2022-08-11 19:45:50 +00:00
|
|
|
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
|
//
|
|
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
|
Sort L0 files by newly introduced epoch_num (#10922)
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox`
- [Ongoing] normal db stress test
- [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761
Reviewed By: ajkr
Differential Revision: D41063187
Pulled By: hx235
fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
|
|
|
#include "db/version_builder.h"
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
|
|
|
|
#include "db/import_column_family_job.h"
|
|
|
|
|
|
|
|
#include <algorithm>
|
2019-09-20 19:00:55 +00:00
|
|
|
#include <cinttypes>
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include "db/version_edit.h"
|
|
|
|
#include "file/file_util.h"
|
2019-09-16 17:31:27 +00:00
|
|
|
#include "file/random_access_file_reader.h"
|
2021-09-29 11:01:57 +00:00
|
|
|
#include "logging/logging.h"
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
#include "table/merging_iterator.h"
|
|
|
|
#include "table/scoped_arena_iterator.h"
|
|
|
|
#include "table/sst_file_writer_collectors.h"
|
|
|
|
#include "table/table_builder.h"
|
2022-05-19 18:04:21 +00:00
|
|
|
#include "table/unique_id_impl.h"
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
#include "util/stop_watch.h"
|
|
|
|
|
2020-02-20 20:07:53 +00:00
|
|
|
namespace ROCKSDB_NAMESPACE {
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
|
|
|
|
Status ImportColumnFamilyJob::Prepare(uint64_t next_file_number,
|
|
|
|
SuperVersion* sv) {
|
|
|
|
Status status;
|
|
|
|
|
|
|
|
// Read the information of files we are importing
|
|
|
|
for (const auto& file_metadata : metadata_) {
|
|
|
|
const auto file_path = file_metadata.db_path + "/" + file_metadata.name;
|
|
|
|
IngestedFileInfo file_to_import;
|
2023-03-13 18:06:59 +00:00
|
|
|
status = GetIngestedFileInfo(file_path, next_file_number++, sv,
|
|
|
|
file_metadata, &file_to_import);
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
if (!status.ok()) {
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
files_to_import_.push_back(file_to_import);
|
|
|
|
}
|
|
|
|
|
|
|
|
auto num_files = files_to_import_.size();
|
|
|
|
if (num_files == 0) {
|
2023-04-14 17:44:42 +00:00
|
|
|
status = Status::InvalidArgument("The list of files is empty");
|
|
|
|
return status;
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
for (const auto& f : files_to_import_) {
|
|
|
|
if (f.num_entries == 0) {
|
2023-04-14 17:44:42 +00:00
|
|
|
status = Status::InvalidArgument("File contain no entries");
|
|
|
|
return status;
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
}
|
|
|
|
|
2019-09-20 19:00:55 +00:00
|
|
|
if (!f.smallest_internal_key.Valid() || !f.largest_internal_key.Valid()) {
|
2023-04-14 17:44:42 +00:00
|
|
|
status = Status::Corruption("File has corrupted keys");
|
|
|
|
return status;
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Copy/Move external files into DB
|
|
|
|
auto hardlink_files = import_options_.move_files;
|
|
|
|
for (auto& f : files_to_import_) {
|
|
|
|
const auto path_outside_db = f.external_file_path;
|
|
|
|
const auto path_inside_db = TableFileName(
|
|
|
|
cfd_->ioptions()->cf_paths, f.fd.GetNumber(), f.fd.GetPathId());
|
|
|
|
|
|
|
|
if (hardlink_files) {
|
Introduce a new storage specific Env API (#5761)
Summary:
The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc.
This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO.
The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before.
This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection.
The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761
Differential Revision: D18868376
Pulled By: anand1976
fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
2019-12-13 22:47:08 +00:00
|
|
|
status =
|
|
|
|
fs_->LinkFile(path_outside_db, path_inside_db, IOOptions(), nullptr);
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
if (status.IsNotSupported()) {
|
|
|
|
// Original file is on a different FS, use copy instead of hard linking
|
|
|
|
hardlink_files = false;
|
2022-05-18 18:23:12 +00:00
|
|
|
ROCKS_LOG_INFO(db_options_.info_log,
|
|
|
|
"Try to link file %s but it's not supported : %s",
|
|
|
|
f.internal_file_path.c_str(), status.ToString().c_str());
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!hardlink_files) {
|
2022-02-19 02:18:49 +00:00
|
|
|
status =
|
|
|
|
CopyFile(fs_.get(), path_outside_db, path_inside_db, 0,
|
|
|
|
db_options_.use_fsync, io_tracer_, Temperature::kUnknown);
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
}
|
|
|
|
if (!status.ok()) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
f.copy_file = !hardlink_files;
|
|
|
|
f.internal_file_path = path_inside_db;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!status.ok()) {
|
|
|
|
// We failed, remove all files that we copied into the db
|
|
|
|
for (const auto& f : files_to_import_) {
|
|
|
|
if (f.internal_file_path.empty()) {
|
|
|
|
break;
|
|
|
|
}
|
Introduce a new storage specific Env API (#5761)
Summary:
The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc.
This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO.
The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before.
This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection.
The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761
Differential Revision: D18868376
Pulled By: anand1976
fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
2019-12-13 22:47:08 +00:00
|
|
|
const auto s =
|
|
|
|
fs_->DeleteFile(f.internal_file_path, IOOptions(), nullptr);
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
if (!s.ok()) {
|
|
|
|
ROCKS_LOG_WARN(db_options_.info_log,
|
|
|
|
"AddFile() clean up for file %s failed : %s",
|
|
|
|
f.internal_file_path.c_str(), s.ToString().c_str());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
// REQUIRES: we have become the only writer by entering both write_thread_ and
|
|
|
|
// nonmem_write_thread_
|
|
|
|
Status ImportColumnFamilyJob::Run() {
|
2019-11-23 00:01:21 +00:00
|
|
|
// We use the import time as the ancester time. This is the time the data
|
|
|
|
// is written to the database.
|
|
|
|
int64_t temp_current_time = 0;
|
2019-11-27 05:38:38 +00:00
|
|
|
uint64_t oldest_ancester_time = kUnknownOldestAncesterTime;
|
|
|
|
uint64_t current_time = kUnknownOldestAncesterTime;
|
2021-01-26 06:07:26 +00:00
|
|
|
if (clock_->GetCurrentTime(&temp_current_time).ok()) {
|
2019-11-27 05:38:38 +00:00
|
|
|
current_time = oldest_ancester_time =
|
|
|
|
static_cast<uint64_t>(temp_current_time);
|
2019-11-23 00:01:21 +00:00
|
|
|
}
|
|
|
|
|
Sort L0 files by newly introduced epoch_num (#10922)
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox`
- [Ongoing] normal db stress test
- [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761
Reviewed By: ajkr
Differential Revision: D41063187
Pulled By: hx235
fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
|
|
|
// Recover files' epoch number using dummy VersionStorageInfo
|
|
|
|
VersionBuilder dummy_version_builder(
|
2022-12-10 23:07:42 +00:00
|
|
|
cfd_->current()->version_set()->file_options(), cfd_->ioptions(),
|
|
|
|
cfd_->table_cache(), cfd_->current()->storage_info(),
|
|
|
|
cfd_->current()->version_set(),
|
|
|
|
cfd_->GetFileMetadataCacheReservationManager());
|
Sort L0 files by newly introduced epoch_num (#10922)
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox`
- [Ongoing] normal db stress test
- [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761
Reviewed By: ajkr
Differential Revision: D41063187
Pulled By: hx235
fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
|
|
|
VersionStorageInfo dummy_vstorage(
|
2022-12-10 23:07:42 +00:00
|
|
|
&cfd_->internal_comparator(), cfd_->user_comparator(),
|
|
|
|
cfd_->NumberLevels(), cfd_->ioptions()->compaction_style,
|
Sort L0 files by newly introduced epoch_num (#10922)
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox`
- [Ongoing] normal db stress test
- [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761
Reviewed By: ajkr
Differential Revision: D41063187
Pulled By: hx235
fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
|
|
|
nullptr /* src_vstorage */, cfd_->ioptions()->force_consistency_checks,
|
|
|
|
EpochNumberRequirement::kMightMissing);
|
2022-12-10 23:07:42 +00:00
|
|
|
Status s;
|
|
|
|
for (size_t i = 0; s.ok() && i < files_to_import_.size(); ++i) {
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
const auto& f = files_to_import_[i];
|
|
|
|
const auto& file_metadata = metadata_[i];
|
2019-10-14 22:19:31 +00:00
|
|
|
|
Sort L0 files by newly introduced epoch_num (#10922)
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox`
- [Ongoing] normal db stress test
- [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761
Reviewed By: ajkr
Differential Revision: D41063187
Pulled By: hx235
fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
|
|
|
VersionEdit dummy_version_edit;
|
|
|
|
dummy_version_edit.AddFile(
|
2022-12-10 23:07:42 +00:00
|
|
|
file_metadata.level, f.fd.GetNumber(), f.fd.GetPathId(),
|
|
|
|
f.fd.GetFileSize(), f.smallest_internal_key, f.largest_internal_key,
|
|
|
|
file_metadata.smallest_seqno, file_metadata.largest_seqno, false,
|
|
|
|
file_metadata.temperature, kInvalidBlobFileNumber, oldest_ancester_time,
|
Sort L0 files by newly introduced epoch_num (#10922)
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox`
- [Ongoing] normal db stress test
- [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761
Reviewed By: ajkr
Differential Revision: D41063187
Pulled By: hx235
fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
|
|
|
current_time, file_metadata.epoch_number, kUnknownFileChecksum,
|
2022-12-29 21:28:24 +00:00
|
|
|
kUnknownFileChecksumFuncName, f.unique_id, 0);
|
Sort L0 files by newly introduced epoch_num (#10922)
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox`
- [Ongoing] normal db stress test
- [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761
Reviewed By: ajkr
Differential Revision: D41063187
Pulled By: hx235
fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
|
|
|
s = dummy_version_builder.Apply(&dummy_version_edit);
|
2022-12-10 23:07:42 +00:00
|
|
|
}
|
|
|
|
if (s.ok()) {
|
Sort L0 files by newly introduced epoch_num (#10922)
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox`
- [Ongoing] normal db stress test
- [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761
Reviewed By: ajkr
Differential Revision: D41063187
Pulled By: hx235
fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
|
|
|
s = dummy_version_builder.SaveTo(&dummy_vstorage);
|
2022-12-10 23:07:42 +00:00
|
|
|
}
|
Sort L0 files by newly introduced epoch_num (#10922)
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox`
- [Ongoing] normal db stress test
- [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761
Reviewed By: ajkr
Differential Revision: D41063187
Pulled By: hx235
fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
|
|
|
if (s.ok()) {
|
|
|
|
dummy_vstorage.RecoverEpochNumbers(cfd_);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Record changes from this CF import in VersionEdit, including files with
|
|
|
|
// recovered epoch numbers
|
2022-12-10 23:07:42 +00:00
|
|
|
if (s.ok()) {
|
|
|
|
edit_.SetColumnFamily(cfd_->GetID());
|
|
|
|
|
Sort L0 files by newly introduced epoch_num (#10922)
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox`
- [Ongoing] normal db stress test
- [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761
Reviewed By: ajkr
Differential Revision: D41063187
Pulled By: hx235
fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
|
|
|
for (int level = 0; level < dummy_vstorage.num_levels(); level++) {
|
|
|
|
for (FileMetaData* file_meta : dummy_vstorage.LevelFiles(level)) {
|
2022-12-10 23:07:42 +00:00
|
|
|
edit_.AddFile(level, *file_meta);
|
|
|
|
// If incoming sequence number is higher, update local sequence number.
|
|
|
|
if (file_meta->fd.largest_seqno > versions_->LastSequence()) {
|
|
|
|
versions_->SetLastAllocatedSequence(file_meta->fd.largest_seqno);
|
|
|
|
versions_->SetLastPublishedSequence(file_meta->fd.largest_seqno);
|
|
|
|
versions_->SetLastSequence(file_meta->fd.largest_seqno);
|
|
|
|
}
|
|
|
|
}
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
}
|
|
|
|
}
|
Sort L0 files by newly introduced epoch_num (#10922)
Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run https://github.com/ajkr/rocksdb/commit/36a5686ec012f35a4371e409aa85c404ca1c210d (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox`
- [Ongoing] normal db stress test
- [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761
Reviewed By: ajkr
Differential Revision: D41063187
Pulled By: hx235
fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
2022-12-13 21:29:37 +00:00
|
|
|
|
|
|
|
// Release resources occupied by the dummy VersionStorageInfo
|
|
|
|
for (int level = 0; level < dummy_vstorage.num_levels(); level++) {
|
|
|
|
for (FileMetaData* file_meta : dummy_vstorage.LevelFiles(level)) {
|
2022-12-10 23:07:42 +00:00
|
|
|
file_meta->refs--;
|
|
|
|
if (file_meta->refs <= 0) {
|
|
|
|
delete file_meta;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return s;
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void ImportColumnFamilyJob::Cleanup(const Status& status) {
|
|
|
|
if (!status.ok()) {
|
|
|
|
// We failed to add files to the database remove all the files we copied.
|
|
|
|
for (const auto& f : files_to_import_) {
|
Introduce a new storage specific Env API (#5761)
Summary:
The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc.
This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO.
The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before.
This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection.
The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761
Differential Revision: D18868376
Pulled By: anand1976
fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
2019-12-13 22:47:08 +00:00
|
|
|
const auto s =
|
|
|
|
fs_->DeleteFile(f.internal_file_path, IOOptions(), nullptr);
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
if (!s.ok()) {
|
|
|
|
ROCKS_LOG_WARN(db_options_.info_log,
|
|
|
|
"AddFile() clean up for file %s failed : %s",
|
|
|
|
f.internal_file_path.c_str(), s.ToString().c_str());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (status.ok() && import_options_.move_files) {
|
|
|
|
// The files were moved and added successfully, remove original file links
|
|
|
|
for (IngestedFileInfo& f : files_to_import_) {
|
Introduce a new storage specific Env API (#5761)
Summary:
The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc.
This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO.
The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before.
This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection.
The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761
Differential Revision: D18868376
Pulled By: anand1976
fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
2019-12-13 22:47:08 +00:00
|
|
|
const auto s =
|
|
|
|
fs_->DeleteFile(f.external_file_path, IOOptions(), nullptr);
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
if (!s.ok()) {
|
|
|
|
ROCKS_LOG_WARN(
|
|
|
|
db_options_.info_log,
|
|
|
|
"%s was added to DB successfully but failed to remove original "
|
|
|
|
"file link : %s",
|
|
|
|
f.external_file_path.c_str(), s.ToString().c_str());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Status ImportColumnFamilyJob::GetIngestedFileInfo(
|
New stable, fixed-length cache keys (#9126)
Summary:
This change standardizes on a new 16-byte cache key format for
block cache (incl compressed and secondary) and persistent cache (but
not table cache and row cache).
The goal is a really fast cache key with practically ideal stability and
uniqueness properties without external dependencies (e.g. from FileSystem).
A fixed key size of 16 bytes should enable future optimizations to the
concurrent hash table for block cache, which is a heavy CPU user /
bottleneck, but there appears to be measurable performance improvement
even with no changes to LRUCache.
This change replaces a lot of disjointed and ugly code handling cache
keys with calls to a simple, clean new internal API (cache_key.h).
(Preserving the old cache key logic under an option would be very ugly
and likely negate the performance gain of the new approach. Complete
replacement carries some inherent risk, but I think that's acceptable
with sufficient analysis and testing.)
The scheme for encoding new cache keys is complicated but explained
in cache_key.cc.
Also: EndianSwapValue is moved to math.h to be next to other bit
operations. (Explains some new include "math.h".) ReverseBits operation
added and unit tests added to hash_test for both.
Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126
Test Plan:
### Basic correctness
Several tests needed updates to work with the new functionality, mostly
because we are no longer relying on filesystem for stable cache keys
so table builders & readers need more context info to agree on cache
keys. This functionality is so core, a huge number of existing tests
exercise the cache key functionality.
### Performance
Create db with
`TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters`
And test performance with
`TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4`
using DEBUG_LEVEL=0 and simultaneous before & after runs.
Before ops/sec, avg over 100 runs: 121924
After ops/sec, avg over 100 runs: 125385 (+2.8%)
### Collision probability
I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity
over many months, by making some pessimistic simplifying assumptions:
* Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys)
* All of every file is cached for its entire lifetime
We use a simple table with skewed address assignment and replacement on address collision
to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output
with `./cache_bench -stress_cache_key -sck_keep_bits=40`:
```
Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day
Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached)
```
These come from default settings of 2.5M files per day of 32 MB each, and
`-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of
the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation
is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality.
More default assumptions, relatively pessimistic:
* 100 DBs in same process (doesn't matter much)
* Re-open DB in same process (new session ID related to old session ID) on average
every 100 files generated
* Restart process (all new session IDs unrelated to old) 24 times per day
After enough data, we get a result at the end:
```
(keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected)
```
If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data:
```
(keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected)
(keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected)
```
The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases:
```
197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected)
```
I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data.
Reviewed By: zhichao-cao
Differential Revision: D33171746
Pulled By: pdillinger
fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-17 01:13:55 +00:00
|
|
|
const std::string& external_file, uint64_t new_file_number,
|
2023-03-13 18:06:59 +00:00
|
|
|
SuperVersion* sv, const LiveFileMetaData& file_meta,
|
|
|
|
IngestedFileInfo* file_to_import) {
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
file_to_import->external_file_path = external_file;
|
2023-03-13 18:06:59 +00:00
|
|
|
Status status;
|
|
|
|
if (file_meta.size > 0) {
|
|
|
|
file_to_import->file_size = file_meta.size;
|
|
|
|
} else {
|
|
|
|
// Get external file size
|
|
|
|
status = fs_->GetFileSize(external_file, IOOptions(),
|
|
|
|
&file_to_import->file_size, nullptr);
|
|
|
|
if (!status.ok()) {
|
|
|
|
return status;
|
|
|
|
}
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
}
|
New stable, fixed-length cache keys (#9126)
Summary:
This change standardizes on a new 16-byte cache key format for
block cache (incl compressed and secondary) and persistent cache (but
not table cache and row cache).
The goal is a really fast cache key with practically ideal stability and
uniqueness properties without external dependencies (e.g. from FileSystem).
A fixed key size of 16 bytes should enable future optimizations to the
concurrent hash table for block cache, which is a heavy CPU user /
bottleneck, but there appears to be measurable performance improvement
even with no changes to LRUCache.
This change replaces a lot of disjointed and ugly code handling cache
keys with calls to a simple, clean new internal API (cache_key.h).
(Preserving the old cache key logic under an option would be very ugly
and likely negate the performance gain of the new approach. Complete
replacement carries some inherent risk, but I think that's acceptable
with sufficient analysis and testing.)
The scheme for encoding new cache keys is complicated but explained
in cache_key.cc.
Also: EndianSwapValue is moved to math.h to be next to other bit
operations. (Explains some new include "math.h".) ReverseBits operation
added and unit tests added to hash_test for both.
Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126
Test Plan:
### Basic correctness
Several tests needed updates to work with the new functionality, mostly
because we are no longer relying on filesystem for stable cache keys
so table builders & readers need more context info to agree on cache
keys. This functionality is so core, a huge number of existing tests
exercise the cache key functionality.
### Performance
Create db with
`TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters`
And test performance with
`TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4`
using DEBUG_LEVEL=0 and simultaneous before & after runs.
Before ops/sec, avg over 100 runs: 121924
After ops/sec, avg over 100 runs: 125385 (+2.8%)
### Collision probability
I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity
over many months, by making some pessimistic simplifying assumptions:
* Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys)
* All of every file is cached for its entire lifetime
We use a simple table with skewed address assignment and replacement on address collision
to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output
with `./cache_bench -stress_cache_key -sck_keep_bits=40`:
```
Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day
Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached)
```
These come from default settings of 2.5M files per day of 32 MB each, and
`-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of
the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation
is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality.
More default assumptions, relatively pessimistic:
* 100 DBs in same process (doesn't matter much)
* Re-open DB in same process (new session ID related to old session ID) on average
every 100 files generated
* Restart process (all new session IDs unrelated to old) 24 times per day
After enough data, we get a result at the end:
```
(keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected)
```
If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data:
```
(keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected)
(keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected)
```
The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases:
```
197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected)
```
I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data.
Reviewed By: zhichao-cao
Differential Revision: D33171746
Pulled By: pdillinger
fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-17 01:13:55 +00:00
|
|
|
// Assign FD with number
|
|
|
|
file_to_import->fd =
|
|
|
|
FileDescriptor(new_file_number, 0, file_to_import->file_size);
|
|
|
|
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
// Create TableReader for external file
|
|
|
|
std::unique_ptr<TableReader> table_reader;
|
Introduce a new storage specific Env API (#5761)
Summary:
The current Env API encompasses both storage/file operations, as well as OS related operations. Most of the APIs return a Status, which does not have enough metadata about an error, such as whether its retry-able or not, scope (i.e fault domain) of the error etc., that may be required in order to properly handle a storage error. The file APIs also do not provide enough control over the IO SLA, such as timeout, prioritization, hinting about placement and redundancy etc.
This PR separates out the file/storage APIs from Env into a new FileSystem class. The APIs are updated to return an IOStatus with metadata about the error, as well as to take an IOOptions structure as input in order to allow more control over the IO.
The user can set both ```options.env``` and ```options.file_system``` to specify that RocksDB should use the former for OS related operations and the latter for storage operations. Internally, a ```CompositeEnvWrapper``` has been introduced that inherits from ```Env``` and redirects individual methods to either an ```Env``` implementation or the ```FileSystem``` as appropriate. When options are sanitized during ```DB::Open```, ```options.env``` is replaced with a newly allocated ```CompositeEnvWrapper``` instance if both env and file_system have been specified. This way, the rest of the RocksDB code can continue to function as before.
This PR also ports PosixEnv to the new API by splitting it into two - PosixEnv and PosixFileSystem. PosixEnv is defined as a sub-class of CompositeEnvWrapper, and threading/time functions are overridden with Posix specific implementations in order to avoid an extra level of indirection.
The ```CompositeEnvWrapper``` translates ```IOStatus``` return code to ```Status```, and sets the severity to ```kSoftError``` if the io_status is retryable. The error handling code in RocksDB can then recover the DB automatically.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5761
Differential Revision: D18868376
Pulled By: anand1976
fbshipit-source-id: 39efe18a162ea746fabac6360ff529baba48486f
2019-12-13 22:47:08 +00:00
|
|
|
std::unique_ptr<FSRandomAccessFile> sst_file;
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
std::unique_ptr<RandomAccessFileReader> sst_file_reader;
|
|
|
|
|
2022-11-02 21:34:24 +00:00
|
|
|
status =
|
|
|
|
fs_->NewRandomAccessFile(external_file, env_options_, &sst_file, nullptr);
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
if (!status.ok()) {
|
|
|
|
return status;
|
|
|
|
}
|
2020-08-27 18:20:08 +00:00
|
|
|
sst_file_reader.reset(new RandomAccessFileReader(
|
|
|
|
std::move(sst_file), external_file, nullptr /*Env*/, io_tracer_));
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
|
|
|
|
status = cfd_->ioptions()->table_factory->NewTableReader(
|
New stable, fixed-length cache keys (#9126)
Summary:
This change standardizes on a new 16-byte cache key format for
block cache (incl compressed and secondary) and persistent cache (but
not table cache and row cache).
The goal is a really fast cache key with practically ideal stability and
uniqueness properties without external dependencies (e.g. from FileSystem).
A fixed key size of 16 bytes should enable future optimizations to the
concurrent hash table for block cache, which is a heavy CPU user /
bottleneck, but there appears to be measurable performance improvement
even with no changes to LRUCache.
This change replaces a lot of disjointed and ugly code handling cache
keys with calls to a simple, clean new internal API (cache_key.h).
(Preserving the old cache key logic under an option would be very ugly
and likely negate the performance gain of the new approach. Complete
replacement carries some inherent risk, but I think that's acceptable
with sufficient analysis and testing.)
The scheme for encoding new cache keys is complicated but explained
in cache_key.cc.
Also: EndianSwapValue is moved to math.h to be next to other bit
operations. (Explains some new include "math.h".) ReverseBits operation
added and unit tests added to hash_test for both.
Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126
Test Plan:
### Basic correctness
Several tests needed updates to work with the new functionality, mostly
because we are no longer relying on filesystem for stable cache keys
so table builders & readers need more context info to agree on cache
keys. This functionality is so core, a huge number of existing tests
exercise the cache key functionality.
### Performance
Create db with
`TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters`
And test performance with
`TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4`
using DEBUG_LEVEL=0 and simultaneous before & after runs.
Before ops/sec, avg over 100 runs: 121924
After ops/sec, avg over 100 runs: 125385 (+2.8%)
### Collision probability
I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity
over many months, by making some pessimistic simplifying assumptions:
* Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys)
* All of every file is cached for its entire lifetime
We use a simple table with skewed address assignment and replacement on address collision
to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output
with `./cache_bench -stress_cache_key -sck_keep_bits=40`:
```
Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day
Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached)
```
These come from default settings of 2.5M files per day of 32 MB each, and
`-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of
the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation
is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality.
More default assumptions, relatively pessimistic:
* 100 DBs in same process (doesn't matter much)
* Re-open DB in same process (new session ID related to old session ID) on average
every 100 files generated
* Restart process (all new session IDs unrelated to old) 24 times per day
After enough data, we get a result at the end:
```
(keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected)
```
If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data:
```
(keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected)
(keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected)
```
The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases:
```
197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected)
```
I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data.
Reviewed By: zhichao-cao
Differential Revision: D33171746
Pulled By: pdillinger
fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-17 01:13:55 +00:00
|
|
|
TableReaderOptions(
|
2022-01-21 19:36:36 +00:00
|
|
|
*cfd_->ioptions(), sv->mutable_cf_options.prefix_extractor,
|
New stable, fixed-length cache keys (#9126)
Summary:
This change standardizes on a new 16-byte cache key format for
block cache (incl compressed and secondary) and persistent cache (but
not table cache and row cache).
The goal is a really fast cache key with practically ideal stability and
uniqueness properties without external dependencies (e.g. from FileSystem).
A fixed key size of 16 bytes should enable future optimizations to the
concurrent hash table for block cache, which is a heavy CPU user /
bottleneck, but there appears to be measurable performance improvement
even with no changes to LRUCache.
This change replaces a lot of disjointed and ugly code handling cache
keys with calls to a simple, clean new internal API (cache_key.h).
(Preserving the old cache key logic under an option would be very ugly
and likely negate the performance gain of the new approach. Complete
replacement carries some inherent risk, but I think that's acceptable
with sufficient analysis and testing.)
The scheme for encoding new cache keys is complicated but explained
in cache_key.cc.
Also: EndianSwapValue is moved to math.h to be next to other bit
operations. (Explains some new include "math.h".) ReverseBits operation
added and unit tests added to hash_test for both.
Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126
Test Plan:
### Basic correctness
Several tests needed updates to work with the new functionality, mostly
because we are no longer relying on filesystem for stable cache keys
so table builders & readers need more context info to agree on cache
keys. This functionality is so core, a huge number of existing tests
exercise the cache key functionality.
### Performance
Create db with
`TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters`
And test performance with
`TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4`
using DEBUG_LEVEL=0 and simultaneous before & after runs.
Before ops/sec, avg over 100 runs: 121924
After ops/sec, avg over 100 runs: 125385 (+2.8%)
### Collision probability
I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity
over many months, by making some pessimistic simplifying assumptions:
* Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys)
* All of every file is cached for its entire lifetime
We use a simple table with skewed address assignment and replacement on address collision
to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output
with `./cache_bench -stress_cache_key -sck_keep_bits=40`:
```
Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day
Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached)
```
These come from default settings of 2.5M files per day of 32 MB each, and
`-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of
the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation
is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality.
More default assumptions, relatively pessimistic:
* 100 DBs in same process (doesn't matter much)
* Re-open DB in same process (new session ID related to old session ID) on average
every 100 files generated
* Restart process (all new session IDs unrelated to old) 24 times per day
After enough data, we get a result at the end:
```
(keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected)
```
If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data:
```
(keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected)
(keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected)
```
The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases:
```
197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected)
```
I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data.
Reviewed By: zhichao-cao
Differential Revision: D33171746
Pulled By: pdillinger
fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-17 01:13:55 +00:00
|
|
|
env_options_, cfd_->internal_comparator(),
|
|
|
|
/*skip_filters*/ false, /*immortal*/ false,
|
|
|
|
/*force_direct_prefetch*/ false, /*level*/ -1,
|
|
|
|
/*block_cache_tracer*/ nullptr,
|
|
|
|
/*max_file_size_for_l0_meta_pin*/ 0, versions_->DbSessionId(),
|
|
|
|
/*cur_file_num*/ new_file_number),
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
std::move(sst_file_reader), file_to_import->file_size, &table_reader);
|
|
|
|
if (!status.ok()) {
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get the external file properties
|
|
|
|
auto props = table_reader->GetTableProperties();
|
|
|
|
|
|
|
|
// Set original_seqno to 0.
|
|
|
|
file_to_import->original_seqno = 0;
|
|
|
|
|
|
|
|
// Get number of entries in table
|
|
|
|
file_to_import->num_entries = props->num_entries;
|
|
|
|
|
2023-03-13 18:06:59 +00:00
|
|
|
// If the importing files were exported with Checkpoint::ExportColumnFamily(),
|
|
|
|
// we cannot simply recompute smallest and largest used to truncate range
|
|
|
|
// tombstones from file content, and we expect smallest and largest populated
|
|
|
|
// in file_meta.
|
|
|
|
if (file_meta.smallest.empty()) {
|
|
|
|
assert(file_meta.largest.empty());
|
|
|
|
ReadOptions ro;
|
|
|
|
std::unique_ptr<InternalIterator> iter(table_reader->NewIterator(
|
|
|
|
ro, sv->mutable_cf_options.prefix_extractor.get(), /*arena=*/nullptr,
|
|
|
|
/*skip_filters=*/false, TableReaderCaller::kExternalSSTIngestion));
|
|
|
|
|
|
|
|
// Get first (smallest) key from file
|
|
|
|
iter->SeekToFirst();
|
|
|
|
bool bound_set = false;
|
|
|
|
if (iter->Valid()) {
|
|
|
|
file_to_import->smallest_internal_key.DecodeFrom(iter->key());
|
|
|
|
iter->SeekToLast();
|
|
|
|
file_to_import->largest_internal_key.DecodeFrom(iter->key());
|
|
|
|
bound_set = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::unique_ptr<InternalIterator> range_del_iter{
|
|
|
|
table_reader->NewRangeTombstoneIterator(ro)};
|
|
|
|
if (range_del_iter != nullptr) {
|
|
|
|
range_del_iter->SeekToFirst();
|
|
|
|
if (range_del_iter->Valid()) {
|
|
|
|
ParsedInternalKey key;
|
|
|
|
Status pik_status = ParseInternalKey(range_del_iter->key(), &key,
|
|
|
|
db_options_.allow_data_in_errors);
|
|
|
|
if (!pik_status.ok()) {
|
|
|
|
return Status::Corruption("Corrupted key in external file. ",
|
|
|
|
pik_status.getState());
|
|
|
|
}
|
2023-04-15 17:33:23 +00:00
|
|
|
RangeTombstone first_tombstone(key, range_del_iter->value());
|
|
|
|
InternalKey start_key = first_tombstone.SerializeKey();
|
2023-03-13 18:06:59 +00:00
|
|
|
const InternalKeyComparator* icmp = &cfd_->internal_comparator();
|
|
|
|
if (!bound_set ||
|
|
|
|
icmp->Compare(start_key, file_to_import->smallest_internal_key) <
|
|
|
|
0) {
|
|
|
|
file_to_import->smallest_internal_key = start_key;
|
|
|
|
}
|
2023-04-15 17:33:23 +00:00
|
|
|
|
|
|
|
range_del_iter->SeekToLast();
|
|
|
|
pik_status = ParseInternalKey(range_del_iter->key(), &key,
|
|
|
|
db_options_.allow_data_in_errors);
|
|
|
|
if (!pik_status.ok()) {
|
|
|
|
return Status::Corruption("Corrupted key in external file. ",
|
|
|
|
pik_status.getState());
|
|
|
|
}
|
|
|
|
RangeTombstone last_tombstone(key, range_del_iter->value());
|
|
|
|
InternalKey end_key = last_tombstone.SerializeEndKey();
|
2023-03-13 18:06:59 +00:00
|
|
|
if (!bound_set ||
|
|
|
|
icmp->Compare(end_key, file_to_import->largest_internal_key) > 0) {
|
|
|
|
file_to_import->largest_internal_key = end_key;
|
|
|
|
}
|
|
|
|
bound_set = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(bound_set);
|
|
|
|
} else {
|
|
|
|
assert(!file_meta.largest.empty());
|
|
|
|
file_to_import->smallest_internal_key.DecodeFrom(file_meta.smallest);
|
|
|
|
file_to_import->largest_internal_key.DecodeFrom(file_meta.largest);
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
file_to_import->cf_id = static_cast<uint32_t>(props->column_family_id);
|
|
|
|
|
|
|
|
file_to_import->table_properties = *props;
|
|
|
|
|
2022-05-19 18:04:21 +00:00
|
|
|
auto s = GetSstInternalUniqueId(props->db_id, props->db_session_id,
|
|
|
|
props->orig_file_number,
|
|
|
|
&(file_to_import->unique_id));
|
|
|
|
if (!s.ok()) {
|
|
|
|
ROCKS_LOG_WARN(db_options_.info_log,
|
|
|
|
"Failed to get SST unique id for file %s",
|
|
|
|
file_to_import->internal_file_path.c_str());
|
|
|
|
}
|
|
|
|
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
return status;
|
|
|
|
}
|
2020-02-20 20:07:53 +00:00
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
Export Import sst files (#5495)
Summary:
Refresh of the earlier change here - https://github.com/facebook/rocksdb/issues/5135
This is a review request for code change needed for - https://github.com/facebook/rocksdb/issues/3469
"Add support for taking snapshot of a column family and creating column family from a given CF snapshot"
We have an implementation for this that we have been testing internally. We have two new APIs that together provide this functionality.
(1) ExportColumnFamily() - This API is modelled after CreateCheckpoint() as below.
// Exports all live SST files of a specified Column Family onto export_dir,
// returning SST files information in metadata.
// - SST files will be created as hard links when the directory specified
// is in the same partition as the db directory, copied otherwise.
// - export_dir should not already exist and will be created by this API.
// - Always triggers a flush.
virtual Status ExportColumnFamily(ColumnFamilyHandle* handle,
const std::string& export_dir,
ExportImportFilesMetaData** metadata);
Internally, the API will DisableFileDeletions(), GetColumnFamilyMetaData(), Parse through
metadata, creating links/copies of all the sst files, EnableFileDeletions() and complete the call by
returning the list of file metadata.
(2) CreateColumnFamilyWithImport() - This API is modeled after IngestExternalFile(), but invoked only during a CF creation as below.
// CreateColumnFamilyWithImport() will create a new column family with
// column_family_name and import external SST files specified in metadata into
// this column family.
// (1) External SST files can be created using SstFileWriter.
// (2) External SST files can be exported from a particular column family in
// an existing DB.
// Option in import_options specifies whether the external files are copied or
// moved (default is copy). When option specifies copy, managing files at
// external_file_path is caller's responsibility. When option specifies a
// move, the call ensures that the specified files at external_file_path are
// deleted on successful return and files are not modified on any error
// return.
// On error return, column family handle returned will be nullptr.
// ColumnFamily will be present on successful return and will not be present
// on error return. ColumnFamily may be present on any crash during this call.
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& options, const std::string& column_family_name,
const ImportColumnFamilyOptions& import_options,
const ExportImportFilesMetaData& metadata,
ColumnFamilyHandle** handle);
Internally, this API creates a new CF, parses all the sst files and adds it to the specified column family, at the same level and with same sequence number as in the metadata. Also performs safety checks with respect to overlaps between the sst files being imported.
If incoming sequence number is higher than current local sequence number, local sequence
number is updated to reflect this.
Note, as the sst files is are being moved across Column Families, Column Family name in sst file
will no longer match the actual column family on destination DB. The API does not modify Column
Family name or id in the sst files being imported.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5495
Differential Revision: D16018881
fbshipit-source-id: 9ae2251025d5916d35a9fc4ea4d6707f6be16ff9
2019-07-17 19:22:21 +00:00
|
|
|
|