much code instantly. Here we add a new DB option, `prefix_seek_opt_in_only` that basically allows users to transition to the future behavior when they are ready. When set to true, all iterators will be treated as if `total_order_seek=true` and then the only ways to get prefix seek semantics are with `prefix_same_as_start` or `auto_prefix_mode`. Related fixes / changes: * Make sure that `prefix_same_as_start` and `auto_prefix_mode` are compatible with (or override) `total_order_seek` (depending on your interpretation). * Fix a bug in which a new iterator after dynamically changing the prefix extractor might mix different prefix semantics between memtable and SSTs. Both should use the latest extractor semantics, which means iterators ignoring memtable prefix filters with an old extractor. And that means passing the latest prefix extractor to new memtable iterators that might use prefix seek. (Without the fix, the test added for this fails in many ways.) Suggested follow-up: * Investigate a FIXME where a MergeIteratorBuilder is created in db_impl.cc. No unit test detects a change in value that should impact correctness. * Make memtable prefix bloom compatible with `auto_prefix_mode`, which might require involving the memtablereps because we don't know at iterator creation time (only seek time) whether an auto_prefix_mode seek will be a prefix seek. * Add `prefix_same_as_start` testing to db_stress Pull Request resolved: https://github.com/facebook/rocksdb/pull/13026 Test Plan: tests updated, added. Add combination of `total_order_seek=true` and `auto_prefix_mode=true` to stress test. Ran `make blackbox_crash_test` for a long while. Manually ran tests with `prefix_seek_opt_in_only=true` as default, looking for unexpected issues. I inspected most of the results and migrated many tests to be ready for such a change (but not all). Reviewed By: ltamasi Differential Revision: D63147378 Pulled By: pdillinger fbshipit-source-id: 1f4477b730683d43b4be7e933338583702d3c25e
2024-09-20 22:54:19 +00:00
const SliceTransform* prefix_extractor,
MergeIteratorBuilder* merge_iter_builder,
bool add_range_tombstone_iter);
uint64_t GetTotalNumEntries() const;
uint64_t GetTotalNumDeletes() const;
MemTable::MemTableStats ApproximateStats(const Slice& start_ikey,
const Slice& end_ikey);
// Returns the value of MemTable::GetEarliestSequenceNumber() on the most
// recent MemTable in this list or kMaxSequenceNumber if the list is empty.
// If include_history=true, will also search Memtables in MemTableList
// History.
SequenceNumber GetEarliestSequenceNumber(bool include_history = false) const;
// Return the first sequence number from the memtable list, which is the
// smallest sequence number of all FirstSequenceNumber.
// Return kMaxSequenceNumber if the list is empty.
SequenceNumber GetFirstSequenceNumber() const;
2014-01-27 01:40:43 +00:00
private:
friend class MemTableList;
friend Status InstallMemtableAtomicFlushResults(
const autovector<MemTableList*>* imm_lists,
const autovector<ColumnFamilyData*>& cfds,
const autovector<const MutableCFOptions*>& mutable_cf_options_list,
const autovector<const autovector<MemTable*>*>& mems_list,
VersionSet* vset, LogsWithPrepTracker* prep_tracker,
InstrumentedMutex* mu, const autovector<FileMetaData*>& file_meta,
const autovector<std::list<std::unique_ptr<FlushJobInfo>>*>&
committed_flush_jobs_info,
autovector<MemTable*>* to_delete, FSDirectory* db_directory,
LogBuffer* log_buffer);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
2015-05-28 23:34:24 +00:00
// REQUIRE: m is an immutable memtable
void Add(MemTable* m, autovector<MemTable*>* to_delete);
// REQUIRE: m is an immutable memtable
void Remove(MemTable* m, autovector<MemTable*>* to_delete);
// Return true if memtable is trimmed
bool TrimHistory(autovector<MemTable*>* to_delete, size_t usage);
MemTableListVersion Summary: MemTableListVersion is to MemTableList what Version is to VersionSet. I took almost the same ideas to develop MemTableListVersion. The reason is to have copying std::list done in background, while flushing, rather than in foreground (MultiGet() and NewIterator()) under a mutex! Also, whenever we copied MemTableList, we copied also some MemTableList metadata (flush_requested_, commit_in_progress_, etc.), which was wasteful. This diff avoids std::list copy under a mutex in both MultiGet() and NewIterator(). I created a small database with some number of immutable memtables, and creating 100.000 iterators in a single-thread (!) decreased from {188739, 215703, 198028} to {154352, 164035, 159817}. A lot of the savings come from code under a mutex, so we should see much higher savings with multiple threads. Creating new iterator is very important to LogDevice team. I also think this diff will make SuperVersion obsolete for performance reasons. I will try it in the next diff. SuperVersion gave us huge savings on Get() code path, but I think that most of the savings came from copying MemTableList under a mutex. If we had MemTableListVersion, we would never need to copy the entire object (like we still do in NewIterator() and MultiGet()) Test Plan: `make check` works. I will also do `make valgrind_check` before commit Reviewers: dhruba, haobo, kailiu, sdong, emayanke, tnovak Reviewed By: kailiu CC: leveldb Differential Revision: https://reviews.facebook.net/D15255
2014-01-24 22:52:08 +00:00
bool GetFromList(std::list<MemTable*>* list, const LookupKey& key,
Add support for wide-column point lookups (#10540) Summary: The patch adds a new API `GetEntity` that can be used to perform wide-column point lookups. It also extends the `Get` code path and the `MemTable` / `MemTableList` and `Version` / `GetContext` logic accordingly so that wide-column entities can be served from both memtables and SSTs. If the result of a lookup is a wide-column entity (`kTypeWideColumnEntity`), it is passed to the application in deserialized form; if it is a plain old key-value (`kTypeValue`), it is presented as a wide-column entity with a single default (anonymous) column. (In contrast, regular `Get` returns plain old key-values as-is, and returns the value of the default column for wide-column entities, see https://github.com/facebook/rocksdb/issues/10483 .) The result of `GetEntity` is a self-contained `PinnableWideColumns` object. `PinnableWideColumns` contains a `PinnableSlice`, which either stores the underlying data in its own buffer or holds on to a cache handle. It also contains a `WideColumns` instance, which indexes the contents of the `PinnableSlice`, so applications can access the values of columns efficiently. There are several pieces of functionality which are currently not supported for wide-column entities: there is currently no `MultiGetEntity` or wide-column iterator; also, `Merge` and `GetMergeOperands` are not supported, and there is no `GetEntity` implementation for read-only and secondary instances. We plan to implement these in future PRs. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10540 Test Plan: `make check` Reviewed By: akankshamahajan15 Differential Revision: D38847474 Pulled By: ltamasi fbshipit-source-id: 42311a34ccdfe88b3775e847a5e2a5296e002b5b
2022-08-19 18:51:12 +00:00
std::string* value, PinnableWideColumns* columns,
std::string* timestamp, Status* s,
return timestamp from get (#6409) Summary: Added new Get() methods that return timestamp. Dummy implementation is given so that classes derived from DB don't need to be touched to provide their implementation. MultiGet is not included. ReadRandom perf test (10 minutes) on the same development machine ram drive with the same DB data shows no regression (within marge of error). The test is adapted from https://github.com/facebook/rocksdb/wiki/RocksDB-In-Memory-Workload-Performance-Benchmarks. base line (commit 72ee067b9): 101.712 micros/op 314602 ops/sec; 36.0 MB/s (5658999 of 5658999 found) This PR: 100.288 micros/op 319071 ops/sec; 36.5 MB/s (5674999 of 5674999 found) ./db_bench --db=r:\rocksdb.github --num_levels=6 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --cache_size=2147483648 --cache_numshardbits=6 --compression_type=none --compression_ratio=1 --min_level_to_compress=-1 --disable_seek_compaction=1 --hard_rate_limit=2 --write_buffer_size=134217728 --max_write_buffer_number=2 --level0_file_num_compaction_trigger=8 --target_file_size_base=134217728 --max_bytes_for_level_base=1073741824 --disable_wal=0 --wal_dir=r:\rocksdb.github\WAL_LOG --sync=0 --verify_checksum=1 --delete_obsolete_files_period_micros=314572800 --max_background_compactions=4 --max_background_flushes=0 --level0_slowdown_writes_trigger=16 --level0_stop_writes_trigger=24 --statistics=0 --stats_per_interval=0 --stats_interval=1048576 --histogram=0 --use_plain_table=1 --open_files=-1 --mmap_read=1 --mmap_write=0 --memtablerep=prefix_hash --bloom_bits=10 --bloom_locality=1 --duration=600 --benchmarks=readrandom --use_existing_db=1 --num=25000000 --threads=32 Pull Request resolved: https://github.com/facebook/rocksdb/pull/6409 Differential Revision: D20200086 Pulled By: riversand963 fbshipit-source-id: 490edd74d924f62bd8ae9c29c2a6bbbb8410ca50
2020-03-02 23:58:32 +00:00
MergeContext* merge_context,
Use only "local" range tombstones during Get (#4449) Summary: Previously, range tombstones were accumulated from every level, which was necessary if a range tombstone in a higher level covered a key in a lower level. However, RangeDelAggregator::AddTombstones's complexity is based on the number of tombstones that are currently stored in it, which is wasteful in the Get case, where we only need to know the highest sequence number of range tombstones that cover the key from higher levels, and compute the highest covering sequence number at the current level. This change introduces this optimization, and removes the use of RangeDelAggregator from the Get path. In the benchmark results, the following command was used to initialize the database: ``` ./db_bench -db=/dev/shm/5k-rts -use_existing_db=false -benchmarks=filluniquerandom -write_buffer_size=1048576 -compression_type=lz4 -target_file_size_base=1048576 -max_bytes_for_level_base=4194304 -value_size=112 -key_size=16 -block_size=4096 -level_compaction_dynamic_level_bytes=true -num=5000000 -max_background_jobs=12 -benchmark_write_rate_limit=20971520 -range_tombstone_width=100 -writes_per_range_tombstone=100 -max_num_range_tombstones=50000 -bloom_bits=8 ``` ...and the following command was used to measure read throughput: ``` ./db_bench -db=/dev/shm/5k-rts/ -use_existing_db=true -benchmarks=readrandom -disable_auto_compactions=true -num=5000000 -reads=100000 -threads=32 ``` The filluniquerandom command was only run once, and the resulting database was used to measure read performance before and after the PR. Both binaries were compiled with `DEBUG_LEVEL=0`. Readrandom results before PR: ``` readrandom : 4.544 micros/op 220090 ops/sec; 16.9 MB/s (63103 of 100000 found) ``` Readrandom results after PR: ``` readrandom : 11.147 micros/op 89707 ops/sec; 6.9 MB/s (63103 of 100000 found) ``` So it's actually slower right now, but this PR paves the way for future optimizations (see #4493). ---- Pull Request resolved: https://github.com/facebook/rocksdb/pull/4449 Differential Revision: D10370575 Pulled By: abhimadan fbshipit-source-id: 9a2e152be1ef36969055c0e9eb4beb0d96c11f4d
2018-10-24 19:29:29 +00:00
SequenceNumber* max_covering_tombstone_seq,
SequenceNumber* seq, const ReadOptions& read_opts,
ReadCallback* callback = nullptr,
bool* is_blob_index = nullptr);
void AddMemTable(MemTable* m);
void UnrefMemTable(autovector<MemTable*>* to_delete, MemTable* m);
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
// Calculate the total amount of memory used by memlist_ and memlist_history_
// excluding the last MemTable in memlist_history_. The reason for excluding
// the last MemTable is to see if dropping the last MemTable will keep total
// memory usage above or equal to max_write_buffer_size_to_maintain_
size_t MemoryAllocatedBytesExcludingLast() const;
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
// Whether this version contains flushed memtables that are only kept around
// for transaction conflict checking.
bool HasHistory() const { return !memlist_history_.empty(); }
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
bool MemtableLimitExceeded(size_t usage);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
2015-05-28 23:34:24 +00:00
// Immutable MemTables that have not yet been flushed.
MemTableListVersion Summary: MemTableListVersion is to MemTableList what Version is to VersionSet. I took almost the same ideas to develop MemTableListVersion. The reason is to have copying std::list done in background, while flushing, rather than in foreground (MultiGet() and NewIterator()) under a mutex! Also, whenever we copied MemTableList, we copied also some MemTableList metadata (flush_requested_, commit_in_progress_, etc.), which was wasteful. This diff avoids std::list copy under a mutex in both MultiGet() and NewIterator(). I created a small database with some number of immutable memtables, and creating 100.000 iterators in a single-thread (!) decreased from {188739, 215703, 198028} to {154352, 164035, 159817}. A lot of the savings come from code under a mutex, so we should see much higher savings with multiple threads. Creating new iterator is very important to LogDevice team. I also think this diff will make SuperVersion obsolete for performance reasons. I will try it in the next diff. SuperVersion gave us huge savings on Get() code path, but I think that most of the savings came from copying MemTableList under a mutex. If we had MemTableListVersion, we would never need to copy the entire object (like we still do in NewIterator() and MultiGet()) Test Plan: `make check` works. I will also do `make valgrind_check` before commit Reviewers: dhruba, haobo, kailiu, sdong, emayanke, tnovak Reviewed By: kailiu CC: leveldb Differential Revision: https://reviews.facebook.net/D15255
2014-01-24 22:52:08 +00:00
std::list<MemTable*> memlist_;
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
2015-05-28 23:34:24 +00:00
// MemTables that have already been flushed
// (used during Transaction validation)
std::list<MemTable*> memlist_history_;
// Maximum number of MemTables to keep in memory (including both flushed
const int max_write_buffer_number_to_maintain_;
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
// Maximum size of MemTables to keep in memory (including both flushed
// and not-yet-flushed tables).
const int64_t max_write_buffer_size_to_maintain_;
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
2015-05-28 23:34:24 +00:00
2014-01-25 21:50:30 +00:00
int refs_ = 0;
size_t* parent_memtable_list_memory_usage_;
MemTableListVersion Summary: MemTableListVersion is to MemTableList what Version is to VersionSet. I took almost the same ideas to develop MemTableListVersion. The reason is to have copying std::list done in background, while flushing, rather than in foreground (MultiGet() and NewIterator()) under a mutex! Also, whenever we copied MemTableList, we copied also some MemTableList metadata (flush_requested_, commit_in_progress_, etc.), which was wasteful. This diff avoids std::list copy under a mutex in both MultiGet() and NewIterator(). I created a small database with some number of immutable memtables, and creating 100.000 iterators in a single-thread (!) decreased from {188739, 215703, 198028} to {154352, 164035, 159817}. A lot of the savings come from code under a mutex, so we should see much higher savings with multiple threads. Creating new iterator is very important to LogDevice team. I also think this diff will make SuperVersion obsolete for performance reasons. I will try it in the next diff. SuperVersion gave us huge savings on Get() code path, but I think that most of the savings came from copying MemTableList under a mutex. If we had MemTableListVersion, we would never need to copy the entire object (like we still do in NewIterator() and MultiGet()) Test Plan: `make check` works. I will also do `make valgrind_check` before commit Reviewers: dhruba, haobo, kailiu, sdong, emayanke, tnovak Reviewed By: kailiu CC: leveldb Differential Revision: https://reviews.facebook.net/D15255
2014-01-24 22:52:08 +00:00
};
// This class stores references to all the immutable memtables.
// The memtables are flushed to L0 as soon as possible and in
// any order. If there are more than one immutable memtable, their
// flushes can occur concurrently. However, they are 'committed'
// to the manifest in FIFO order to maintain correctness and
// recoverability from a crash.
//
//
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
// Other than imm_flush_needed and imm_trim_needed, this class is not
// thread-safe and requires external synchronization (such as holding the db
// mutex or being on the write thread.)
class MemTableList {
public:
// A list of memtables.
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
2015-05-28 23:34:24 +00:00
explicit MemTableList(int min_write_buffer_number_to_merge,
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
int max_write_buffer_number_to_maintain,
int64_t max_write_buffer_size_to_maintain)
: imm_flush_needed(false),
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
imm_trim_needed(false),
min_write_buffer_number_to_merge_(min_write_buffer_number_to_merge),
current_(new MemTableListVersion(&current_memory_usage_,
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
max_write_buffer_number_to_maintain,
max_write_buffer_size_to_maintain)),
MemTableListVersion Summary: MemTableListVersion is to MemTableList what Version is to VersionSet. I took almost the same ideas to develop MemTableListVersion. The reason is to have copying std::list done in background, while flushing, rather than in foreground (MultiGet() and NewIterator()) under a mutex! Also, whenever we copied MemTableList, we copied also some MemTableList metadata (flush_requested_, commit_in_progress_, etc.), which was wasteful. This diff avoids std::list copy under a mutex in both MultiGet() and NewIterator(). I created a small database with some number of immutable memtables, and creating 100.000 iterators in a single-thread (!) decreased from {188739, 215703, 198028} to {154352, 164035, 159817}. A lot of the savings come from code under a mutex, so we should see much higher savings with multiple threads. Creating new iterator is very important to LogDevice team. I also think this diff will make SuperVersion obsolete for performance reasons. I will try it in the next diff. SuperVersion gave us huge savings on Get() code path, but I think that most of the savings came from copying MemTableList under a mutex. If we had MemTableListVersion, we would never need to copy the entire object (like we still do in NewIterator() and MultiGet()) Test Plan: `make check` works. I will also do `make valgrind_check` before commit Reviewers: dhruba, haobo, kailiu, sdong, emayanke, tnovak Reviewed By: kailiu CC: leveldb Differential Revision: https://reviews.facebook.net/D15255
2014-01-24 22:52:08 +00:00
num_flush_not_started_(0),
commit_in_progress_(false),
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
flush_requested_(false),
current_memory_usage_(0),
current_memory_allocted_bytes_excluding_last_(0),
current_has_history_(false) {
MemTableListVersion Summary: MemTableListVersion is to MemTableList what Version is to VersionSet. I took almost the same ideas to develop MemTableListVersion. The reason is to have copying std::list done in background, while flushing, rather than in foreground (MultiGet() and NewIterator()) under a mutex! Also, whenever we copied MemTableList, we copied also some MemTableList metadata (flush_requested_, commit_in_progress_, etc.), which was wasteful. This diff avoids std::list copy under a mutex in both MultiGet() and NewIterator(). I created a small database with some number of immutable memtables, and creating 100.000 iterators in a single-thread (!) decreased from {188739, 215703, 198028} to {154352, 164035, 159817}. A lot of the savings come from code under a mutex, so we should see much higher savings with multiple threads. Creating new iterator is very important to LogDevice team. I also think this diff will make SuperVersion obsolete for performance reasons. I will try it in the next diff. SuperVersion gave us huge savings on Get() code path, but I think that most of the savings came from copying MemTableList under a mutex. If we had MemTableListVersion, we would never need to copy the entire object (like we still do in NewIterator() and MultiGet()) Test Plan: `make check` works. I will also do `make valgrind_check` before commit Reviewers: dhruba, haobo, kailiu, sdong, emayanke, tnovak Reviewed By: kailiu CC: leveldb Differential Revision: https://reviews.facebook.net/D15255
2014-01-24 22:52:08 +00:00
current_->Ref();
}
// Should not delete MemTableList without making sure MemTableList::current()
// is Unref()'d.
MemTableListVersion Summary: MemTableListVersion is to MemTableList what Version is to VersionSet. I took almost the same ideas to develop MemTableListVersion. The reason is to have copying std::list done in background, while flushing, rather than in foreground (MultiGet() and NewIterator()) under a mutex! Also, whenever we copied MemTableList, we copied also some MemTableList metadata (flush_requested_, commit_in_progress_, etc.), which was wasteful. This diff avoids std::list copy under a mutex in both MultiGet() and NewIterator(). I created a small database with some number of immutable memtables, and creating 100.000 iterators in a single-thread (!) decreased from {188739, 215703, 198028} to {154352, 164035, 159817}. A lot of the savings come from code under a mutex, so we should see much higher savings with multiple threads. Creating new iterator is very important to LogDevice team. I also think this diff will make SuperVersion obsolete for performance reasons. I will try it in the next diff. SuperVersion gave us huge savings on Get() code path, but I think that most of the savings came from copying MemTableList under a mutex. If we had MemTableListVersion, we would never need to copy the entire object (like we still do in NewIterator() and MultiGet()) Test Plan: `make check` works. I will also do `make valgrind_check` before commit Reviewers: dhruba, haobo, kailiu, sdong, emayanke, tnovak Reviewed By: kailiu CC: leveldb Differential Revision: https://reviews.facebook.net/D15255
2014-01-24 22:52:08 +00:00
~MemTableList() {}
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
MemTableListVersion* current() const { return current_; }
// so that background threads can detect non-nullptr pointer to
// determine whether there is anything more to start flushing.
std::atomic<bool> imm_flush_needed;
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
std::atomic<bool> imm_trim_needed;
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
2015-05-28 23:34:24 +00:00
// Returns the total number of memtables in the list that haven't yet
// been flushed and logged.
int NumNotFlushed() const;
// Returns total number of memtables in the list that have been
// completely flushed and logged.
int NumFlushed() const;
// Returns true if there is at least one memtable on which flush has
// not yet started.
bool IsFlushPending() const;
Prevent a case of WriteBufferManager flush thrashing (#6364) Summary: Previously, the flushes triggered by `WriteBufferManager` could affect the same CF repeatedly if it happens to get consecutive writes. Such flushes are not particularly useful for reducing memory usage since they switch nearly-empty memtables to immutable while they've just begun filling their first arena block. In fact they may not even reduce the mutable memory count if they involve replacing one mutable memtable containing one arena block with a new mutable memtable containing one arena block. Further, if such switches happen even a few times before a flush finishes, the immutable memtable limit will be reached and writes will stall. This PR adds a heuristic to not switch memtables to immutable for CFs that already have one or more immutable memtables awaiting flush. There is a memory usage regression if the user continues writing to the same CF, that DB does not have any CFs eligible for switching, flushes are not finishing, and the `WriteBufferManager` was constructed with `allow_stall=false`. Before, it would grow by switching nearly empty memtables until writes stall. Now, it would grow by filling memtables until writes stall. This feels like an acceptable behavior change because users who prefer to stall over violate the memory limit should be using `allow_stall=true`, which is unaffected by this PR. Pull Request resolved: https://github.com/facebook/rocksdb/pull/6364 Test Plan: - Command: `rm -rf /dev/shm/dbbench/ && TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num_multi_db=8 -num_column_families=2 -write_buffer_size=4194304 -db_write_buffer_size=16777216 -compression_type=none -statistics=true -target_file_size_base=4194304 -max_bytes_for_level_base=16777216` - `rocksdb.db.write.stall` count before this PR: 175 - `rocksdb.db.write.stall` count after this PR: 0 Reviewed By: jay-zhuang Differential Revision: D20167197 Pulled By: ajkr fbshipit-source-id: 4a64064e9bc33d57c0a35f15547542d0191d0cb7
2022-08-17 22:53:40 +00:00
// Returns true if there is at least one memtable that is pending flush or
// flushing.
bool IsFlushPendingOrRunning() const;
// Returns the earliest memtables that needs to be flushed. The returned
// memtables are guaranteed to be in the ascending order of created time.
void PickMemtablesToFlush(uint64_t max_memtable_id,
Fix mempurge crash reported in #8958 (#9671) Summary: Change the `MemPurge` code to address a failure during a crash test reported in https://github.com/facebook/rocksdb/issues/8958. ### Details and results of the crash investigation: These failures happened in a specific scenario where the list of immutable tables was composed of 2 or more memtables, and the last memtable was the output of a previous `Mempurge` operation. Because the `PickMemtablesToFlush` function included a sorting of the memtables (previous PR related to the Mempurge project), and because the `VersionEdit` of the flush class is piggybacked onto a single one of these memtables, the `VersionEdit` was not properly selected and applied to the `VersionSet` of the DB. Since the `VersionSet` was not edited properly, the database was losing track of the SST file created during the flush process, which was subsequently deleted (and as you can expect, caused the tests to crash). The following command consistently failed, which was quite convenient to investigate the issue: `$ while rm -rf /dev/shm/single_stress && ./db_stress --clear_column_family_one_in=0 --column_families=1 --db=/dev/shm/single_stress --experimental_mempurge_threshold=5.493146827397074 --flush_one_in=10000 --reopen=0 --write_buffer_size=262144 --value_size_mult=33 --max_write_buffer_number=3 -ops_per_thread=10000; do : ; done` ### Solution proposed The memtables are no longer sorted based on their `memtableID` in the `PickMemtablesToFlush` function. Additionally, the `next_log_number` of the memtable created as an output of the `Mempurge` function now takes in the correct value (the log number of the first memtable being mempurged). Finally, the VersionEdit object of the flush class now takes the maximum `next_log_number` of the stack of memtables being flushed, which doesnt change anything when Mempurge is `off` but becomes necessary when Mempurge is `on`. ### Testing of the solution The following command no longer fails: ``$ while rm -rf /dev/shm/single_stress && ./db_stress --clear_column_family_one_in=0 --column_families=1 --db=/dev/shm/single_stress --experimental_mempurge_threshold=5.493146827397074 --flush_one_in=10000 --reopen=0 --write_buffer_size=262144 --value_size_mult=33 --max_write_buffer_number=3 -ops_per_thread=10000; do : ; done`` Additionally, I ran `db_crashtest` (`whitebox` and `blackbox`) for 2.5 hours with MemPurge on and did not observe any crash. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9671 Reviewed By: pdillinger Differential Revision: D34697424 Pulled By: bjlemaire fbshipit-source-id: d1ab675b361904351ac81a35c184030e52222874
2022-03-10 23:16:55 +00:00
autovector<MemTable*>* mems,
uint64_t* max_next_log_number = nullptr);
// Reset status of the given memtable list back to pending state so that
// they can get picked up again on the next round of flush.
Rollback other pending memtable flushes when a flush fails (#11865) Summary: when atomic_flush=false, there are certain cases where we try to install memtable results with already deleted SST files. This can happen when the following sequence events happen: ``` Start Flush0 for memtable M0 to SST0 Start Flush1 for memtable M1 to SST1 Flush 1 returns OK, but don't install to MANIFEST and let whoever flushes M0 to take care of it Flush0 finishes with a retryable IOError, it rollbacks M0, (incorrectly) does not rollback M1, and deletes SST0 and SST1 Starts Flush2 for M0, it does not pick up M1 since it thought M1 is flushed Flush2 writes SST2 and finishes OK, tries to install SST2 and SST1 Error opening SST1 since it's already deleted with an error message like the following: IO error: No such file or directory: While open a file for random read: /tmp/rocksdbtest-501/db_flush_test_3577_4230653031040984171/000011.sst: No such file or directory ``` This happens since: 1. We currently only rollback the memtables that we are flushing in a flush job when atomic_flush=false. 2. Pending output SSTs from previous flushes are deleted since a pending file number is released whenever a flush job is finished no matter of flush status: https://github.com/facebook/rocksdb/blob/f42e70bf561d4be9b6bbe7316d1c2c0c8a3818e6/db/db_impl/db_impl_compaction_flush.cc#L3161 This PR fixes the issue by rollback these pending flushes. There is another issue where if a new flush for new memtable starts and finishes after Flush0 finishes. Its output may also be deleted (see more in unit test). It is fixed by checking bg error status before installing a memtable result, and rollback if there is an error. There is a more efficient fix where we just don't release the pending file output number for flushes that delegate installation. It is more efficient since it does not have to rewrite the flush output file. With the fix in this PR, we can end up with a giant file if a lot of memtables are being flushed together. However, the more efficient fix is a bit more complicated to implement (requires associating such pending file numbers with flush job/memtables) and is more risky since it changes normal flush code path. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11865 Test Plan: * Added repro unit tests. Reviewed By: anand1976 Differential Revision: D49484922 Pulled By: cbi42 fbshipit-source-id: 25b536c08f4e02e7f1d0f86571663737d2b5d53d
2023-09-21 22:31:29 +00:00
//
// @param rollback_succeeding_memtables If true, will rollback adjacent
// younger memtables whose flush is completed. Specifically, suppose the
// current immutable memtables are M_0,M_1...M_N ordered from youngest to
// oldest. Suppose that the youngest memtable in `mems` is M_K. We will try to
// rollback M_K-1, M_K-2... until the first memtable whose flush is
// not completed. These are the memtables that would have been installed
// by this flush job if it were to succeed. This flag is currently used
// by non atomic_flush rollback.
// Note that we also do rollback in `write_manifest_cb` by calling
// `RemoveMemTablesOrRestoreFlags()`. There we rollback the entire batch so
// it is similar to what we do here with rollback_succeeding_memtables=true.
void RollbackMemtableFlush(const autovector<MemTable*>& mems,
Rollback other pending memtable flushes when a flush fails (#11865) Summary: when atomic_flush=false, there are certain cases where we try to install memtable results with already deleted SST files. This can happen when the following sequence events happen: ``` Start Flush0 for memtable M0 to SST0 Start Flush1 for memtable M1 to SST1 Flush 1 returns OK, but don't install to MANIFEST and let whoever flushes M0 to take care of it Flush0 finishes with a retryable IOError, it rollbacks M0, (incorrectly) does not rollback M1, and deletes SST0 and SST1 Starts Flush2 for M0, it does not pick up M1 since it thought M1 is flushed Flush2 writes SST2 and finishes OK, tries to install SST2 and SST1 Error opening SST1 since it's already deleted with an error message like the following: IO error: No such file or directory: While open a file for random read: /tmp/rocksdbtest-501/db_flush_test_3577_4230653031040984171/000011.sst: No such file or directory ``` This happens since: 1. We currently only rollback the memtables that we are flushing in a flush job when atomic_flush=false. 2. Pending output SSTs from previous flushes are deleted since a pending file number is released whenever a flush job is finished no matter of flush status: https://github.com/facebook/rocksdb/blob/f42e70bf561d4be9b6bbe7316d1c2c0c8a3818e6/db/db_impl/db_impl_compaction_flush.cc#L3161 This PR fixes the issue by rollback these pending flushes. There is another issue where if a new flush for new memtable starts and finishes after Flush0 finishes. Its output may also be deleted (see more in unit test). It is fixed by checking bg error status before installing a memtable result, and rollback if there is an error. There is a more efficient fix where we just don't release the pending file output number for flushes that delegate installation. It is more efficient since it does not have to rewrite the flush output file. With the fix in this PR, we can end up with a giant file if a lot of memtables are being flushed together. However, the more efficient fix is a bit more complicated to implement (requires associating such pending file numbers with flush job/memtables) and is more risky since it changes normal flush code path. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11865 Test Plan: * Added repro unit tests. Reviewed By: anand1976 Differential Revision: D49484922 Pulled By: cbi42 fbshipit-source-id: 25b536c08f4e02e7f1d0f86571663737d2b5d53d
2023-09-21 22:31:29 +00:00
bool rollback_succeeding_memtables);
// Try commit a successful flush in the manifest file. It might just return
// Status::OK letting a concurrent flush to do the actual the recording.
Status TryInstallMemtableFlushResults(
ColumnFamilyData* cfd, const MutableCFOptions& mutable_cf_options,
Skip deleted WALs during recovery Summary: This patch record min log number to keep to the manifest while flushing SST files to ignore them and any WAL older than them during recovery. This is to avoid scenarios when we have a gap between the WAL files are fed to the recovery procedure. The gap could happen by for example out-of-order WAL deletion. Such gap could cause problems in 2PC recovery where the prepared and commit entry are placed into two separate WAL and gap in the WALs could result into not processing the WAL with the commit entry and hence breaking the 2PC recovery logic. Before the commit, for 2PC case, we determined which log number to keep in FindObsoleteFiles(). We looked at the earliest logs with outstanding prepare entries, or prepare entries whose respective commit or abort are in memtable. With the commit, the same calculation is done while we apply the SST flush. Just before installing the flush file, we precompute the earliest log file to keep after the flush finishes using the same logic (but skipping the memtables just flushed), record this information to the manifest entry for this new flushed SST file. This pre-computed value is also remembered in memory, and will later be used to determine whether a log file can be deleted. This value is unlikely to change until next flush because the commit entry will stay in memtable. (In WritePrepared, we could have removed the older log files as soon as all prepared entries are committed. It's not yet done anyway. Even if we do it, the only thing we loss with this new approach is earlier log deletion between two flushes, which does not guarantee to happen anyway because the obsolete file clean-up function is only executed after flush or compaction) This min log number to keep is stored in the manifest using the safely-ignore customized field of AddFile entry, in order to guarantee that the DB generated using newer release can be opened by previous releases no older than 4.2. Closes https://github.com/facebook/rocksdb/pull/3765 Differential Revision: D7747618 Pulled By: siying fbshipit-source-id: d00c92105b4f83852e9754a1b70d6b64cb590729
2018-05-03 22:35:11 +00:00
const autovector<MemTable*>& m, LogsWithPrepTracker* prep_tracker,
VersionSet* vset, InstrumentedMutex* mu, uint64_t file_number,
autovector<MemTable*>* to_delete, FSDirectory* db_directory,
LogBuffer* log_buffer,
std::list<std::unique_ptr<FlushJobInfo>>* committed_flush_jobs_info,
bool write_edits = true);
// New memtables are inserted at the front of the list.
// Takes ownership of the referenced held on *m by the caller of Add().
Make mempurge a background process (equivalent to in-memory compaction). (#8505) Summary: In https://github.com/facebook/rocksdb/issues/8454, I introduced a new process baptized `MemPurge` (memtable garbage collection). This new PR is built upon this past mempurge prototype. In this PR, I made the `mempurge` process a background task, which provides superior performance since the mempurge process does not cling on the db_mutex anymore, and addresses severe restrictions from the past iteration (including a scenario where the past mempurge was failling, when a memtable was mempurged but was still referred to by an iterator/snapshot/...). Now the mempurge process ressembles an in-memory compaction process: the stack of immutable memtables is filtered out, and the useful payload is used to populate an output memtable. If the output memtable is filled at more than 60% capacity (arbitrary heuristic) the mempurge process is aborted and a regular flush process takes place, else the output memtable is kept in the immutable memtable stack. Note that adding this output memtable to the `imm()` memtable stack does not trigger another flush process, so that the flush thread can go to sleep at the end of a successful mempurge. MemPurge is activated by making the `experimental_allow_mempurge` flag `true`. When activated, the `MemPurge` process will always happen when the flush reason is `kWriteBufferFull`. The 3 unit tests confirm that this process supports `Put`, `Get`, `Delete`, `DeleteRange` operators and is compatible with `Iterators` and `CompactionFilters`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8505 Reviewed By: pdillinger Differential Revision: D29619283 Pulled By: bjlemaire fbshipit-source-id: 8a99bee76b63a8211bff1a00e0ae32360aaece95
2021-07-10 00:16:00 +00:00
// By default, adding memtables will flag that the memtable list needs to be
// flushed, but in certain situations, like after a mempurge, we may want to
// avoid flushing the memtable list upon addition of a memtable.
Fix db stress crash mempurge (#8604) Summary: The db_stress crash was caused by a call to `IsFlushPending()` made by a stats function which triggered an `assert([false])`, which I didn't plan when I created the `trigger_flush` bool. It turns out that this bool variable is not useful: I created it because I thought the `imm_flush_needed` atomic bool would actually trigger a flush. It turns out that this bool is only checked in `IsFlushPending` - this is its only use - and a flush is triggered by either a background thread checking on the imm array, or by an explicit call to `SchedulePendingFlush` which creates a flush request, that is then added to a flush request queue. In this PR, I reverted the MemtableList::Add function to what it was before my changes. I tested the fix by running the exact command line that deterministically triggered the assert error (see below), which confirmed that this is where the error was coming from. I also run `db_crashtest.py whitebox` and `blackbox` for a couple hours locally before committing this PR. Experiment run: ```./db_stress --acquire_snapshot_one_in=0 --allow_concurrent_memtable_write=1 --avoid_flush_during_recovery=0 --avoid_unnecessary_blocking_io=1 --backup_max_size=104857600 --backup_one_in=100000 --batch_protection_bytes_per_key=0 --block_size=16384 --bloom_bits=76.90653425292307 --bottommost_compression_type=disable --cache_index_and_filter_blocks=1 --cache_size=1048576 --checkpoint_one_in=1000000 --checksum_type=kCRC32c --clear_column_family_one_in=0 --column_families=1 --compact_files_one_in=1000000 --compact_range_one_in=0 --compaction_ttl=2 --compression_max_dict_buffer_bytes=0 --compression_max_dict_bytes=0 --compression_parallel_threads=1 --compression_type=zstd --compression_zstd_max_train_bytes=0 --continuous_verification_interval=0 --db=/dev/shm/rocksdb/rocksdb_crashtest_blackbox --db_write_buffer_size=0 --delpercent=4 --delrangepercent=1 --destroy_db_initially=0 --enable_compaction_filter=1 --enable_pipelined_write=0 --expected_values_path=/dev/shm/rocksdb/rocksdb_crashtest_expected --experimental_allow_mempurge=1 --experimental_mempurge_policy=kAlternate --fail_if_options_file_error=1 --file_checksum_impl=none --flush_one_in=1000000 --format_version=2 --get_current_wal_file_one_in=0 --get_live_files_one_in=1000000 --get_property_one_in=1000000 --get_sorted_wal_files_one_in=0 --index_block_restart_interval=14 --index_type=0 --iterpercent=0 --key_len_percent_dist=1,30,69 --level_compaction_dynamic_level_bytes=False --long_running_snapshots=1 --mark_for_compaction_one_file_in=10 --max_background_compactions=1 --max_bytes_for_level_base=67108864 --max_key=100000000 --max_key_len=3 --max_manifest_file_size=1073741824 --max_write_batch_group_size_bytes=64 --max_write_buffer_number=3 --max_write_buffer_size_to_maintain=0 --memtablerep=skip_list --mmap_read=0 --mock_direct_io=True --nooverwritepercent=1 --open_files=-1 --open_metadata_write_fault_one_in=8 --open_read_fault_one_in=32 --open_write_fault_one_in=16 --ops_per_thread=100000000 --optimize_filters_for_memory=1 --paranoid_file_checks=0 --partition_filters=0 --partition_pinning=0 --pause_background_one_in=1000000 --periodic_compaction_seconds=1000 --prefix_size=-1 --prefixpercent=0 --progress_reports=0 --read_fault_one_in=0 --readpercent=60 --recycle_log_file_num=1 --reopen=20 --set_options_one_in=0 --snapshot_hold_ops=100000 --sst_file_manager_bytes_per_sec=104857600 --sst_file_manager_bytes_per_truncate=0 --subcompactions=3 --sync=1 --sync_fault_injection=False --target_file_size_base=16777216 --target_file_size_multiplier=1 --test_batches_snapshots=0 --top_level_index_pinning=1 --unpartitioned_pinning=3 --use_clock_cache=0 --use_direct_io_for_flush_and_compaction=1 --use_direct_reads=0 --use_full_merge_v1=1 --use_merge=0 --use_multiget=0 --use_ribbon_filter=1 --user_timestamp_size=0 --verify_checksum=1 --verify_checksum_one_in=1000000 --verify_db_one_in=100000 --write_buffer_size=33554432 --write_dbid_to_manifest=1 --writepercent=35``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8604 Reviewed By: pdillinger Differential Revision: D30047295 Pulled By: bjlemaire fbshipit-source-id: b9e379bfa3d6b9bd2b275725fb0bca4bd81a3dbe
2021-08-03 03:25:39 +00:00
void Add(MemTable* m, autovector<MemTable*>* to_delete);
// Returns an estimate of the number of bytes of data in use.
size_t ApproximateMemoryUsage();
// Returns the cached current_memory_allocted_bytes_excluding_last_ value.
size_t MemoryAllocatedBytesExcludingLast() const;
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
// Returns the cached current_has_history_ value.
bool HasHistory() const;
// Updates current_memory_allocted_bytes_excluding_last_ and
// current_has_history_ from MemTableListVersion. Must be called whenever
// InstallNewVersion is called.
void UpdateCachedValuesFromMemTableListVersion();
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
// `usage` is the current size of the mutable Memtable. When
// max_write_buffer_size_to_maintain is used, total size of mutable and
// immutable memtables is checked against it to decide whether to trim
// memtable list.
//
// Return true if memtable is trimmed
bool TrimHistory(autovector<MemTable*>* to_delete, size_t usage);
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
// Returns an estimate of the number of bytes of data used by
// the unflushed mem-tables.
size_t ApproximateUnflushedMemTablesMemoryUsage();
// Returns an estimate of the timestamp of the earliest key.
uint64_t ApproximateOldestKeyTime() const;
// Request a flush of all existing memtables to storage. This will
// cause future calls to IsFlushPending() to return true if this list is
// non-empty (regardless of the min_write_buffer_number_to_merge
// parameter). This flush request will persist until the next time
// PickMemtablesToFlush() is called.
void FlushRequested() {
flush_requested_ = true;
// If there are some memtables stored in imm() that don't trigger
// flush (eg: mempurge output memtable), then update imm_flush_needed.
// Note: if race condition and imm_flush_needed is set to true
// when there is num_flush_not_started_==0, then there is no
// impact whatsoever. Imm_flush_needed is only used in an assert
// in IsFlushPending().
if (num_flush_not_started_ > 0) {
imm_flush_needed.store(true, std::memory_order_release);
}
}
bool HasFlushRequested() { return flush_requested_; }
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
// Returns true if a trim history should be scheduled and the caller should
// be the one to schedule it
bool MarkTrimHistoryNeeded() {
auto expected = false;
return imm_trim_needed.compare_exchange_strong(
expected, true, std::memory_order_relaxed, std::memory_order_relaxed);
}
void ResetTrimHistoryNeeded() {
auto expected = true;
imm_trim_needed.compare_exchange_strong(
expected, false, std::memory_order_relaxed, std::memory_order_relaxed);
}
// Copying allowed
// MemTableList(const MemTableList&);
// void operator=(const MemTableList&);
size_t* current_memory_usage() { return &current_memory_usage_; }
Skip deleted WALs during recovery Summary: This patch record min log number to keep to the manifest while flushing SST files to ignore them and any WAL older than them during recovery. This is to avoid scenarios when we have a gap between the WAL files are fed to the recovery procedure. The gap could happen by for example out-of-order WAL deletion. Such gap could cause problems in 2PC recovery where the prepared and commit entry are placed into two separate WAL and gap in the WALs could result into not processing the WAL with the commit entry and hence breaking the 2PC recovery logic. Before the commit, for 2PC case, we determined which log number to keep in FindObsoleteFiles(). We looked at the earliest logs with outstanding prepare entries, or prepare entries whose respective commit or abort are in memtable. With the commit, the same calculation is done while we apply the SST flush. Just before installing the flush file, we precompute the earliest log file to keep after the flush finishes using the same logic (but skipping the memtables just flushed), record this information to the manifest entry for this new flushed SST file. This pre-computed value is also remembered in memory, and will later be used to determine whether a log file can be deleted. This value is unlikely to change until next flush because the commit entry will stay in memtable. (In WritePrepared, we could have removed the older log files as soon as all prepared entries are committed. It's not yet done anyway. Even if we do it, the only thing we loss with this new approach is earlier log deletion between two flushes, which does not guarantee to happen anyway because the obsolete file clean-up function is only executed after flush or compaction) This min log number to keep is stored in the manifest using the safely-ignore customized field of AddFile entry, in order to guarantee that the DB generated using newer release can be opened by previous releases no older than 4.2. Closes https://github.com/facebook/rocksdb/pull/3765 Differential Revision: D7747618 Pulled By: siying fbshipit-source-id: d00c92105b4f83852e9754a1b70d6b64cb590729
2018-05-03 22:35:11 +00:00
// Returns the min log containing the prep section after memtables listsed in
// `memtables_to_flush` are flushed and their status is persisted in manifest.
uint64_t PrecomputeMinLogContainingPrepSection(
const std::unordered_set<MemTable*>* memtables_to_flush = nullptr);
uint64_t GetEarliestMemTableID() const {
auto& memlist = current_->memlist_;
if (memlist.empty()) {
return std::numeric_limits<uint64_t>::max();
}
return memlist.back()->GetID();
}
Give retry flushes their own functions (#11903) Summary: Recovery triggers flushes for very different scenarios: (1) `FlushReason::kErrorRecoveryRetryFlush`: a flush failed (2) `FlushReason::kErrorRecovery`: a WAL may be corrupted (3) `FlushReason::kCatchUpAfterErrorRecovery`: immutable memtables may have accumulated The old code called called `FlushAllColumnFamilies()` in all cases, which uses manual flush functions: `AtomicFlushMemTables()` and `FlushMemTable()`. Forcing flushing the latest data on all CFs was useful for (2) because it ensures all CFs move past the corrupted WAL. However, those code paths were overkill for (1) and (3), where only already-immutable memtables need to be flushed. There were conditionals to exclude some of the extraneous logic but I found there was still too much happening. For example, both of the manual flush functions enter the write thread. Entering the write thread is inconvenient because then we can't allow stalled writes to wait on a retrying flush to finish. Instead of continuing down the path of adding more conditionals to the manual flush functions, this PR introduces a dedicated function for cases (1) and (3): `RetryFlushesForErrorRecovery()`. Also I cleaned up the manual flush functions to remove existing conditionals for these cases as they're no longer needed. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11903 Reviewed By: cbi42 Differential Revision: D49693812 Pulled By: ajkr fbshipit-source-id: 7630ac539b9d6c92052c13a3cdce53256134d990
2023-10-02 23:26:24 +00:00
uint64_t GetLatestMemTableID(bool for_atomic_flush) const {
auto& memlist = current_->memlist_;
if (memlist.empty()) {
return 0;
}
Give retry flushes their own functions (#11903) Summary: Recovery triggers flushes for very different scenarios: (1) `FlushReason::kErrorRecoveryRetryFlush`: a flush failed (2) `FlushReason::kErrorRecovery`: a WAL may be corrupted (3) `FlushReason::kCatchUpAfterErrorRecovery`: immutable memtables may have accumulated The old code called called `FlushAllColumnFamilies()` in all cases, which uses manual flush functions: `AtomicFlushMemTables()` and `FlushMemTable()`. Forcing flushing the latest data on all CFs was useful for (2) because it ensures all CFs move past the corrupted WAL. However, those code paths were overkill for (1) and (3), where only already-immutable memtables need to be flushed. There were conditionals to exclude some of the extraneous logic but I found there was still too much happening. For example, both of the manual flush functions enter the write thread. Entering the write thread is inconvenient because then we can't allow stalled writes to wait on a retrying flush to finish. Instead of continuing down the path of adding more conditionals to the manual flush functions, this PR introduces a dedicated function for cases (1) and (3): `RetryFlushesForErrorRecovery()`. Also I cleaned up the manual flush functions to remove existing conditionals for these cases as they're no longer needed. Pull Request resolved: https://github.com/facebook/rocksdb/pull/11903 Reviewed By: cbi42 Differential Revision: D49693812 Pulled By: ajkr fbshipit-source-id: 7630ac539b9d6c92052c13a3cdce53256134d990
2023-10-02 23:26:24 +00:00
if (for_atomic_flush) {
// Scan the memtable list from new to old
for (auto it = memlist.begin(); it != memlist.end(); ++it) {
MemTable* m = *it;
if (m->atomic_flush_seqno_ != kMaxSequenceNumber) {
return m->GetID();
}
}
return 0;
}
return memlist.front()->GetID();
}
Respect cutoff timestamp during flush (#11599) Summary: Make flush respect the cutoff timestamp `full_history_ts_low` as much as possible for the user-defined timestamps in Memtables only feature. We achieve this by not proceeding with the actual flushing but instead reschedule the same `FlushRequest` so a follow up flush job can continue with the check after some interval. This approach doesn't work well for atomic flush, so this feature currently is not supported in combination with atomic flush. Furthermore, this approach also requires a customized method to get the next immediately bigger user-defined timestamp. So currently it's limited to comparator that use uint64_t as the user-defined timestamp format. This support can be extended when we add such a customized method to `AdvancedColumnFamilyOptions`. For non atomic flush request, at any single time, a column family can only have as many as one FlushRequest for it in the `flush_queue_`. There is deduplication done at `FlushRequest` enqueueing(`SchedulePendingFlush`) and dequeueing time (`PopFirstFromFlushQueue`). We hold the db mutex between when a `FlushRequest` is popped from the queue and the same FlushRequest get rescheduled, so no other `FlushRequest` with a higher `max_memtable_id` can be added to the `flush_queue_` blocking us from re-enqueueing the same `FlushRequest`. Flush is continued nevertheless if there is risk of entering write stall mode had the flush being postponed, e.g. due to accumulation of write buffers, exceeding the `max_write_buffer_number` setting. When this happens, the newest user-defined timestamp in the involved Memtables need to be tracked and we use it to increase the `full_history_ts_low`, which is an inclusive cutoff timestamp for which RocksDB promises to keep all user-defined timestamps equal to and newer than it. Tet plan: ``` ./column_family_test --gtest_filter="*RetainUDT*" ./memtable_list_test --gtest_filter="*WithTimestamp*" ./flush_job_test --gtest_filter="*WithTimestamp*" ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/11599 Reviewed By: ajkr Differential Revision: D47561586 Pulled By: jowlyzhang fbshipit-source-id: 9400445f983dd6eac489e9dd0fb5d9b99637fe89
2023-07-26 23:25:06 +00:00
// DB mutex held.
// Gets the newest user-defined timestamp for the Memtables in ascending ID
// order, up to the `max_memtable_id`. Used by background flush job
// to check Memtables' eligibility for flush w.r.t retaining UDTs.
std::vector<Slice> GetTablesNewestUDT(uint64_t max_memtable_id) {
std::vector<Slice> newest_udts;
auto& memlist = current_->memlist_;
// Iterating through the memlist starting at the end, the vector<MemTable*>
// ret is filled with memtables already sorted in increasing MemTable ID.
for (auto it = memlist.rbegin(); it != memlist.rend(); ++it) {
MemTable* m = *it;
if (m->GetID() > max_memtable_id) {
break;
}
newest_udts.push_back(m->GetNewestUDT());
}
return newest_udts;
}
void AssignAtomicFlushSeq(const SequenceNumber& seq) {
const auto& memlist = current_->memlist_;
// Scan the memtable list from new to old
for (auto it = memlist.begin(); it != memlist.end(); ++it) {
MemTable* mem = *it;
if (mem->atomic_flush_seqno_ == kMaxSequenceNumber) {
mem->atomic_flush_seqno_ = seq;
} else {
// Earlier memtables must have been assigned a atomic flush seq, no
// need to continue scan.
break;
}
}
}
// Used only by DBImplSecondary during log replay.
// Remove memtables whose data were written before the WAL with log_number
// was created, i.e. mem->GetNextLogNumber() <= log_number. The memtables are
// not freed, but put into a vector for future deref and reclamation.
void RemoveOldMemTables(uint64_t log_number,
autovector<MemTable*>* to_delete);
// This API is only used by atomic date replacement. To get an edit for
// dropping the current `MemTableListVersion`.
VersionEdit GetEditForDroppingCurrentVersion(
const ColumnFamilyData* cfd, VersionSet* vset,
LogsWithPrepTracker* prep_tracker) const;
private:
friend Status InstallMemtableAtomicFlushResults(
const autovector<MemTableList*>* imm_lists,
const autovector<ColumnFamilyData*>& cfds,
const autovector<const MutableCFOptions*>& mutable_cf_options_list,
const autovector<const autovector<MemTable*>*>& mems_list,
VersionSet* vset, LogsWithPrepTracker* prep_tracker,
InstrumentedMutex* mu, const autovector<FileMetaData*>& file_meta,
const autovector<std::list<std::unique_ptr<FlushJobInfo>>*>&
committed_flush_jobs_info,
autovector<MemTable*>* to_delete, FSDirectory* db_directory,
LogBuffer* log_buffer);
MemTableListVersion Summary: MemTableListVersion is to MemTableList what Version is to VersionSet. I took almost the same ideas to develop MemTableListVersion. The reason is to have copying std::list done in background, while flushing, rather than in foreground (MultiGet() and NewIterator()) under a mutex! Also, whenever we copied MemTableList, we copied also some MemTableList metadata (flush_requested_, commit_in_progress_, etc.), which was wasteful. This diff avoids std::list copy under a mutex in both MultiGet() and NewIterator(). I created a small database with some number of immutable memtables, and creating 100.000 iterators in a single-thread (!) decreased from {188739, 215703, 198028} to {154352, 164035, 159817}. A lot of the savings come from code under a mutex, so we should see much higher savings with multiple threads. Creating new iterator is very important to LogDevice team. I also think this diff will make SuperVersion obsolete for performance reasons. I will try it in the next diff. SuperVersion gave us huge savings on Get() code path, but I think that most of the savings came from copying MemTableList under a mutex. If we had MemTableListVersion, we would never need to copy the entire object (like we still do in NewIterator() and MultiGet()) Test Plan: `make check` works. I will also do `make valgrind_check` before commit Reviewers: dhruba, haobo, kailiu, sdong, emayanke, tnovak Reviewed By: kailiu CC: leveldb Differential Revision: https://reviews.facebook.net/D15255
2014-01-24 22:52:08 +00:00
// DB mutex held
void InstallNewVersion();
Perform post-flush updates of memtable list in a callback (#6069) Summary: Currently, the following interleaving of events can lead to SuperVersion containing both immutable memtables as well as the resulting L0. This can cause Get to return incorrect result if there are merge operands. This may also affect other operations such as single deletes. ``` time main_thr bg_flush_thr bg_compact_thr compact_thr set_opts_thr 0 | WriteManifest:0 1 | issue compact 2 | wait 3 | Merge(counter) 4 | issue flush 5 | wait 6 | WriteManifest:1 7 | wake up 8 | write manifest 9 | wake up 10 | Get(counter) 11 | remove imm V ``` The reason behind is that: one bg flush thread's installing new `Version` can be batched and performed by another thread that is the "leader" MANIFEST writer. This bg thread removes the memtables from current super version only after `LogAndApply` returns. After the leader MANIFEST writer signals (releasing mutex) this bg flush thread, it is possible that another thread sees this cf with both memtables (whose data have been flushed to the newest L0) and the L0 before this bg flush thread removes the memtables. To address this issue, each bg flush thread can pass a callback function to `LogAndApply`. The callback is responsible for removing the memtables. Therefore, the leader MANIFEST writer can call this callback and remove the memtables before releasing the mutex. Test plan (devserver) ``` $make merge_test $./merge_test --gtest_filter=MergeTest.MergeWithCompactionAndFlush $make check ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/6069 Reviewed By: cheng-chang Differential Revision: D18790894 Pulled By: riversand963 fbshipit-source-id: e41bd600c0448b4f4b2deb3f7677f95e3076b4ed
2020-10-27 01:20:43 +00:00
// DB mutex held
// Called after writing to MANIFEST
void RemoveMemTablesOrRestoreFlags(const Status& s, ColumnFamilyData* cfd,
size_t batch_count, LogBuffer* log_buffer,
autovector<MemTable*>* to_delete,
InstrumentedMutex* mu);
Support saving history in memtable_list Summary: For transactions, we are using the memtables to validate that there are no write conflicts. But after flushing, we don't have any memtables, and transactions could fail to commit. So we want to someone keep around some extra history to use for conflict checking. In addition, we want to provide a way to increase the size of this history if too many transactions fail to commit. After chatting with people, it seems like everyone prefers just using Memtables to store this history (instead of a separate history structure). It seems like the best place for this is abstracted inside the memtable_list. I decide to create a separate list in MemtableListVersion as using the same list complicated the flush/installalflushresults logic too much. This diff adds a new parameter to control how much memtable history to keep around after flushing. However, it sounds like people aren't too fond of adding new parameters. So I am making the default size of flushed+not-flushed memtables be set to max_write_buffers. This should not change the maximum amount of memory used, but make it more likely we're using closer the the limit. (We are now postponing deleting flushed memtables until the max_write_buffer limit is reached). So while we might use more memory on average, we are still obeying the limit set (and you could argue it's better to go ahead and use up memory now instead of waiting for a write stall to happen to test this limit). However, if people are opposed to this default behavior, we can easily set it to 0 and require this parameter be set in order to use transactions. Test Plan: Added a xfunc test to play around with setting different values of this parameter in all tests. Added testing in memtablelist_test and planning on adding more testing here. Reviewers: sdong, rven, igor Reviewed By: igor Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D37443
2015-05-28 23:34:24 +00:00
const int min_write_buffer_number_to_merge_;
MemTableListVersion Summary: MemTableListVersion is to MemTableList what Version is to VersionSet. I took almost the same ideas to develop MemTableListVersion. The reason is to have copying std::list done in background, while flushing, rather than in foreground (MultiGet() and NewIterator()) under a mutex! Also, whenever we copied MemTableList, we copied also some MemTableList metadata (flush_requested_, commit_in_progress_, etc.), which was wasteful. This diff avoids std::list copy under a mutex in both MultiGet() and NewIterator(). I created a small database with some number of immutable memtables, and creating 100.000 iterators in a single-thread (!) decreased from {188739, 215703, 198028} to {154352, 164035, 159817}. A lot of the savings come from code under a mutex, so we should see much higher savings with multiple threads. Creating new iterator is very important to LogDevice team. I also think this diff will make SuperVersion obsolete for performance reasons. I will try it in the next diff. SuperVersion gave us huge savings on Get() code path, but I think that most of the savings came from copying MemTableList under a mutex. If we had MemTableListVersion, we would never need to copy the entire object (like we still do in NewIterator() and MultiGet()) Test Plan: `make check` works. I will also do `make valgrind_check` before commit Reviewers: dhruba, haobo, kailiu, sdong, emayanke, tnovak Reviewed By: kailiu CC: leveldb Differential Revision: https://reviews.facebook.net/D15255
2014-01-24 22:52:08 +00:00
MemTableListVersion* current_;
// the number of elements that still need flushing
int num_flush_not_started_;
// committing in progress
bool commit_in_progress_;
// Requested a flush of memtables to storage. It's possible to request that
// a subset of memtables be flushed.
bool flush_requested_;
// The current memory usage.
size_t current_memory_usage_;
Refactor trimming logic for immutable memtables (#5022) Summary: MyRocks currently sets `max_write_buffer_number_to_maintain` in order to maintain enough history for transaction conflict checking. The effectiveness of this approach depends on the size of memtables. When memtables are small, it may not keep enough history; when memtables are large, this may consume too much memory. We are proposing a new way to configure memtable list history: by limiting the memory usage of immutable memtables. The new option is `max_write_buffer_size_to_maintain` and it will take precedence over the old `max_write_buffer_number_to_maintain` if they are both set to non-zero values. The new option accounts for the total memory usage of flushed immutable memtables and mutable memtable. When the total usage exceeds the limit, RocksDB may start dropping immutable memtables (which is also called trimming history), starting from the oldest one. The semantics of the old option actually works both as an upper bound and lower bound. History trimming will start if number of immutable memtables exceeds the limit, but it will never go below (limit-1) due to history trimming. In order the mimic the behavior with the new option, history trimming will stop if dropping the next immutable memtable causes the total memory usage go below the size limit. For example, assuming the size limit is set to 64MB, and there are 3 immutable memtables with sizes of 20, 30, 30. Although the total memory usage is 80MB > 64MB, dropping the oldest memtable will reduce the memory usage to 60MB < 64MB, so in this case no memtable will be dropped. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5022 Differential Revision: D14394062 Pulled By: miasantreble fbshipit-source-id: 60457a509c6af89d0993f988c9b5c2aa9e45f5c5
2019-08-23 20:54:09 +00:00
// Cached value of current_->MemoryAllocatedBytesExcludingLast().
std::atomic<size_t> current_memory_allocted_bytes_excluding_last_;
// Cached value of current_->HasHistory().
std::atomic<bool> current_has_history_;
};
// Installs memtable atomic flush results.
// In most cases, imm_lists is nullptr, and the function simply uses the
// immutable memtable lists associated with the cfds. There are unit tests that
// installs flush results for external immutable memtable lists other than the
// cfds' own immutable memtable lists, e.g. MemTableLIstTest. In this case,
// imm_lists parameter is not nullptr.
Status InstallMemtableAtomicFlushResults(
const autovector<MemTableList*>* imm_lists,
const autovector<ColumnFamilyData*>& cfds,
const autovector<const MutableCFOptions*>& mutable_cf_options_list,
const autovector<const autovector<MemTable*>*>& mems_list, VersionSet* vset,
LogsWithPrepTracker* prep_tracker, InstrumentedMutex* mu,
const autovector<FileMetaData*>& file_meta,
const autovector<std::list<std::unique_ptr<FlushJobInfo>>*>&
committed_flush_jobs_info,
autovector<MemTable*>* to_delete, FSDirectory* db_directory,
LogBuffer* log_buffer);
} // namespace ROCKSDB_NAMESPACE