2019-12-09 07:49:32 +00:00
|
|
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
//
|
|
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
//
|
|
|
|
// The test uses an array to compare against values written to the database.
|
|
|
|
// Keys written to the array are in 1:1 correspondence to the actual values in
|
|
|
|
// the database according to the formula in the function GenerateValue.
|
|
|
|
|
|
|
|
// Space is reserved in the array from 0 to FLAGS_max_key and values are
|
|
|
|
// randomly written/deleted/read from those positions. During verification we
|
|
|
|
// compare all the positions in the array. To shorten/elongate the running
|
|
|
|
// time, you could change the settings: FLAGS_max_key, FLAGS_ops_per_thread,
|
|
|
|
// (sometimes also FLAGS_threads).
|
|
|
|
//
|
|
|
|
// NOTE that if FLAGS_test_batches_snapshots is set, the test will have
|
|
|
|
// different behavior. See comment of the flag for details.
|
|
|
|
|
|
|
|
#ifdef GFLAGS
|
|
|
|
#pragma once
|
|
|
|
#include <fcntl.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <sys/types.h>
|
2020-07-09 21:33:42 +00:00
|
|
|
|
2019-12-09 07:49:32 +00:00
|
|
|
#include <algorithm>
|
|
|
|
#include <array>
|
|
|
|
#include <chrono>
|
|
|
|
#include <cinttypes>
|
|
|
|
#include <exception>
|
|
|
|
#include <queue>
|
|
|
|
#include <thread>
|
|
|
|
|
|
|
|
#include "db/db_impl/db_impl.h"
|
|
|
|
#include "db/version_set.h"
|
2019-12-16 22:28:06 +00:00
|
|
|
#include "db_stress_tool/db_stress_env_wrapper.h"
|
2019-12-09 07:49:32 +00:00
|
|
|
#include "db_stress_tool/db_stress_listener.h"
|
|
|
|
#include "db_stress_tool/db_stress_shared_state.h"
|
|
|
|
#include "db_stress_tool/db_stress_test_base.h"
|
|
|
|
#include "hdfs/env_hdfs.h"
|
|
|
|
#include "logging/logging.h"
|
|
|
|
#include "monitoring/histogram.h"
|
|
|
|
#include "options/options_helper.h"
|
|
|
|
#include "port/port.h"
|
|
|
|
#include "rocksdb/cache.h"
|
|
|
|
#include "rocksdb/env.h"
|
|
|
|
#include "rocksdb/slice.h"
|
|
|
|
#include "rocksdb/slice_transform.h"
|
|
|
|
#include "rocksdb/statistics.h"
|
|
|
|
#include "rocksdb/utilities/backupable_db.h"
|
|
|
|
#include "rocksdb/utilities/checkpoint.h"
|
|
|
|
#include "rocksdb/utilities/db_ttl.h"
|
|
|
|
#include "rocksdb/utilities/debug.h"
|
|
|
|
#include "rocksdb/utilities/options_util.h"
|
|
|
|
#include "rocksdb/utilities/transaction.h"
|
|
|
|
#include "rocksdb/utilities/transaction_db.h"
|
|
|
|
#include "rocksdb/write_batch.h"
|
2020-07-09 21:33:42 +00:00
|
|
|
#include "test_util/testutil.h"
|
2019-12-09 07:49:32 +00:00
|
|
|
#include "util/coding.h"
|
|
|
|
#include "util/compression.h"
|
|
|
|
#include "util/crc32c.h"
|
|
|
|
#include "util/gflags_compat.h"
|
|
|
|
#include "util/mutexlock.h"
|
|
|
|
#include "util/random.h"
|
|
|
|
#include "util/string_util.h"
|
2019-12-20 18:25:48 +00:00
|
|
|
#include "utilities/blob_db/blob_db.h"
|
2019-12-09 07:49:32 +00:00
|
|
|
#include "utilities/merge_operators.h"
|
|
|
|
|
|
|
|
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
|
|
|
|
using GFLAGS_NAMESPACE::RegisterFlagValidator;
|
|
|
|
using GFLAGS_NAMESPACE::SetUsageMessage;
|
|
|
|
|
|
|
|
DECLARE_uint64(seed);
|
|
|
|
DECLARE_bool(read_only);
|
|
|
|
DECLARE_int64(max_key);
|
2019-12-16 21:59:21 +00:00
|
|
|
DECLARE_double(hot_key_alpha);
|
2020-01-10 05:25:40 +00:00
|
|
|
DECLARE_int32(max_key_len);
|
|
|
|
DECLARE_string(key_len_percent_dist);
|
|
|
|
DECLARE_int32(key_window_scale_factor);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_int32(column_families);
|
|
|
|
DECLARE_string(options_file);
|
|
|
|
DECLARE_int64(active_width);
|
|
|
|
DECLARE_bool(test_batches_snapshots);
|
|
|
|
DECLARE_bool(atomic_flush);
|
|
|
|
DECLARE_bool(test_cf_consistency);
|
|
|
|
DECLARE_int32(threads);
|
|
|
|
DECLARE_int32(ttl);
|
|
|
|
DECLARE_int32(value_size_mult);
|
|
|
|
DECLARE_int32(compaction_readahead_size);
|
|
|
|
DECLARE_bool(enable_pipelined_write);
|
|
|
|
DECLARE_bool(verify_before_write);
|
|
|
|
DECLARE_bool(histogram);
|
|
|
|
DECLARE_bool(destroy_db_initially);
|
|
|
|
DECLARE_bool(verbose);
|
|
|
|
DECLARE_bool(progress_reports);
|
|
|
|
DECLARE_uint64(db_write_buffer_size);
|
|
|
|
DECLARE_int32(write_buffer_size);
|
|
|
|
DECLARE_int32(max_write_buffer_number);
|
|
|
|
DECLARE_int32(min_write_buffer_number_to_merge);
|
|
|
|
DECLARE_int32(max_write_buffer_number_to_maintain);
|
|
|
|
DECLARE_int64(max_write_buffer_size_to_maintain);
|
|
|
|
DECLARE_double(memtable_prefix_bloom_size_ratio);
|
|
|
|
DECLARE_bool(memtable_whole_key_filtering);
|
|
|
|
DECLARE_int32(open_files);
|
|
|
|
DECLARE_int64(compressed_cache_size);
|
|
|
|
DECLARE_int32(compaction_style);
|
2020-05-07 01:06:04 +00:00
|
|
|
DECLARE_int32(num_levels);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_int32(level0_file_num_compaction_trigger);
|
|
|
|
DECLARE_int32(level0_slowdown_writes_trigger);
|
|
|
|
DECLARE_int32(level0_stop_writes_trigger);
|
|
|
|
DECLARE_int32(block_size);
|
|
|
|
DECLARE_int32(format_version);
|
|
|
|
DECLARE_int32(index_block_restart_interval);
|
|
|
|
DECLARE_int32(max_background_compactions);
|
|
|
|
DECLARE_int32(num_bottom_pri_threads);
|
|
|
|
DECLARE_int32(compaction_thread_pool_adjust_interval);
|
|
|
|
DECLARE_int32(compaction_thread_pool_variations);
|
|
|
|
DECLARE_int32(max_background_flushes);
|
|
|
|
DECLARE_int32(universal_size_ratio);
|
|
|
|
DECLARE_int32(universal_min_merge_width);
|
|
|
|
DECLARE_int32(universal_max_merge_width);
|
|
|
|
DECLARE_int32(universal_max_size_amplification_percent);
|
|
|
|
DECLARE_int32(clear_column_family_one_in);
|
2020-03-19 00:11:06 +00:00
|
|
|
DECLARE_int32(get_live_files_one_in);
|
|
|
|
DECLARE_int32(get_sorted_wal_files_one_in);
|
|
|
|
DECLARE_int32(get_current_wal_file_one_in);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_int32(set_options_one_in);
|
|
|
|
DECLARE_int32(set_in_place_one_in);
|
|
|
|
DECLARE_int64(cache_size);
|
|
|
|
DECLARE_bool(cache_index_and_filter_blocks);
|
2020-10-11 21:52:49 +00:00
|
|
|
DECLARE_int32(top_level_index_pinning);
|
|
|
|
DECLARE_int32(partition_pinning);
|
|
|
|
DECLARE_int32(unpartitioned_pinning);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_bool(use_clock_cache);
|
|
|
|
DECLARE_uint64(subcompactions);
|
|
|
|
DECLARE_uint64(periodic_compaction_seconds);
|
|
|
|
DECLARE_uint64(compaction_ttl);
|
|
|
|
DECLARE_bool(allow_concurrent_memtable_write);
|
|
|
|
DECLARE_bool(enable_write_thread_adaptive_yield);
|
|
|
|
DECLARE_int32(reopen);
|
2019-12-10 16:38:23 +00:00
|
|
|
DECLARE_double(bloom_bits);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_bool(use_block_based_filter);
|
Experimental (production candidate) SST schema for Ribbon filter (#7658)
Summary:
Added experimental public API for Ribbon filter:
NewExperimentalRibbonFilterPolicy(). This experimental API will
take a "Bloom equivalent" bits per key, and configure the Ribbon
filter for the same FP rate as Bloom would have but ~30% space
savings. (Note: optimize_filters_for_memory is not yet implemented
for Ribbon filter. That can be added with no effect on schema.)
Internally, the Ribbon filter is configured using a "one_in_fp_rate"
value, which is 1 over desired FP rate. For example, use 100 for 1%
FP rate. I'm expecting this will be used in the future for configuring
Bloom-like filters, as I expect people to more commonly hold constant
the filter accuracy and change the space vs. time trade-off, rather than
hold constant the space (per key) and change the accuracy vs. time
trade-off, though we might make that available.
### Benchmarking
```
$ ./filter_bench -impl=2 -quick -m_keys_total_max=200 -average_keys_per_filter=100000 -net_includes_hashing
Building...
Build avg ns/key: 34.1341
Number of filters: 1993
Total size (MB): 238.488
Reported total allocated memory (MB): 262.875
Reported internal fragmentation: 10.2255%
Bits/key stored: 10.0029
----------------------------
Mixed inside/outside queries...
Single filter net ns/op: 18.7508
Random filter net ns/op: 258.246
Average FP rate %: 0.968672
----------------------------
Done. (For more info, run with -legend or -help.)
$ ./filter_bench -impl=3 -quick -m_keys_total_max=200 -average_keys_per_filter=100000 -net_includes_hashing
Building...
Build avg ns/key: 130.851
Number of filters: 1993
Total size (MB): 168.166
Reported total allocated memory (MB): 183.211
Reported internal fragmentation: 8.94626%
Bits/key stored: 7.05341
----------------------------
Mixed inside/outside queries...
Single filter net ns/op: 58.4523
Random filter net ns/op: 363.717
Average FP rate %: 0.952978
----------------------------
Done. (For more info, run with -legend or -help.)
```
168.166 / 238.488 = 0.705 -> 29.5% space reduction
130.851 / 34.1341 = 3.83x construction time for this Ribbon filter vs. lastest Bloom filter (could make that as little as about 2.5x for less space reduction)
### Working around a hashing "flaw"
bloom_test discovered a flaw in the simple hashing applied in
StandardHasher when num_starts == 1 (num_slots == 128), showing an
excessively high FP rate. The problem is that when many entries, on the
order of number of hash bits or kCoeffBits, are associated with the same
start location, the correlation between the CoeffRow and ResultRow (for
efficiency) can lead to a solution that is "universal," or nearly so, for
entries mapping to that start location. (Normally, variance in start
location breaks the effective association between CoeffRow and
ResultRow; the same value for CoeffRow is effectively different if start
locations are different.) Without kUseSmash and with num_starts > 1 (thus
num_starts ~= num_slots), this flaw should be completely irrelevant. Even
with 10M slots, the chances of a single slot having just 16 (or more)
entries map to it--not enough to cause an FP problem, which would be local
to that slot if it happened--is 1 in millions. This spreadsheet formula
shows that: =1/(10000000*(1 - POISSON(15, 1, TRUE)))
As kUseSmash==false (the setting for Standard128RibbonBitsBuilder) is
intended for CPU efficiency of filters with many more entries/slots than
kCoeffBits, a very reasonable work-around is to disallow num_starts==1
when !kUseSmash, by making the minimum non-zero number of slots
2*kCoeffBits. This is the work-around I've applied. This also means that
the new Ribbon filter schema (Standard128RibbonBitsBuilder) is not
space-efficient for less than a few hundred entries. Because of this, I
have made it fall back on constructing a Bloom filter, under existing
schema, when that is more space efficient for small filters. (We can
change this in the future if we want.)
TODO: better unit tests for this case in ribbon_test, and probably
update StandardHasher for kUseSmash case so that it can scale nicely to
small filters.
### Other related changes
* Add Ribbon filter to stress/crash test
* Add Ribbon filter to filter_bench as -impl=3
* Add option string support, as in "filter_policy=experimental_ribbon:5.678;"
where 5.678 is the Bloom equivalent bits per key.
* Rename internal mode BloomFilterPolicy::kAuto to kAutoBloom
* Add a general BuiltinFilterBitsBuilder::CalculateNumEntry based on
binary searching CalculateSpace (inefficient), so that subclasses
(especially experimental ones) don't have to provide an efficient
implementation inverting CalculateSpace.
* Minor refactor FastLocalBloomBitsBuilder for new base class
XXH3pFilterBitsBuilder shared with new Standard128RibbonBitsBuilder,
which allows the latter to fall back on Bloom construction in some
extreme cases.
* Mostly updated bloom_test for Ribbon filter, though a test like
FullBloomTest::Schema is a next TODO to ensure schema stability
(in case this becomes production-ready schema as it is).
* Add some APIs to ribbon_impl.h for configuring Ribbon filters.
Although these are reasonably covered by bloom_test, TODO more unit
tests in ribbon_test
* Added a "tool" FindOccupancyForSuccessRate to ribbon_test to get data
for constructing the linear approximations in GetNumSlotsFor95PctSuccess.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7658
Test Plan:
Some unit tests updated but other testing is left TODO. This
is considered experimental but laying down schema compatibility as early
as possible in case it proves production-quality. Also tested in
stress/crash test.
Reviewed By: jay-zhuang
Differential Revision: D24899349
Pulled By: pdillinger
fbshipit-source-id: 9715f3e6371c959d923aea8077c9423c7a9f82b8
2020-11-13 04:45:02 +00:00
|
|
|
DECLARE_bool(use_ribbon_filter);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_bool(partition_filters);
|
Minimize memory internal fragmentation for Bloom filters (#6427)
Summary:
New experimental option BBTO::optimize_filters_for_memory builds
filters that maximize their use of "usable size" from malloc_usable_size,
which is also used to compute block cache charges.
Rather than always "rounding up," we track state in the
BloomFilterPolicy object to mix essentially "rounding down" and
"rounding up" so that the average FP rate of all generated filters is
the same as without the option. (YMMV as heavily accessed filters might
be unluckily lower accuracy.)
Thus, the option near-minimizes what the block cache considers as
"memory used" for a given target Bloom filter false positive rate and
Bloom filter implementation. There are no forward or backward
compatibility issues with this change, though it only works on the
format_version=5 Bloom filter.
With Jemalloc, we see about 10% reduction in memory footprint (and block
cache charge) for Bloom filters, but 1-2% increase in storage footprint,
due to encoding efficiency losses (FP rate is non-linear with bits/key).
Why not weighted random round up/down rather than state tracking? By
only requiring malloc_usable_size, we don't actually know what the next
larger and next smaller usable sizes for the allocator are. We pick a
requested size, accept and use whatever usable size it has, and use the
difference to inform our next choice. This allows us to narrow in on the
right balance without tracking/predicting usable sizes.
Why not weight history of generated filter false positive rates by
number of keys? This could lead to excess skew in small filters after
generating a large filter.
Results from filter_bench with jemalloc (irrelevant details omitted):
(normal keys/filter, but high variance)
$ ./filter_bench -quick -impl=2 -average_keys_per_filter=30000 -vary_key_count_ratio=0.9
Build avg ns/key: 29.6278
Number of filters: 5516
Total size (MB): 200.046
Reported total allocated memory (MB): 220.597
Reported internal fragmentation: 10.2732%
Bits/key stored: 10.0097
Average FP rate %: 0.965228
$ ./filter_bench -quick -impl=2 -average_keys_per_filter=30000 -vary_key_count_ratio=0.9 -optimize_filters_for_memory
Build avg ns/key: 30.5104
Number of filters: 5464
Total size (MB): 200.015
Reported total allocated memory (MB): 200.322
Reported internal fragmentation: 0.153709%
Bits/key stored: 10.1011
Average FP rate %: 0.966313
(very few keys / filter, optimization not as effective due to ~59 byte
internal fragmentation in blocked Bloom filter representation)
$ ./filter_bench -quick -impl=2 -average_keys_per_filter=1000 -vary_key_count_ratio=0.9
Build avg ns/key: 29.5649
Number of filters: 162950
Total size (MB): 200.001
Reported total allocated memory (MB): 224.624
Reported internal fragmentation: 12.3117%
Bits/key stored: 10.2951
Average FP rate %: 0.821534
$ ./filter_bench -quick -impl=2 -average_keys_per_filter=1000 -vary_key_count_ratio=0.9 -optimize_filters_for_memory
Build avg ns/key: 31.8057
Number of filters: 159849
Total size (MB): 200
Reported total allocated memory (MB): 208.846
Reported internal fragmentation: 4.42297%
Bits/key stored: 10.4948
Average FP rate %: 0.811006
(high keys/filter)
$ ./filter_bench -quick -impl=2 -average_keys_per_filter=1000000 -vary_key_count_ratio=0.9
Build avg ns/key: 29.7017
Number of filters: 164
Total size (MB): 200.352
Reported total allocated memory (MB): 221.5
Reported internal fragmentation: 10.5552%
Bits/key stored: 10.0003
Average FP rate %: 0.969358
$ ./filter_bench -quick -impl=2 -average_keys_per_filter=1000000 -vary_key_count_ratio=0.9 -optimize_filters_for_memory
Build avg ns/key: 30.7131
Number of filters: 160
Total size (MB): 200.928
Reported total allocated memory (MB): 200.938
Reported internal fragmentation: 0.00448054%
Bits/key stored: 10.1852
Average FP rate %: 0.963387
And from db_bench (block cache) with jemalloc:
$ ./db_bench -db=/dev/shm/dbbench.no_optimize -benchmarks=fillrandom -format_version=5 -value_size=90 -bloom_bits=10 -num=2000000 -threads=8 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=false
$ ./db_bench -db=/dev/shm/dbbench -benchmarks=fillrandom -format_version=5 -value_size=90 -bloom_bits=10 -num=2000000 -threads=8 -optimize_filters_for_memory -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=false
$ (for FILE in /dev/shm/dbbench.no_optimize/*.sst; do ./sst_dump --file=$FILE --show_properties | grep 'filter block' ; done) | awk '{ t += $4; } END { print t; }'
17063835
$ (for FILE in /dev/shm/dbbench/*.sst; do ./sst_dump --file=$FILE --show_properties | grep 'filter block' ; done) | awk '{ t += $4; } END { print t; }'
17430747
$ #^ 2.1% additional filter storage
$ ./db_bench -db=/dev/shm/dbbench.no_optimize -use_existing_db -benchmarks=readrandom,stats -statistics -bloom_bits=10 -num=2000000 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=false -duration=10 -cache_index_and_filter_blocks -cache_size=1000000000
rocksdb.block.cache.index.add COUNT : 33
rocksdb.block.cache.index.bytes.insert COUNT : 8440400
rocksdb.block.cache.filter.add COUNT : 33
rocksdb.block.cache.filter.bytes.insert COUNT : 21087528
rocksdb.bloom.filter.useful COUNT : 4963889
rocksdb.bloom.filter.full.positive COUNT : 1214081
rocksdb.bloom.filter.full.true.positive COUNT : 1161999
$ #^ 1.04 % observed FP rate
$ ./db_bench -db=/dev/shm/dbbench -use_existing_db -benchmarks=readrandom,stats -statistics -bloom_bits=10 -num=2000000 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=false -optimize_filters_for_memory -duration=10 -cache_index_and_filter_blocks -cache_size=1000000000
rocksdb.block.cache.index.add COUNT : 33
rocksdb.block.cache.index.bytes.insert COUNT : 8448592
rocksdb.block.cache.filter.add COUNT : 33
rocksdb.block.cache.filter.bytes.insert COUNT : 18220328
rocksdb.bloom.filter.useful COUNT : 5360933
rocksdb.bloom.filter.full.positive COUNT : 1321315
rocksdb.bloom.filter.full.true.positive COUNT : 1262999
$ #^ 1.08 % observed FP rate, 13.6% less memory usage for filters
(Due to specific key density, this example tends to generate filters that are "worse than average" for internal fragmentation. "Better than average" cases can show little or no improvement.)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6427
Test Plan: unit test added, 'make check' with gcc, clang and valgrind
Reviewed By: siying
Differential Revision: D22124374
Pulled By: pdillinger
fbshipit-source-id: f3e3aa152f9043ddf4fae25799e76341d0d8714e
2020-06-22 20:30:57 +00:00
|
|
|
DECLARE_bool(optimize_filters_for_memory);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_int32(index_type);
|
|
|
|
DECLARE_string(db);
|
|
|
|
DECLARE_string(secondaries_base);
|
2019-12-20 16:46:52 +00:00
|
|
|
DECLARE_bool(test_secondary);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_string(expected_values_path);
|
|
|
|
DECLARE_bool(verify_checksum);
|
|
|
|
DECLARE_bool(mmap_read);
|
|
|
|
DECLARE_bool(mmap_write);
|
|
|
|
DECLARE_bool(use_direct_reads);
|
|
|
|
DECLARE_bool(use_direct_io_for_flush_and_compaction);
|
2020-04-25 06:58:13 +00:00
|
|
|
DECLARE_bool(mock_direct_io);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_bool(statistics);
|
|
|
|
DECLARE_bool(sync);
|
|
|
|
DECLARE_bool(use_fsync);
|
|
|
|
DECLARE_int32(kill_random_test);
|
2020-06-19 22:26:05 +00:00
|
|
|
DECLARE_string(kill_exclude_prefixes);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_bool(disable_wal);
|
|
|
|
DECLARE_uint64(recycle_log_file_num);
|
|
|
|
DECLARE_int64(target_file_size_base);
|
|
|
|
DECLARE_int32(target_file_size_multiplier);
|
|
|
|
DECLARE_uint64(max_bytes_for_level_base);
|
|
|
|
DECLARE_double(max_bytes_for_level_multiplier);
|
|
|
|
DECLARE_int32(range_deletion_width);
|
|
|
|
DECLARE_uint64(rate_limiter_bytes_per_sec);
|
|
|
|
DECLARE_bool(rate_limit_bg_reads);
|
2020-02-26 00:43:33 +00:00
|
|
|
DECLARE_uint64(sst_file_manager_bytes_per_sec);
|
|
|
|
DECLARE_uint64(sst_file_manager_bytes_per_truncate);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_bool(use_txn);
|
2019-12-12 18:34:52 +00:00
|
|
|
DECLARE_uint64(txn_write_policy);
|
2019-12-13 18:23:01 +00:00
|
|
|
DECLARE_bool(unordered_write);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_int32(backup_one_in);
|
Fix, enable, and enhance backup/restore in db_stress (#7348)
Summary:
Although added to db_stress, testing of backup/restore
was never integrated into the crash test, originally concerned about
performance. I've enabled it now and to address the peformance concern,
testing backup/restore is always skipped once the db exceeds a certain
size threshold, default 100MB. This should provide sufficient
opportunity for testing BackupEngine without bogging down everything
else with heavier and heavier operations.
Also fixed backup/restore in db_stress by making sure PurgeOldBackups
can remove manifest files, which are normally kept around for db_stress.
Added more coverage of backup options, and up to three backups being
saved in one backup directory (in some cases).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7348
Test Plan:
ran 'make blackbox_crash_test' for a while, with heightened
probabilitly of taking backups (1/10k). Also confirmed with some debug
output that the code is being covered, TestBackupRestore only takes
a few seconds to complete when triggered, and even at 1/10k and ~50MB
database, there's <,~ 1 thread testing backups at any time.
Reviewed By: ajkr
Differential Revision: D23510835
Pulled By: pdillinger
fbshipit-source-id: b6b8735591808141f81f10773ac31634cf03b6c0
2020-09-04 03:11:45 +00:00
|
|
|
DECLARE_uint64(backup_max_size);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_int32(checkpoint_one_in);
|
|
|
|
DECLARE_int32(ingest_external_file_one_in);
|
|
|
|
DECLARE_int32(ingest_external_file_width);
|
|
|
|
DECLARE_int32(compact_files_one_in);
|
|
|
|
DECLARE_int32(compact_range_one_in);
|
2020-08-10 23:16:19 +00:00
|
|
|
DECLARE_int32(mark_for_compaction_one_file_in);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_int32(flush_one_in);
|
2019-12-10 23:45:25 +00:00
|
|
|
DECLARE_int32(pause_background_one_in);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_int32(compact_range_width);
|
|
|
|
DECLARE_int32(acquire_snapshot_one_in);
|
|
|
|
DECLARE_bool(compare_full_db_state_snapshot);
|
|
|
|
DECLARE_uint64(snapshot_hold_ops);
|
2019-12-14 23:17:05 +00:00
|
|
|
DECLARE_bool(long_running_snapshots);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_bool(use_multiget);
|
|
|
|
DECLARE_int32(readpercent);
|
|
|
|
DECLARE_int32(prefixpercent);
|
|
|
|
DECLARE_int32(writepercent);
|
|
|
|
DECLARE_int32(delpercent);
|
|
|
|
DECLARE_int32(delrangepercent);
|
|
|
|
DECLARE_int32(nooverwritepercent);
|
|
|
|
DECLARE_int32(iterpercent);
|
|
|
|
DECLARE_uint64(num_iterations);
|
|
|
|
DECLARE_string(compression_type);
|
2019-12-21 00:13:19 +00:00
|
|
|
DECLARE_string(bottommost_compression_type);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_int32(compression_max_dict_bytes);
|
|
|
|
DECLARE_int32(compression_zstd_max_train_bytes);
|
2020-04-30 17:46:54 +00:00
|
|
|
DECLARE_int32(compression_parallel_threads);
|
Limit buffering for collecting samples for compression dictionary (#7970)
Summary:
For dictionary compression, we need to collect some representative samples of the data to be compressed, which we use to either generate or train (when `CompressionOptions::zstd_max_train_bytes > 0`) a dictionary. Previously, the strategy was to buffer all the data blocks during flush, and up to the target file size during compaction. That strategy allowed us to randomly pick samples from as wide a range as possible that'd be guaranteed to land in a single output file.
However, some users try to make huge files in memory-constrained environments, where this strategy can cause OOM. This PR introduces an option, `CompressionOptions::max_dict_buffer_bytes`, that limits how much data blocks are buffered before we switch to unbuffered mode (which means creating the per-SST dictionary, writing out the buffered data, and compressing/writing new blocks as soon as they are built). It is not strict as we currently buffer more than just data blocks -- also keys are buffered. But it does make a step towards giving users predictable memory usage.
Related changes include:
- Changed sampling for dictionary compression to select unique data blocks when there is limited availability of data blocks
- Made use of `BlockBuilder::SwapAndReset()` to save an allocation+memcpy when buffering data blocks for building a dictionary
- Changed `ParseBoolean()` to accept an input containing characters after the boolean. This is necessary since, with this PR, a value for `CompressionOptions::enabled` is no longer necessarily the final component in the `CompressionOptions` string.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7970
Test Plan:
- updated `CompressionOptions` unit tests to verify limit is respected (to the extent expected in the current implementation) in various scenarios of flush/compaction to bottommost/non-bottommost level
- looked at jemalloc heap profiles right before and after switching to unbuffered mode during flush/compaction. Verified memory usage in buffering is proportional to the limit set.
Reviewed By: pdillinger
Differential Revision: D26467994
Pulled By: ajkr
fbshipit-source-id: 3da4ef9fba59974e4ef40e40c01611002c861465
2021-02-19 22:06:59 +00:00
|
|
|
DECLARE_uint64(compression_max_dict_buffer_bytes);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_string(checksum_type);
|
|
|
|
DECLARE_string(hdfs);
|
|
|
|
DECLARE_string(env_uri);
|
2020-08-17 18:51:45 +00:00
|
|
|
DECLARE_string(fs_uri);
|
2019-12-09 07:49:32 +00:00
|
|
|
DECLARE_uint64(ops_per_thread);
|
|
|
|
DECLARE_uint64(log2_keys_per_lock);
|
|
|
|
DECLARE_uint64(max_manifest_file_size);
|
|
|
|
DECLARE_bool(in_place_update);
|
|
|
|
DECLARE_int32(secondary_catch_up_one_in);
|
|
|
|
DECLARE_string(memtablerep);
|
|
|
|
DECLARE_int32(prefix_size);
|
|
|
|
DECLARE_bool(use_merge);
|
|
|
|
DECLARE_bool(use_full_merge_v1);
|
2019-12-11 05:53:43 +00:00
|
|
|
DECLARE_int32(sync_wal_one_in);
|
2019-12-16 23:24:26 +00:00
|
|
|
DECLARE_bool(avoid_unnecessary_blocking_io);
|
|
|
|
DECLARE_bool(write_dbid_to_manifest);
|
2020-04-16 19:09:18 +00:00
|
|
|
DECLARE_bool(avoid_flush_during_recovery);
|
2019-12-16 23:24:26 +00:00
|
|
|
DECLARE_uint64(max_write_batch_group_size_bytes);
|
|
|
|
DECLARE_bool(level_compaction_dynamic_level_bytes);
|
2019-12-18 04:43:06 +00:00
|
|
|
DECLARE_int32(verify_checksum_one_in);
|
2019-12-20 16:46:52 +00:00
|
|
|
DECLARE_int32(verify_db_one_in);
|
|
|
|
DECLARE_int32(continuous_verification_interval);
|
2020-07-14 19:10:56 +00:00
|
|
|
DECLARE_int32(get_property_one_in);
|
2020-09-04 06:49:27 +00:00
|
|
|
DECLARE_string(file_checksum_impl);
|
2019-12-09 07:49:32 +00:00
|
|
|
|
2019-12-20 18:25:48 +00:00
|
|
|
#ifndef ROCKSDB_LITE
|
2021-02-02 19:39:20 +00:00
|
|
|
// Options for StackableDB-based BlobDB
|
2019-12-20 18:25:48 +00:00
|
|
|
DECLARE_bool(use_blob_db);
|
|
|
|
DECLARE_uint64(blob_db_min_blob_size);
|
|
|
|
DECLARE_uint64(blob_db_bytes_per_sync);
|
|
|
|
DECLARE_uint64(blob_db_file_size);
|
|
|
|
DECLARE_bool(blob_db_enable_gc);
|
|
|
|
DECLARE_double(blob_db_gc_cutoff);
|
|
|
|
#endif // !ROCKSDB_LITE
|
2021-02-02 19:39:20 +00:00
|
|
|
|
|
|
|
// Options for integrated BlobDB
|
|
|
|
DECLARE_bool(allow_setting_blob_options_dynamically);
|
|
|
|
DECLARE_bool(enable_blob_files);
|
|
|
|
DECLARE_uint64(min_blob_size);
|
|
|
|
DECLARE_uint64(blob_file_size);
|
|
|
|
DECLARE_string(blob_compression_type);
|
|
|
|
DECLARE_bool(enable_blob_garbage_collection);
|
|
|
|
DECLARE_double(blob_garbage_collection_age_cutoff);
|
|
|
|
|
2019-12-21 05:42:19 +00:00
|
|
|
DECLARE_int32(approximate_size_one_in);
|
2020-04-16 18:10:53 +00:00
|
|
|
DECLARE_bool(sync_fault_injection);
|
2019-12-20 18:25:48 +00:00
|
|
|
|
2020-06-13 02:24:11 +00:00
|
|
|
DECLARE_bool(best_efforts_recovery);
|
|
|
|
DECLARE_bool(skip_verifydb);
|
2020-06-18 16:51:14 +00:00
|
|
|
DECLARE_bool(enable_compaction_filter);
|
2020-09-30 21:39:47 +00:00
|
|
|
DECLARE_bool(paranoid_file_checks);
|
Integrity protection for live updates to WriteBatch (#7748)
Summary:
This PR adds the foundation classes for key-value integrity protection and the first use case: protecting live updates from the source buffers added to `WriteBatch` through the destination buffer in `MemTable`. The width of the protection info is not yet configurable -- only eight bytes per key is supported. This PR allows users to enable protection by constructing `WriteBatch` with `protection_bytes_per_key == 8`. It does not yet expose a way for users to get integrity protection via other write APIs (e.g., `Put()`, `Merge()`, `Delete()`, etc.).
The foundation classes (`ProtectionInfo.*`) embed the coverage info in their type, and provide `Protect.*()` and `Strip.*()` functions to navigate between types with different coverage. For making bytes per key configurable (for powers of two up to eight) in the future, these classes are templated on the unsigned integer type used to store the protection info. That integer contains the XOR'd result of hashes with independent seeds for all covered fields. For integer fields, the hash is computed on the raw unadjusted bytes, so the result is endian-dependent. The most significant bytes are truncated when the hash value (8 bytes) is wider than the protection integer.
When `WriteBatch` is constructed with `protection_bytes_per_key == 8`, we hold a `ProtectionInfoKVOTC` (i.e., one that covers key, value, optype aka `ValueType`, timestamp, and CF ID) for each entry added to the batch. The protection info is generated from the original buffers passed by the user, as well as the original metadata generated internally. When writing to memtable, each entry is transformed to a `ProtectionInfoKVOTS` (i.e., dropping coverage of CF ID and adding coverage of sequence number), since at that point we know the sequence number, and have already selected a memtable corresponding to a particular CF. This protection info is verified once the entry is encoded in the `MemTable` buffer.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7748
Test Plan:
- an integration test to verify a wide variety of single-byte changes to the encoded `MemTable` buffer are caught
- add to stress/crash test to verify it works in variety of configs/operations without intentional corruption
- [deferred] unit tests for `ProtectionInfo.*` classes for edge cases like KV swap, `SliceParts` and `Slice` APIs are interchangeable, etc.
Reviewed By: pdillinger
Differential Revision: D25754492
Pulled By: ajkr
fbshipit-source-id: e481bac6c03c2ab268be41359730f1ceb9964866
2021-01-29 20:17:17 +00:00
|
|
|
DECLARE_uint64(batch_protection_bytes_per_key);
|
2020-06-13 02:24:11 +00:00
|
|
|
|
2019-12-09 22:36:10 +00:00
|
|
|
const long KB = 1024;
|
|
|
|
const int kRandomValueMaxFactor = 3;
|
|
|
|
const int kValueMaxLen = 100;
|
2019-12-09 07:49:32 +00:00
|
|
|
|
2019-12-16 22:28:06 +00:00
|
|
|
// wrapped posix or hdfs environment
|
2020-12-17 19:51:04 +00:00
|
|
|
extern ROCKSDB_NAMESPACE::Env* db_stress_env;
|
2020-04-11 00:18:56 +00:00
|
|
|
#ifndef NDEBUG
|
2020-07-09 21:33:42 +00:00
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
class FaultInjectionTestFS;
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
2020-04-11 00:18:56 +00:00
|
|
|
extern std::shared_ptr<ROCKSDB_NAMESPACE::FaultInjectionTestFS> fault_fs_guard;
|
|
|
|
#endif
|
2019-12-09 07:49:32 +00:00
|
|
|
|
2020-02-20 20:07:53 +00:00
|
|
|
extern enum ROCKSDB_NAMESPACE::CompressionType compression_type_e;
|
|
|
|
extern enum ROCKSDB_NAMESPACE::CompressionType bottommost_compression_type_e;
|
|
|
|
extern enum ROCKSDB_NAMESPACE::ChecksumType checksum_type_e;
|
2019-12-09 07:49:32 +00:00
|
|
|
|
|
|
|
enum RepFactory { kSkipList, kHashSkipList, kVectorRep };
|
|
|
|
|
|
|
|
inline enum RepFactory StringToRepFactory(const char* ctype) {
|
|
|
|
assert(ctype);
|
|
|
|
|
|
|
|
if (!strcasecmp(ctype, "skip_list"))
|
|
|
|
return kSkipList;
|
|
|
|
else if (!strcasecmp(ctype, "prefix_hash"))
|
|
|
|
return kHashSkipList;
|
|
|
|
else if (!strcasecmp(ctype, "vector"))
|
|
|
|
return kVectorRep;
|
|
|
|
|
|
|
|
fprintf(stdout, "Cannot parse memreptable %s\n", ctype);
|
|
|
|
return kSkipList;
|
|
|
|
}
|
|
|
|
|
|
|
|
extern enum RepFactory FLAGS_rep_factory;
|
|
|
|
|
2020-02-20 20:07:53 +00:00
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
inline enum ROCKSDB_NAMESPACE::CompressionType StringToCompressionType(
|
2019-12-09 07:49:32 +00:00
|
|
|
const char* ctype) {
|
|
|
|
assert(ctype);
|
|
|
|
|
2020-02-20 20:07:53 +00:00
|
|
|
ROCKSDB_NAMESPACE::CompressionType ret_compression_type;
|
2019-12-09 07:49:32 +00:00
|
|
|
|
2019-12-21 00:13:19 +00:00
|
|
|
if (!strcasecmp(ctype, "disable")) {
|
2020-02-20 20:07:53 +00:00
|
|
|
ret_compression_type = ROCKSDB_NAMESPACE::kDisableCompressionOption;
|
2019-12-21 00:13:19 +00:00
|
|
|
} else if (!strcasecmp(ctype, "none")) {
|
2020-02-20 20:07:53 +00:00
|
|
|
ret_compression_type = ROCKSDB_NAMESPACE::kNoCompression;
|
2019-12-21 00:13:19 +00:00
|
|
|
} else if (!strcasecmp(ctype, "snappy")) {
|
2020-02-20 20:07:53 +00:00
|
|
|
ret_compression_type = ROCKSDB_NAMESPACE::kSnappyCompression;
|
2019-12-21 00:13:19 +00:00
|
|
|
} else if (!strcasecmp(ctype, "zlib")) {
|
2020-02-20 20:07:53 +00:00
|
|
|
ret_compression_type = ROCKSDB_NAMESPACE::kZlibCompression;
|
2019-12-21 00:13:19 +00:00
|
|
|
} else if (!strcasecmp(ctype, "bzip2")) {
|
2020-02-20 20:07:53 +00:00
|
|
|
ret_compression_type = ROCKSDB_NAMESPACE::kBZip2Compression;
|
2019-12-21 00:13:19 +00:00
|
|
|
} else if (!strcasecmp(ctype, "lz4")) {
|
2020-02-20 20:07:53 +00:00
|
|
|
ret_compression_type = ROCKSDB_NAMESPACE::kLZ4Compression;
|
2019-12-21 00:13:19 +00:00
|
|
|
} else if (!strcasecmp(ctype, "lz4hc")) {
|
2020-02-20 20:07:53 +00:00
|
|
|
ret_compression_type = ROCKSDB_NAMESPACE::kLZ4HCCompression;
|
2019-12-21 00:13:19 +00:00
|
|
|
} else if (!strcasecmp(ctype, "xpress")) {
|
2020-02-20 20:07:53 +00:00
|
|
|
ret_compression_type = ROCKSDB_NAMESPACE::kXpressCompression;
|
2019-12-21 00:13:19 +00:00
|
|
|
} else if (!strcasecmp(ctype, "zstd")) {
|
2020-02-20 20:07:53 +00:00
|
|
|
ret_compression_type = ROCKSDB_NAMESPACE::kZSTD;
|
2019-12-21 00:13:19 +00:00
|
|
|
} else {
|
|
|
|
fprintf(stderr, "Cannot parse compression type '%s'\n", ctype);
|
2020-02-20 20:07:53 +00:00
|
|
|
ret_compression_type =
|
|
|
|
ROCKSDB_NAMESPACE::kSnappyCompression; // default value
|
2019-12-21 00:13:19 +00:00
|
|
|
}
|
2020-02-20 20:07:53 +00:00
|
|
|
if (ret_compression_type != ROCKSDB_NAMESPACE::kDisableCompressionOption &&
|
2019-12-21 00:13:19 +00:00
|
|
|
!CompressionTypeSupported(ret_compression_type)) {
|
|
|
|
// Use no compression will be more portable but considering this is
|
|
|
|
// only a stress test and snappy is widely available. Use snappy here.
|
2020-02-20 20:07:53 +00:00
|
|
|
ret_compression_type = ROCKSDB_NAMESPACE::kSnappyCompression;
|
2019-12-21 00:13:19 +00:00
|
|
|
}
|
|
|
|
return ret_compression_type;
|
2019-12-09 07:49:32 +00:00
|
|
|
}
|
|
|
|
|
2020-02-20 20:07:53 +00:00
|
|
|
inline enum ROCKSDB_NAMESPACE::ChecksumType StringToChecksumType(
|
|
|
|
const char* ctype) {
|
2019-12-09 07:49:32 +00:00
|
|
|
assert(ctype);
|
2020-02-20 20:07:53 +00:00
|
|
|
auto iter = ROCKSDB_NAMESPACE::checksum_type_string_map.find(ctype);
|
|
|
|
if (iter != ROCKSDB_NAMESPACE::checksum_type_string_map.end()) {
|
2019-12-09 07:49:32 +00:00
|
|
|
return iter->second;
|
|
|
|
}
|
|
|
|
fprintf(stderr, "Cannot parse checksum type '%s'\n", ctype);
|
2020-02-20 20:07:53 +00:00
|
|
|
return ROCKSDB_NAMESPACE::kCRC32c;
|
2019-12-09 07:49:32 +00:00
|
|
|
}
|
|
|
|
|
2020-02-20 20:07:53 +00:00
|
|
|
inline std::string ChecksumTypeToString(ROCKSDB_NAMESPACE::ChecksumType ctype) {
|
2019-12-09 07:49:32 +00:00
|
|
|
auto iter = std::find_if(
|
2020-02-20 20:07:53 +00:00
|
|
|
ROCKSDB_NAMESPACE::checksum_type_string_map.begin(),
|
|
|
|
ROCKSDB_NAMESPACE::checksum_type_string_map.end(),
|
|
|
|
[&](const std::pair<std::string, ROCKSDB_NAMESPACE::ChecksumType>&
|
2019-12-09 07:49:32 +00:00
|
|
|
name_and_enum_val) { return name_and_enum_val.second == ctype; });
|
2020-02-20 20:07:53 +00:00
|
|
|
assert(iter != ROCKSDB_NAMESPACE::checksum_type_string_map.end());
|
2019-12-09 07:49:32 +00:00
|
|
|
return iter->first;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline std::vector<std::string> SplitString(std::string src) {
|
|
|
|
std::vector<std::string> ret;
|
|
|
|
if (src.empty()) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
size_t pos = 0;
|
|
|
|
size_t pos_comma;
|
|
|
|
while ((pos_comma = src.find(',', pos)) != std::string::npos) {
|
|
|
|
ret.push_back(src.substr(pos, pos_comma - pos));
|
|
|
|
pos = pos_comma + 1;
|
|
|
|
}
|
|
|
|
ret.push_back(src.substr(pos, src.length()));
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
#pragma warning(push)
|
|
|
|
// truncation of constant value on static_cast
|
|
|
|
#pragma warning(disable : 4309)
|
|
|
|
#endif
|
2020-02-20 20:07:53 +00:00
|
|
|
inline bool GetNextPrefix(const ROCKSDB_NAMESPACE::Slice& src, std::string* v) {
|
2019-12-09 07:49:32 +00:00
|
|
|
std::string ret = src.ToString();
|
|
|
|
for (int i = static_cast<int>(ret.size()) - 1; i >= 0; i--) {
|
|
|
|
if (ret[i] != static_cast<char>(255)) {
|
|
|
|
ret[i] = ret[i] + 1;
|
|
|
|
break;
|
|
|
|
} else if (i != 0) {
|
|
|
|
ret[i] = 0;
|
|
|
|
} else {
|
|
|
|
// all FF. No next prefix
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*v = ret;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
#pragma warning(pop)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// convert long to a big-endian slice key
|
2020-01-10 05:25:40 +00:00
|
|
|
extern inline std::string GetStringFromInt(int64_t val) {
|
2019-12-09 07:49:32 +00:00
|
|
|
std::string little_endian_key;
|
|
|
|
std::string big_endian_key;
|
|
|
|
PutFixed64(&little_endian_key, val);
|
|
|
|
assert(little_endian_key.size() == sizeof(val));
|
|
|
|
big_endian_key.resize(sizeof(val));
|
|
|
|
for (size_t i = 0; i < sizeof(val); ++i) {
|
|
|
|
big_endian_key[i] = little_endian_key[sizeof(val) - 1 - i];
|
|
|
|
}
|
|
|
|
return big_endian_key;
|
|
|
|
}
|
|
|
|
|
2020-01-10 05:25:40 +00:00
|
|
|
// A struct for maintaining the parameters for generating variable length keys
|
|
|
|
struct KeyGenContext {
|
|
|
|
// Number of adjacent keys in one cycle of key lengths
|
|
|
|
uint64_t window;
|
|
|
|
// Number of keys of each possible length in a given window
|
|
|
|
std::vector<uint64_t> weights;
|
|
|
|
};
|
|
|
|
extern KeyGenContext key_gen_ctx;
|
|
|
|
|
|
|
|
// Generate a variable length key string from the given int64 val. The
|
|
|
|
// order of the keys is preserved. The key could be anywhere from 8 to
|
|
|
|
// max_key_len * 8 bytes.
|
|
|
|
// The algorithm picks the length based on the
|
|
|
|
// offset of the val within a configured window and the distribution of the
|
|
|
|
// number of keys of various lengths in that window. For example, if x, y, x are
|
|
|
|
// the weights assigned to each possible key length, the keys generated would be
|
|
|
|
// - {0}...{x-1}
|
|
|
|
// {(x-1),0}..{(x-1),(y-1)},{(x-1),(y-1),0}..{(x-1),(y-1),(z-1)} and so on.
|
|
|
|
// Additionally, a trailer of 0-7 bytes could be appended.
|
|
|
|
extern inline std::string Key(int64_t val) {
|
|
|
|
uint64_t window = key_gen_ctx.window;
|
|
|
|
size_t levels = key_gen_ctx.weights.size();
|
|
|
|
std::string key;
|
|
|
|
|
|
|
|
for (size_t level = 0; level < levels; ++level) {
|
|
|
|
uint64_t weight = key_gen_ctx.weights[level];
|
|
|
|
uint64_t offset = static_cast<uint64_t>(val) % window;
|
|
|
|
uint64_t mult = static_cast<uint64_t>(val) / window;
|
|
|
|
uint64_t pfx = mult * weight + (offset >= weight ? weight - 1 : offset);
|
|
|
|
key.append(GetStringFromInt(pfx));
|
|
|
|
if (offset < weight) {
|
|
|
|
// Use the bottom 3 bits of offset as the number of trailing 'x's in the
|
|
|
|
// key. If the next key is going to be of the next level, then skip the
|
|
|
|
// trailer as it would break ordering. If the key length is already at max,
|
|
|
|
// skip the trailer.
|
|
|
|
if (offset < weight - 1 && level < levels - 1) {
|
|
|
|
size_t trailer_len = offset & 0x7;
|
|
|
|
key.append(trailer_len, 'x');
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
val = offset - weight;
|
|
|
|
window -= weight;
|
|
|
|
}
|
|
|
|
|
|
|
|
return key;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Given a string key, map it to an index into the expected values buffer
|
2019-12-09 07:49:32 +00:00
|
|
|
extern inline bool GetIntVal(std::string big_endian_key, uint64_t* key_p) {
|
2020-01-10 05:25:40 +00:00
|
|
|
size_t size_key = big_endian_key.size();
|
|
|
|
std::vector<uint64_t> prefixes;
|
|
|
|
|
|
|
|
assert(size_key <= key_gen_ctx.weights.size() * sizeof(uint64_t));
|
|
|
|
|
2019-12-09 07:49:32 +00:00
|
|
|
std::string little_endian_key;
|
|
|
|
little_endian_key.resize(size_key);
|
2020-06-18 16:51:14 +00:00
|
|
|
for (size_t start = 0; start + sizeof(uint64_t) <= size_key;
|
|
|
|
start += sizeof(uint64_t)) {
|
2020-01-10 05:25:40 +00:00
|
|
|
size_t end = start + sizeof(uint64_t);
|
|
|
|
for (size_t i = 0; i < sizeof(uint64_t); ++i) {
|
|
|
|
little_endian_key[start + i] = big_endian_key[end - 1 - i];
|
|
|
|
}
|
|
|
|
Slice little_endian_slice =
|
|
|
|
Slice(&little_endian_key[start], sizeof(uint64_t));
|
|
|
|
uint64_t pfx;
|
|
|
|
if (!GetFixed64(&little_endian_slice, &pfx)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
prefixes.emplace_back(pfx);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t key = 0;
|
|
|
|
for (size_t i = 0; i < prefixes.size(); ++i) {
|
|
|
|
uint64_t pfx = prefixes[i];
|
|
|
|
key += (pfx / key_gen_ctx.weights[i]) * key_gen_ctx.window +
|
|
|
|
pfx % key_gen_ctx.weights[i];
|
2020-06-18 16:51:14 +00:00
|
|
|
if (i < prefixes.size() - 1) {
|
|
|
|
// The encoding writes a `key_gen_ctx.weights[i] - 1` that counts for
|
|
|
|
// `key_gen_ctx.weights[i]` when there are more prefixes to come. So we
|
|
|
|
// need to add back the one here as we're at a non-last prefix.
|
|
|
|
++key;
|
|
|
|
}
|
2019-12-09 07:49:32 +00:00
|
|
|
}
|
2020-01-10 05:25:40 +00:00
|
|
|
*key_p = key;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2020-06-18 16:51:14 +00:00
|
|
|
// Given a string prefix, map it to the first corresponding index in the
|
|
|
|
// expected values buffer.
|
|
|
|
inline bool GetFirstIntValInPrefix(std::string big_endian_prefix,
|
|
|
|
uint64_t* key_p) {
|
|
|
|
size_t size_key = big_endian_prefix.size();
|
|
|
|
// Pad with zeros to make it a multiple of 8. This function may be called
|
|
|
|
// with a prefix, in which case we return the first index that falls
|
|
|
|
// inside or outside that prefix, dependeing on whether the prefix is
|
|
|
|
// the start of upper bound of a scan
|
|
|
|
unsigned int pad = sizeof(uint64_t) - (size_key % sizeof(uint64_t));
|
|
|
|
if (pad < sizeof(uint64_t)) {
|
|
|
|
big_endian_prefix.append(pad, '\0');
|
|
|
|
}
|
|
|
|
return GetIntVal(std::move(big_endian_prefix), key_p);
|
|
|
|
}
|
|
|
|
|
2020-01-10 05:25:40 +00:00
|
|
|
extern inline uint64_t GetPrefixKeyCount(const std::string& prefix,
|
|
|
|
const std::string& ub) {
|
|
|
|
uint64_t start = 0;
|
|
|
|
uint64_t end = 0;
|
|
|
|
|
2020-06-18 16:51:14 +00:00
|
|
|
if (!GetFirstIntValInPrefix(prefix, &start) ||
|
|
|
|
!GetFirstIntValInPrefix(ub, &end)) {
|
2020-01-10 05:25:40 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return end - start;
|
2019-12-09 07:49:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
extern inline std::string StringToHex(const std::string& str) {
|
|
|
|
std::string result = "0x";
|
|
|
|
result.append(Slice(str).ToString(true));
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2019-12-10 16:38:23 +00:00
|
|
|
// Unified output format for double parameters
|
|
|
|
extern inline std::string FormatDoubleParam(double param) {
|
|
|
|
return std::to_string(param);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make sure that double parameter is a value we can reproduce by
|
|
|
|
// re-inputting the value printed.
|
|
|
|
extern inline void SanitizeDoubleParam(double* param) {
|
|
|
|
*param = std::atof(FormatDoubleParam(*param).c_str());
|
|
|
|
}
|
|
|
|
|
2019-12-09 07:49:32 +00:00
|
|
|
extern void PoolSizeChangeThread(void* v);
|
|
|
|
|
2019-12-20 16:46:52 +00:00
|
|
|
extern void DbVerificationThread(void* v);
|
|
|
|
|
2019-12-09 07:49:32 +00:00
|
|
|
extern void PrintKeyValue(int cf, uint64_t key, const char* value, size_t sz);
|
|
|
|
|
|
|
|
extern int64_t GenerateOneKey(ThreadState* thread, uint64_t iteration);
|
|
|
|
|
|
|
|
extern std::vector<int64_t> GenerateNKeys(ThreadState* thread, int num_keys,
|
|
|
|
uint64_t iteration);
|
|
|
|
|
|
|
|
extern size_t GenerateValue(uint32_t rand, char* v, size_t max_sz);
|
|
|
|
|
|
|
|
extern StressTest* CreateCfConsistencyStressTest();
|
|
|
|
extern StressTest* CreateBatchedOpsStressTest();
|
|
|
|
extern StressTest* CreateNonBatchedOpsStressTest();
|
2019-12-16 21:59:21 +00:00
|
|
|
extern void InitializeHotKeyGenerator(double alpha);
|
|
|
|
extern int64_t GetOneHotKeyID(double rand_seed, int64_t max_key);
|
2020-09-04 06:49:27 +00:00
|
|
|
|
|
|
|
std::shared_ptr<FileChecksumGenFactory> GetFileChecksumImpl(
|
|
|
|
const std::string& name);
|
2020-02-20 20:07:53 +00:00
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
2019-12-09 07:49:32 +00:00
|
|
|
#endif // GFLAGS
|