rocksdb/db/dbformat.cc

295 lines
9.9 KiB
C++
Raw Normal View History

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/dbformat.h"
#include <cinttypes>
#include <cstdio>
#include "db/lookup_key.h"
#include "monitoring/perf_context_imp.h"
#include "port/port.h"
#include "util/coding.h"
#include "util/string_util.h"
namespace ROCKSDB_NAMESPACE {
// kValueTypeForSeek defines the ValueType that should be passed when
// constructing a ParsedInternalKey object for seeking to a particular
// sequence number (since we sort sequence numbers in decreasing order
// and the value type is embedded as the low 8 bits in the sequence
// number in internal keys, we need to use the highest-numbered
// ValueType, not the lowest).
Add initial support for TimedPut API (#12419) Summary: This PR adds support for `TimedPut` API. We introduced a new type `kTypeValuePreferredSeqno` for entries added to the DB via the `TimedPut` API. The life cycle of such an entry on the write/flush/compaction paths are: 1) It is initially added to memtable as: `<user_key, seq, kTypeValuePreferredSeqno>: {value, write_unix_time}` 2) When it's flushed to L0 sst files, it's converted to: `<user_key, seq, kTypeValuePreferredSeqno>: {value, preferred_seqno}` when we have easy access to the seqno to time mapping. 3) During compaction, if certain conditions are met, we swap in the `preferred_seqno` and the entry will become: `<user_key, preferred_seqno, kTypeValue>: value`. This step helps fast track these entries to the cold tier if they are eligible after the sequence number swap. On the read path: A `kTypeValuePreferredSeqno` entry acts the same as a `kTypeValue` entry, the unix_write_time/preferred seqno part packed in value is completely ignored. Needed follow ups: 1) The seqno to time mapping accessible in flush needs to be extended to cover the `write_unix_time` for possible `kTypeValuePreferredSeqno` entries. This also means we need to track these `write_unix_time` in memtable. 2) Compaction filter support for the new `kTypeValuePreferredSeqno` type for feature parity with other `kTypeValue` and equivalent types. 3) Stress test coverage for the feature Pull Request resolved: https://github.com/facebook/rocksdb/pull/12419 Test Plan: Added unit tests Reviewed By: pdillinger Differential Revision: D54920296 Pulled By: jowlyzhang fbshipit-source-id: c8b43f7a7c465e569141770e93c748371ff1da9e
2024-03-14 22:44:55 +00:00
const ValueType kValueTypeForSeek = kTypeValuePreferredSeqno;
const ValueType kValueTypeForSeekForPrev = kTypeDeletion;
const std::string kDisableUserTimestamp;
Added support for differential snapshots Summary: The motivation for this PR is to add to RocksDB support for differential (incremental) snapshots, as snapshot of the DB changes between two points in time (one can think of it as diff between to sequence numbers, or the diff D which can be thought of as an SST file or just set of KVs that can be applied to sequence number S1 to get the database to the state at sequence number S2). This feature would be useful for various distributed storages layers built on top of RocksDB, as it should help reduce resources (time and network bandwidth) needed to recover and rebuilt DB instances as replicas in the context of distributed storages. From the API standpoint that would like client app requesting iterator between (start seqnum) and current DB state, and reading the "diff". This is a very draft PR for initial review in the discussion on the approach, i'm going to rework some parts and keep updating the PR. For now, what's done here according to initial discussions: Preserving deletes: - We want to be able to optionally preserve recent deletes for some defined period of time, so that if a delete came in recently and might need to be included in the next incremental snapshot it would't get dropped by a compaction. This is done by adding new param to Options (preserve deletes flag) and new variable to DB Impl where we keep track of the sequence number after which we don't want to drop tombstones, even if they are otherwise eligible for deletion. - I also added a new API call for clients to be able to advance this cutoff seqnum after which we drop deletes; i assume it's more flexible to let clients control this, since otherwise we'd need to keep some kind of timestamp < -- > seqnum mapping inside the DB, which sounds messy and painful to support. Clients could make use of it by periodically calling GetLatestSequenceNumber(), noting the timestamp, doing some calculation and figuring out by how much we need to advance the cutoff seqnum. - Compaction codepath in compaction_iterator.cc has been modified to avoid dropping tombstones with seqnum > cutoff seqnum. Iterator changes: - couple params added to ReadOptions, to optionally allow client to request internal keys instead of user keys (so that client can get the latest value of a key, be it delete marker or a put), as well as min timestamp and min seqnum. TableCache changes: - I modified table_cache code to be able to quickly exclude SST files from iterators heep if creation_time on the file is less then iter_start_ts as passed in ReadOptions. That would help a lot in some DB settings (like reading very recent data only or using FIFO compactions), but not so much for universal compaction with more or less long iterator time span. What's left: - Still looking at how to best plug that inside DBIter codepath. So far it seems that FindNextUserKeyInternal only parses values as UserKeys, and iter->key() call generally returns user key. Can we add new API to DBIter as internal_key(), and modify this internal method to optionally set saved_key_ to point to the full internal key? I don't need to store actual seqnum there, but I do need to store type. Closes https://github.com/facebook/rocksdb/pull/2999 Differential Revision: D6175602 Pulled By: mikhail-antonov fbshipit-source-id: c779a6696ee2d574d86c69cec866a3ae095aa900
2017-11-02 01:43:29 +00:00
EntryType GetEntryType(ValueType value_type) {
switch (value_type) {
case kTypeValue:
return kEntryPut;
case kTypeDeletion:
return kEntryDelete;
case kTypeDeletionWithTimestamp:
return kEntryDeleteWithTimestamp;
Added support for differential snapshots Summary: The motivation for this PR is to add to RocksDB support for differential (incremental) snapshots, as snapshot of the DB changes between two points in time (one can think of it as diff between to sequence numbers, or the diff D which can be thought of as an SST file or just set of KVs that can be applied to sequence number S1 to get the database to the state at sequence number S2). This feature would be useful for various distributed storages layers built on top of RocksDB, as it should help reduce resources (time and network bandwidth) needed to recover and rebuilt DB instances as replicas in the context of distributed storages. From the API standpoint that would like client app requesting iterator between (start seqnum) and current DB state, and reading the "diff". This is a very draft PR for initial review in the discussion on the approach, i'm going to rework some parts and keep updating the PR. For now, what's done here according to initial discussions: Preserving deletes: - We want to be able to optionally preserve recent deletes for some defined period of time, so that if a delete came in recently and might need to be included in the next incremental snapshot it would't get dropped by a compaction. This is done by adding new param to Options (preserve deletes flag) and new variable to DB Impl where we keep track of the sequence number after which we don't want to drop tombstones, even if they are otherwise eligible for deletion. - I also added a new API call for clients to be able to advance this cutoff seqnum after which we drop deletes; i assume it's more flexible to let clients control this, since otherwise we'd need to keep some kind of timestamp < -- > seqnum mapping inside the DB, which sounds messy and painful to support. Clients could make use of it by periodically calling GetLatestSequenceNumber(), noting the timestamp, doing some calculation and figuring out by how much we need to advance the cutoff seqnum. - Compaction codepath in compaction_iterator.cc has been modified to avoid dropping tombstones with seqnum > cutoff seqnum. Iterator changes: - couple params added to ReadOptions, to optionally allow client to request internal keys instead of user keys (so that client can get the latest value of a key, be it delete marker or a put), as well as min timestamp and min seqnum. TableCache changes: - I modified table_cache code to be able to quickly exclude SST files from iterators heep if creation_time on the file is less then iter_start_ts as passed in ReadOptions. That would help a lot in some DB settings (like reading very recent data only or using FIFO compactions), but not so much for universal compaction with more or less long iterator time span. What's left: - Still looking at how to best plug that inside DBIter codepath. So far it seems that FindNextUserKeyInternal only parses values as UserKeys, and iter->key() call generally returns user key. Can we add new API to DBIter as internal_key(), and modify this internal method to optionally set saved_key_ to point to the full internal key? I don't need to store actual seqnum there, but I do need to store type. Closes https://github.com/facebook/rocksdb/pull/2999 Differential Revision: D6175602 Pulled By: mikhail-antonov fbshipit-source-id: c779a6696ee2d574d86c69cec866a3ae095aa900
2017-11-02 01:43:29 +00:00
case kTypeSingleDeletion:
return kEntrySingleDelete;
case kTypeMerge:
return kEntryMerge;
case kTypeRangeDeletion:
return kEntryRangeDeletion;
case kTypeBlobIndex:
return kEntryBlobIndex;
case kTypeWideColumnEntity:
return kEntryWideColumnEntity;
case kTypeValuePreferredSeqno:
return kEntryTimedPut;
Added support for differential snapshots Summary: The motivation for this PR is to add to RocksDB support for differential (incremental) snapshots, as snapshot of the DB changes between two points in time (one can think of it as diff between to sequence numbers, or the diff D which can be thought of as an SST file or just set of KVs that can be applied to sequence number S1 to get the database to the state at sequence number S2). This feature would be useful for various distributed storages layers built on top of RocksDB, as it should help reduce resources (time and network bandwidth) needed to recover and rebuilt DB instances as replicas in the context of distributed storages. From the API standpoint that would like client app requesting iterator between (start seqnum) and current DB state, and reading the "diff". This is a very draft PR for initial review in the discussion on the approach, i'm going to rework some parts and keep updating the PR. For now, what's done here according to initial discussions: Preserving deletes: - We want to be able to optionally preserve recent deletes for some defined period of time, so that if a delete came in recently and might need to be included in the next incremental snapshot it would't get dropped by a compaction. This is done by adding new param to Options (preserve deletes flag) and new variable to DB Impl where we keep track of the sequence number after which we don't want to drop tombstones, even if they are otherwise eligible for deletion. - I also added a new API call for clients to be able to advance this cutoff seqnum after which we drop deletes; i assume it's more flexible to let clients control this, since otherwise we'd need to keep some kind of timestamp < -- > seqnum mapping inside the DB, which sounds messy and painful to support. Clients could make use of it by periodically calling GetLatestSequenceNumber(), noting the timestamp, doing some calculation and figuring out by how much we need to advance the cutoff seqnum. - Compaction codepath in compaction_iterator.cc has been modified to avoid dropping tombstones with seqnum > cutoff seqnum. Iterator changes: - couple params added to ReadOptions, to optionally allow client to request internal keys instead of user keys (so that client can get the latest value of a key, be it delete marker or a put), as well as min timestamp and min seqnum. TableCache changes: - I modified table_cache code to be able to quickly exclude SST files from iterators heep if creation_time on the file is less then iter_start_ts as passed in ReadOptions. That would help a lot in some DB settings (like reading very recent data only or using FIFO compactions), but not so much for universal compaction with more or less long iterator time span. What's left: - Still looking at how to best plug that inside DBIter codepath. So far it seems that FindNextUserKeyInternal only parses values as UserKeys, and iter->key() call generally returns user key. Can we add new API to DBIter as internal_key(), and modify this internal method to optionally set saved_key_ to point to the full internal key? I don't need to store actual seqnum there, but I do need to store type. Closes https://github.com/facebook/rocksdb/pull/2999 Differential Revision: D6175602 Pulled By: mikhail-antonov fbshipit-source-id: c779a6696ee2d574d86c69cec866a3ae095aa900
2017-11-02 01:43:29 +00:00
default:
return kEntryOther;
}
}
void AppendInternalKey(std::string* result, const ParsedInternalKey& key) {
result->append(key.user_key.data(), key.user_key.size());
PutFixed64(result, PackSequenceAndType(key.sequence, key.type));
}
Iterator with timestamp (#6255) Summary: Preliminary support for iterator with user timestamp. Current implementation does not consider merge operator and reverse iterator. Auto compaction is also disabled in unit tests. Create an iterator with timestamp. ``` ... read_opts.timestamp = &ts; auto* iter = db->NewIterator(read_opts); // target is key without timestamp. for (iter->Seek(target); iter->Valid(); iter->Next()) {} for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {} delete iter; read_opts.timestamp = &ts1; // lower_bound and upper_bound are without timestamp. read_opts.iterate_lower_bound = &lower_bound; read_opts.iterate_upper_bound = &upper_bound; auto* iter1 = db->NewIterator(read_opts); // Do Seek or SeekToFirst() delete iter1; ``` Test plan (dev server) ``` $make check ``` Simple benchmarking (dev server) 1. The overhead introduced by this PR even when timestamp is disabled. key size: 16 bytes value size: 100 bytes Entries: 1000000 Data reside in main memory, and try to stress iterator. Repeated three times on master and this PR. - Seek without next ``` ./db_bench -db=/dev/shm/rocksdbtest-1000 -benchmarks=fillseq,seekrandom -enable_pipelined_write=false -disable_wal=true -format_version=3 ``` master: 159047.0 ops/sec this PR: 158922.3 ops/sec (2% drop in throughput) - Seek and next 10 times ``` ./db_bench -db=/dev/shm/rocksdbtest-1000 -benchmarks=fillseq,seekrandom -enable_pipelined_write=false -disable_wal=true -format_version=3 -seek_nexts=10 ``` master: 109539.3 ops/sec this PR: 107519.7 ops/sec (2% drop in throughput) Pull Request resolved: https://github.com/facebook/rocksdb/pull/6255 Differential Revision: D19438227 Pulled By: riversand963 fbshipit-source-id: b66b4979486f8474619f4aa6bdd88598870b0746
2020-03-07 00:21:03 +00:00
void AppendInternalKeyWithDifferentTimestamp(std::string* result,
const ParsedInternalKey& key,
const Slice& ts) {
assert(key.user_key.size() >= ts.size());
result->append(key.user_key.data(), key.user_key.size() - ts.size());
result->append(ts.data(), ts.size());
PutFixed64(result, PackSequenceAndType(key.sequence, key.type));
}
Add support for range deletion when user timestamps are not persisted (#12254) Summary: For the user defined timestamps in memtable only feature, some special handling for range deletion blocks are needed since both the key (start_key) and the value (end_key) of a range tombstone can contain user-defined timestamps. Handling for the key is taken care of in the same way as the other data blocks in the block based table. This PR adds the special handling needed for the value (end_key) part. This includes: 1) On the write path, when L0 SST files are first created from flush, user-defined timestamps are removed from an end key of a range tombstone. There are places where it's logically removed (replaced with a min timestamp) because there is still logic with the running comparator that expects a user key that contains timestamp. And in the block based builder, it is eventually physically removed before persisted in a block. 2) On the read path, when range deletion block is being read, we artificially pad a min timestamp to the end key of a range tombstone in `BlockBasedTableReader`. 3) For file boundary `FileMetaData.largest`, we artificially pad a max timestamp to it if it contains a range deletion sentinel. Anytime when range deletion end_key is used to update file boundaries, it's using max timestamp instead of the range tombstone's actual timestamp to mark it as an exclusive end. https://github.com/facebook/rocksdb/blob/d69628e6ced20ff859381d1eda55675f7f93a0eb/db/dbformat.h#L923-L935 This max timestamp is removed when in memory `FileMetaData.largest` is persisted into Manifest, we pad it back when it's read from Manifest while handling related `VersionEdit` in `VersionEditHandler`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/12254 Test Plan: Added unit test and enabled this feature combination's stress test. Reviewed By: cbi42 Differential Revision: D52965527 Pulled By: jowlyzhang fbshipit-source-id: e8315f8a2c5268e2ae0f7aec8012c266b86df985
2024-01-29 19:37:34 +00:00
void AppendUserKeyWithDifferentTimestamp(std::string* result, const Slice& key,
const Slice& ts) {
assert(key.size() >= ts.size());
result->append(key.data(), key.size() - ts.size());
result->append(ts.data(), ts.size());
}
void AppendInternalKeyFooter(std::string* result, SequenceNumber s,
ValueType t) {
PutFixed64(result, PackSequenceAndType(s, t));
}
void AppendKeyWithMinTimestamp(std::string* result, const Slice& key,
size_t ts_sz) {
assert(ts_sz > 0);
const std::string kTsMin(ts_sz, static_cast<unsigned char>(0));
result->append(key.data(), key.size());
result->append(kTsMin.data(), ts_sz);
}
void AppendKeyWithMaxTimestamp(std::string* result, const Slice& key,
size_t ts_sz) {
assert(ts_sz > 0);
const std::string kTsMax(ts_sz, static_cast<unsigned char>(0xff));
result->append(key.data(), key.size());
result->append(kTsMax.data(), ts_sz);
}
void AppendUserKeyWithMinTimestamp(std::string* result, const Slice& key,
size_t ts_sz) {
assert(ts_sz > 0);
result->append(key.data(), key.size() - ts_sz);
result->append(ts_sz, static_cast<unsigned char>(0));
}
User-defined timestamp support for `DeleteRange()` (#10661) Summary: Add user-defined timestamp support for range deletion. The new API is `DeleteRange(opt, cf, begin_key, end_key, ts)`. Most of the change is to update the comparator to compare without timestamp. Other than that, major changes are - internal range tombstone data structures (`FragmentedRangeTombstoneList`, `RangeTombstone`, etc.) to store timestamps. - Garbage collection of range tombstones and range tombstone covered keys during compaction. - Get()/MultiGet() to return the timestamp of a range tombstone when needed. - Get/Iterator with range tombstones bounded by readoptions.timestamp. - timestamp crash test now issues DeleteRange by default. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10661 Test Plan: - Added unit test: `make check` - Stress test: `python3 tools/db_crashtest.py --enable_ts whitebox --readpercent=57 --prefixpercent=4 --writepercent=25 -delpercent=5 --iterpercent=5 --delrangepercent=4` - Ran `db_bench` to measure regression when timestamp is not enabled. The tests are for write (with some range deletion) and iterate with DB fitting in memory: `./db_bench--benchmarks=fillrandom,seekrandom --writes_per_range_tombstone=200 --max_write_buffer_number=100 --min_write_buffer_number_to_merge=100 --writes=500000 --reads=500000 --seek_nexts=10 --disable_auto_compactions -disable_wal=true --max_num_range_tombstones=1000`. Did not see consistent regression in no timestamp case. | micros/op | fillrandom | seekrandom | | --- | --- | --- | |main| 2.58 |10.96| |PR 10661| 2.68 |10.63| Reviewed By: riversand963 Differential Revision: D39441192 Pulled By: cbi42 fbshipit-source-id: f05aca3c41605caf110daf0ff405919f300ddec2
2022-09-30 23:13:03 +00:00
void AppendUserKeyWithMaxTimestamp(std::string* result, const Slice& key,
size_t ts_sz) {
assert(ts_sz > 0);
result->append(key.data(), key.size() - ts_sz);
static constexpr char kTsMax[] = "\xff\xff\xff\xff\xff\xff\xff\xff\xff";
if (ts_sz < strlen(kTsMax)) {
result->append(kTsMax, ts_sz);
} else {
result->append(std::string(ts_sz, '\xff'));
}
}
void PadInternalKeyWithMinTimestamp(std::string* result, const Slice& key,
size_t ts_sz) {
assert(ts_sz > 0);
Add support for range deletion when user timestamps are not persisted (#12254) Summary: For the user defined timestamps in memtable only feature, some special handling for range deletion blocks are needed since both the key (start_key) and the value (end_key) of a range tombstone can contain user-defined timestamps. Handling for the key is taken care of in the same way as the other data blocks in the block based table. This PR adds the special handling needed for the value (end_key) part. This includes: 1) On the write path, when L0 SST files are first created from flush, user-defined timestamps are removed from an end key of a range tombstone. There are places where it's logically removed (replaced with a min timestamp) because there is still logic with the running comparator that expects a user key that contains timestamp. And in the block based builder, it is eventually physically removed before persisted in a block. 2) On the read path, when range deletion block is being read, we artificially pad a min timestamp to the end key of a range tombstone in `BlockBasedTableReader`. 3) For file boundary `FileMetaData.largest`, we artificially pad a max timestamp to it if it contains a range deletion sentinel. Anytime when range deletion end_key is used to update file boundaries, it's using max timestamp instead of the range tombstone's actual timestamp to mark it as an exclusive end. https://github.com/facebook/rocksdb/blob/d69628e6ced20ff859381d1eda55675f7f93a0eb/db/dbformat.h#L923-L935 This max timestamp is removed when in memory `FileMetaData.largest` is persisted into Manifest, we pad it back when it's read from Manifest while handling related `VersionEdit` in `VersionEditHandler`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/12254 Test Plan: Added unit test and enabled this feature combination's stress test. Reviewed By: cbi42 Differential Revision: D52965527 Pulled By: jowlyzhang fbshipit-source-id: e8315f8a2c5268e2ae0f7aec8012c266b86df985
2024-01-29 19:37:34 +00:00
assert(key.size() >= kNumInternalBytes);
size_t user_key_size = key.size() - kNumInternalBytes;
result->reserve(key.size() + ts_sz);
result->append(key.data(), user_key_size);
result->append(ts_sz, static_cast<unsigned char>(0));
result->append(key.data() + user_key_size, kNumInternalBytes);
Add support for range deletion when user timestamps are not persisted (#12254) Summary: For the user defined timestamps in memtable only feature, some special handling for range deletion blocks are needed since both the key (start_key) and the value (end_key) of a range tombstone can contain user-defined timestamps. Handling for the key is taken care of in the same way as the other data blocks in the block based table. This PR adds the special handling needed for the value (end_key) part. This includes: 1) On the write path, when L0 SST files are first created from flush, user-defined timestamps are removed from an end key of a range tombstone. There are places where it's logically removed (replaced with a min timestamp) because there is still logic with the running comparator that expects a user key that contains timestamp. And in the block based builder, it is eventually physically removed before persisted in a block. 2) On the read path, when range deletion block is being read, we artificially pad a min timestamp to the end key of a range tombstone in `BlockBasedTableReader`. 3) For file boundary `FileMetaData.largest`, we artificially pad a max timestamp to it if it contains a range deletion sentinel. Anytime when range deletion end_key is used to update file boundaries, it's using max timestamp instead of the range tombstone's actual timestamp to mark it as an exclusive end. https://github.com/facebook/rocksdb/blob/d69628e6ced20ff859381d1eda55675f7f93a0eb/db/dbformat.h#L923-L935 This max timestamp is removed when in memory `FileMetaData.largest` is persisted into Manifest, we pad it back when it's read from Manifest while handling related `VersionEdit` in `VersionEditHandler`. Pull Request resolved: https://github.com/facebook/rocksdb/pull/12254 Test Plan: Added unit test and enabled this feature combination's stress test. Reviewed By: cbi42 Differential Revision: D52965527 Pulled By: jowlyzhang fbshipit-source-id: e8315f8a2c5268e2ae0f7aec8012c266b86df985
2024-01-29 19:37:34 +00:00
}
void PadInternalKeyWithMaxTimestamp(std::string* result, const Slice& key,
size_t ts_sz) {
assert(ts_sz > 0);
assert(key.size() >= kNumInternalBytes);
size_t user_key_size = key.size() - kNumInternalBytes;
result->reserve(key.size() + ts_sz);
result->append(key.data(), user_key_size);
result->append(std::string(ts_sz, '\xff'));
result->append(key.data() + user_key_size, kNumInternalBytes);
}
void StripTimestampFromInternalKey(std::string* result, const Slice& key,
size_t ts_sz) {
assert(key.size() >= ts_sz + kNumInternalBytes);
result->reserve(key.size() - ts_sz);
result->append(key.data(), key.size() - kNumInternalBytes - ts_sz);
result->append(key.data() + key.size() - kNumInternalBytes,
kNumInternalBytes);
}
Logically strip timestamp during flush (#11557) Summary: Logically strip the user-defined timestamp when L0 files are created during flush when `AdvancedColumnFamilyOptions.persist_user_defined_timestamps` is false. Logically stripping timestamp here means replacing the original user-defined timestamp with a mininum timestamp, which for now is hard coded to be all zeros bytes. While working on this, I caught a missing piece on the `BlockBuilder` level for this feature. The current quick path `std::min(buffer_size, last_key_size)` needs a bit tweaking to work for this feature. When user-defined timestamp is stripped during block building, on writing first entry or right after resetting, `buffer` is empty and `buffer_size` is zero as usual. However, in follow-up writes, depending on the size of the stripped user-defined timestamp, and the size of the value, what's in `buffer` can sometimes be smaller than `last_key_size`, leading `std::min(buffer_size, last_key_size)` to truncate the `last_key`. Previous test doesn't caught the bug because in those tests, the size of the stripped user-defined timestamps bytes is smaller than the length of the value. In order to avoid the conditional operation, this PR changed the original trivial `std::min` operation into an arithmetic operation. Since this is a change in a hot and performance critical path, I did the following benchmark to check no observable regression is introduced. ```TEST_TMPDIR=/dev/shm/rocksdb1 ./db_bench -benchmarks=fillseq -memtablerep=vector -allow_concurrent_memtable_write=false -num=50000000``` Compiled with DEBUG_LEVEL=0 Test vs. control runs simulaneous for better accuracy, units = ops/sec PR vs base: Round 1: 350652 vs 349055 Round 2: 365733 vs 364308 Round 3: 355681 vs 354475 Pull Request resolved: https://github.com/facebook/rocksdb/pull/11557 Test Plan: New timestamp specific test added or existing tests augmented, both are parameterized with `UserDefinedTimestampTestMode`: `UserDefinedTimestampTestMode::kNormal` -> UDT feature enabled, write / read with min timestamp `UserDefinedTimestampTestMode::kStripUserDefinedTimestamps` -> UDT feature enabled, write / read with min timestamp, set Options.persist_user_defined_timestamps to false. ``` make all check ./db_wal_test --gtest_filter="*WithTimestamp*" ./flush_job_test --gtest_filter="*WithTimestamp*" ./repair_test --gtest_filter="*WithTimestamp*" ./block_based_table_reader_test ``` Reviewed By: pdillinger Differential Revision: D47027664 Pulled By: jowlyzhang fbshipit-source-id: e729193b6334dfc63aaa736d684d907a022571f5
2023-06-29 22:50:50 +00:00
void ReplaceInternalKeyWithMinTimestamp(std::string* result, const Slice& key,
size_t ts_sz) {
const size_t key_sz = key.size();
assert(key_sz >= ts_sz + kNumInternalBytes);
result->reserve(key_sz);
result->append(key.data(), key_sz - kNumInternalBytes - ts_sz);
result->append(ts_sz, static_cast<unsigned char>(0));
result->append(key.data() + key_sz - kNumInternalBytes, kNumInternalBytes);
}
std::string ParsedInternalKey::DebugString(bool log_err_key, bool hex,
const Comparator* ucmp) const {
std::string result = "'";
size_t ts_sz_for_debug = ucmp == nullptr ? 0 : ucmp->timestamp_size();
if (log_err_key) {
if (ts_sz_for_debug == 0) {
result += user_key.ToString(hex);
} else {
assert(user_key.size() >= ts_sz_for_debug);
Slice user_key_without_ts = user_key;
user_key_without_ts.remove_suffix(ts_sz_for_debug);
result += user_key_without_ts.ToString(hex);
Slice ts = Slice(user_key.data() + user_key.size() - ts_sz_for_debug,
ts_sz_for_debug);
result += "|timestamp:";
result += ucmp->TimestampToString(ts);
}
} else {
result += "<redacted>";
}
char buf[50];
snprintf(buf, sizeof(buf), "' seq:%" PRIu64 ", type:%d", sequence,
static_cast<int>(type));
result += buf;
return result;
}
std::string InternalKey::DebugString(bool hex, const Comparator* ucmp) const {
std::string result;
ParsedInternalKey parsed;
if (ParseInternalKey(rep_, &parsed, false /* log_err_key */).ok()) {
result = parsed.DebugString(true /* log_err_key */, hex, ucmp); // TODO
} else {
result = "(bad)";
result.append(EscapeString(rep_));
}
return result;
}
int InternalKeyComparator::Compare(const ParsedInternalKey& a,
const ParsedInternalKey& b) const {
// Order by:
// increasing user key (according to user-supplied comparator)
// decreasing sequence number
// decreasing type (though sequence# should be enough to disambiguate)
int r = user_comparator_.Compare(a.user_key, b.user_key);
if (r == 0) {
if (a.sequence > b.sequence) {
r = -1;
} else if (a.sequence < b.sequence) {
r = +1;
} else if (a.type > b.type) {
r = -1;
} else if (a.type < b.type) {
r = +1;
}
}
return r;
}
Remove copying of range tombstones keys in iterator (#10878) Summary: In MergingIterator, if a range tombstone's start or end key is added to minHeap/maxHeap, the key is copied. This PR removes the copying of range tombstone keys by adding InternalKey comparator that compares `Slice` for internal key and `ParsedInternalKey` directly. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10878 Test Plan: - existing UT - ran all flavors of stress test through sandcastle - benchmarks: I did not get improvement when compiling with DEBUG_LEVEL=0, and saw many noise. With `OPTIMIZE_LEVEL="-O3" USE_LTO=1` I do see improvement. ``` # Favorable set up: half of the writes are DeleteRange. TEST_TMPDIR=/tmp/rocksdb-rangedel-test-all-tombstone ./db_bench --benchmarks=fillseq,levelstats --writes_per_range_tombstone=1 --max_num_range_tombstones=1000000 --range_tombstone_width=2 --num=1000000 --max_bytes_for_level_base=4194304 --disable_auto_compactions --write_buffer_size=33554432 --key_size=50 # benchmark command TEST_TMPDIR=/tmp/rocksdb-rangedel-test-all-tombstone ./db_bench --benchmarks=readseq[-W1][-X5],levelstats --use_existing_db=true --cache_size=3221225472 --disable_auto_compactions=true --avoid_flush_during_recovery=true --seek_nexts=100 --reads=1000000 --num=1000000 --threads=25 # main readseq [AVG 5 runs] : 26017977 (± 371077) ops/sec; 3721.9 (± 53.1) MB/sec readseq [MEDIAN 5 runs] : 26096905 ops/sec; 3733.2 MB/sec # this PR readseq [AVG 5 runs] : 27481724 (± 568758) ops/sec; 3931.3 (± 81.4) MB/sec readseq [MEDIAN 5 runs] : 27323957 ops/sec; 3908.7 MB/sec ``` Reviewed By: ajkr Differential Revision: D40711170 Pulled By: cbi42 fbshipit-source-id: 708cb584e2bd085a9ce0d2ef6a420489f721717f
2022-11-29 03:27:22 +00:00
int InternalKeyComparator::Compare(const Slice& a,
const ParsedInternalKey& b) const {
// Order by:
// increasing user key (according to user-supplied comparator)
// decreasing sequence number
// decreasing type (though sequence# should be enough to disambiguate)
int r = user_comparator_.Compare(ExtractUserKey(a), b.user_key);
if (r == 0) {
const uint64_t anum =
DecodeFixed64(a.data() + a.size() - kNumInternalBytes);
const uint64_t bnum = (b.sequence << 8) | b.type;
if (anum > bnum) {
r = -1;
} else if (anum < bnum) {
r = +1;
}
}
return r;
}
int InternalKeyComparator::Compare(const ParsedInternalKey& a,
const Slice& b) const {
return -Compare(b, a);
}
Avoid user key copying for Get/Put/Write with user-timestamp (#5502) Summary: In previous https://github.com/facebook/rocksdb/issues/5079, we added user-specified timestamp to `DB::Get()` and `DB::Put()`. Limitation is that these two functions may cause extra memory allocation and key copy. The reason is that `WriteBatch` does not allocate extra memory for timestamps because it is not aware of timestamp size, and we did not provide an API to assign/update timestamp of each key within a `WriteBatch`. We address these issues in this PR by doing the following. 1. Add a `timestamp_size_` to `WriteBatch` so that `WriteBatch` can take timestamps into account when calling `WriteBatch::Put`, `WriteBatch::Delete`, etc. 2. Add APIs `WriteBatch::AssignTimestamp` and `WriteBatch::AssignTimestamps` so that application can assign/update timestamps for each key in a `WriteBatch`. 3. Avoid key copy in `GetImpl` by adding new constructor to `LookupKey`. Test plan (on devserver): ``` $make clean && COMPILE_WITH_ASAN=1 make -j32 all $./db_basic_test --gtest_filter=Timestamp/DBBasicTestWithTimestampWithParam.PutAndGet/* $make check ``` If the API extension looks good, I will add more unit tests. Some simple benchmark using db_bench. ``` $rm -rf /dev/shm/dbbench/* && TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillseq,readrandom -num=1000000 $rm -rf /dev/shm/dbbench/* && TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=1000000 -disable_wal=true ``` Master is at a78503bd6c80a3c4137df1962a972fe406b4d90b. ``` | | readrandom | fillrandom | | master | 15.53 MB/s | 25.97 MB/s | | PR5502 | 16.70 MB/s | 25.80 MB/s | ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/5502 Differential Revision: D16340894 Pulled By: riversand963 fbshipit-source-id: 51132cf792be07d1efc3ac33f5768c4ee2608bb8
2019-07-25 22:23:46 +00:00
LookupKey::LookupKey(const Slice& _user_key, SequenceNumber s,
const Slice* ts) {
size_t usize = _user_key.size();
Avoid user key copying for Get/Put/Write with user-timestamp (#5502) Summary: In previous https://github.com/facebook/rocksdb/issues/5079, we added user-specified timestamp to `DB::Get()` and `DB::Put()`. Limitation is that these two functions may cause extra memory allocation and key copy. The reason is that `WriteBatch` does not allocate extra memory for timestamps because it is not aware of timestamp size, and we did not provide an API to assign/update timestamp of each key within a `WriteBatch`. We address these issues in this PR by doing the following. 1. Add a `timestamp_size_` to `WriteBatch` so that `WriteBatch` can take timestamps into account when calling `WriteBatch::Put`, `WriteBatch::Delete`, etc. 2. Add APIs `WriteBatch::AssignTimestamp` and `WriteBatch::AssignTimestamps` so that application can assign/update timestamps for each key in a `WriteBatch`. 3. Avoid key copy in `GetImpl` by adding new constructor to `LookupKey`. Test plan (on devserver): ``` $make clean && COMPILE_WITH_ASAN=1 make -j32 all $./db_basic_test --gtest_filter=Timestamp/DBBasicTestWithTimestampWithParam.PutAndGet/* $make check ``` If the API extension looks good, I will add more unit tests. Some simple benchmark using db_bench. ``` $rm -rf /dev/shm/dbbench/* && TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillseq,readrandom -num=1000000 $rm -rf /dev/shm/dbbench/* && TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=1000000 -disable_wal=true ``` Master is at a78503bd6c80a3c4137df1962a972fe406b4d90b. ``` | | readrandom | fillrandom | | master | 15.53 MB/s | 25.97 MB/s | | PR5502 | 16.70 MB/s | 25.80 MB/s | ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/5502 Differential Revision: D16340894 Pulled By: riversand963 fbshipit-source-id: 51132cf792be07d1efc3ac33f5768c4ee2608bb8
2019-07-25 22:23:46 +00:00
size_t ts_sz = (nullptr == ts) ? 0 : ts->size();
size_t needed = usize + ts_sz + 13; // A conservative estimate
char* dst;
if (needed <= sizeof(space_)) {
dst = space_;
} else {
dst = new char[needed];
}
start_ = dst;
// NOTE: We don't support users keys of more than 2GB :)
Avoid user key copying for Get/Put/Write with user-timestamp (#5502) Summary: In previous https://github.com/facebook/rocksdb/issues/5079, we added user-specified timestamp to `DB::Get()` and `DB::Put()`. Limitation is that these two functions may cause extra memory allocation and key copy. The reason is that `WriteBatch` does not allocate extra memory for timestamps because it is not aware of timestamp size, and we did not provide an API to assign/update timestamp of each key within a `WriteBatch`. We address these issues in this PR by doing the following. 1. Add a `timestamp_size_` to `WriteBatch` so that `WriteBatch` can take timestamps into account when calling `WriteBatch::Put`, `WriteBatch::Delete`, etc. 2. Add APIs `WriteBatch::AssignTimestamp` and `WriteBatch::AssignTimestamps` so that application can assign/update timestamps for each key in a `WriteBatch`. 3. Avoid key copy in `GetImpl` by adding new constructor to `LookupKey`. Test plan (on devserver): ``` $make clean && COMPILE_WITH_ASAN=1 make -j32 all $./db_basic_test --gtest_filter=Timestamp/DBBasicTestWithTimestampWithParam.PutAndGet/* $make check ``` If the API extension looks good, I will add more unit tests. Some simple benchmark using db_bench. ``` $rm -rf /dev/shm/dbbench/* && TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillseq,readrandom -num=1000000 $rm -rf /dev/shm/dbbench/* && TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=1000000 -disable_wal=true ``` Master is at a78503bd6c80a3c4137df1962a972fe406b4d90b. ``` | | readrandom | fillrandom | | master | 15.53 MB/s | 25.97 MB/s | | PR5502 | 16.70 MB/s | 25.80 MB/s | ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/5502 Differential Revision: D16340894 Pulled By: riversand963 fbshipit-source-id: 51132cf792be07d1efc3ac33f5768c4ee2608bb8
2019-07-25 22:23:46 +00:00
dst = EncodeVarint32(dst, static_cast<uint32_t>(usize + ts_sz + 8));
kstart_ = dst;
memcpy(dst, _user_key.data(), usize);
dst += usize;
Avoid user key copying for Get/Put/Write with user-timestamp (#5502) Summary: In previous https://github.com/facebook/rocksdb/issues/5079, we added user-specified timestamp to `DB::Get()` and `DB::Put()`. Limitation is that these two functions may cause extra memory allocation and key copy. The reason is that `WriteBatch` does not allocate extra memory for timestamps because it is not aware of timestamp size, and we did not provide an API to assign/update timestamp of each key within a `WriteBatch`. We address these issues in this PR by doing the following. 1. Add a `timestamp_size_` to `WriteBatch` so that `WriteBatch` can take timestamps into account when calling `WriteBatch::Put`, `WriteBatch::Delete`, etc. 2. Add APIs `WriteBatch::AssignTimestamp` and `WriteBatch::AssignTimestamps` so that application can assign/update timestamps for each key in a `WriteBatch`. 3. Avoid key copy in `GetImpl` by adding new constructor to `LookupKey`. Test plan (on devserver): ``` $make clean && COMPILE_WITH_ASAN=1 make -j32 all $./db_basic_test --gtest_filter=Timestamp/DBBasicTestWithTimestampWithParam.PutAndGet/* $make check ``` If the API extension looks good, I will add more unit tests. Some simple benchmark using db_bench. ``` $rm -rf /dev/shm/dbbench/* && TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillseq,readrandom -num=1000000 $rm -rf /dev/shm/dbbench/* && TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=1000000 -disable_wal=true ``` Master is at a78503bd6c80a3c4137df1962a972fe406b4d90b. ``` | | readrandom | fillrandom | | master | 15.53 MB/s | 25.97 MB/s | | PR5502 | 16.70 MB/s | 25.80 MB/s | ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/5502 Differential Revision: D16340894 Pulled By: riversand963 fbshipit-source-id: 51132cf792be07d1efc3ac33f5768c4ee2608bb8
2019-07-25 22:23:46 +00:00
if (nullptr != ts) {
memcpy(dst, ts->data(), ts_sz);
dst += ts_sz;
}
EncodeFixed64(dst, PackSequenceAndType(s, kValueTypeForSeek));
dst += 8;
end_ = dst;
}
void IterKey::EnlargeBuffer(size_t key_size) {
// If size is smaller than buffer size, continue using current buffer,
// or the inline one, as default
assert(key_size > buf_size_);
// Need to enlarge the buffer.
ResetBuffer();
buf_ = new char[key_size];
buf_size_ = key_size;
}
void IterKey::EnlargeSecondaryBufferIfNeeded(size_t key_size) {
// If size is smaller than buffer size, continue using current buffer,
// or the inline one, as default
if (key_size <= secondary_buf_size_) {
return;
}
// Need to enlarge the secondary buffer.
ResetSecondaryBuffer();
secondary_buf_ = new char[key_size];
secondary_buf_size_ = key_size;
}
} // namespace ROCKSDB_NAMESPACE