#include "benchmark/benchmark.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__GNUC__) # define BENCHMARK_NOINLINE __attribute__((noinline)) #else # define BENCHMARK_NOINLINE #endif namespace { #if 0 // TODO(ericwf): Remove this or figure out its purpose. int BENCHMARK_NOINLINE Factorial(uint32_t n) { return (n == 1) ? 1 : n * Factorial(n - 1); } #endif double CalculatePi(int depth) { double pi = 0.0; for (int i = 0; i < depth; ++i) { double numerator = static_cast(((i % 2) * 2) - 1); double denominator = static_cast((2 * i) - 1); pi += numerator / denominator; } return (pi - 1.0) * 4; } std::set ConstructRandomSet(int size) { std::set s; for (int i = 0; i < size; ++i) s.insert(i); return s; } std::mutex test_vector_mu; std::vector* test_vector = nullptr; } // end namespace #if 0 // TODO(ericwf): Remove this or figure out its purpose. static void BM_Factorial(benchmark::State& state) { int fac_42 = 0; while (state.KeepRunning()) fac_42 = Factorial(8); // Prevent compiler optimizations EXPECT_NE(fac_42, std::numeric_limits::max()); } BENCHMARK(BM_Factorial); #endif static void BM_CalculatePiRange(benchmark::State& state) { double pi = 0.0; while (state.KeepRunning()) pi = CalculatePi(state.range_x()); std::stringstream ss; ss << pi; state.SetLabel(ss.str()); } BENCHMARK_RANGE(BM_CalculatePiRange, 1, 1024 * 1024); static void BM_CalculatePi(benchmark::State& state) { static const int depth = 1024; double pi BENCHMARK_UNUSED = 0.0; while (state.KeepRunning()) { pi = CalculatePi(depth); } } BENCHMARK(BM_CalculatePi)->Threads(8); BENCHMARK(BM_CalculatePi)->ThreadRange(1, 32); BENCHMARK(BM_CalculatePi)->ThreadPerCpu(); static void BM_SetInsert(benchmark::State& state) { while (state.KeepRunning()) { state.PauseTiming(); std::set data = ConstructRandomSet(state.range_x()); state.ResumeTiming(); for (int j = 0; j < state.range_y(); ++j) data.insert(rand()); } state.SetItemsProcessed(state.iterations() * state.range_y()); state.SetBytesProcessed(state.iterations() * state.range_y() * sizeof(int)); } BENCHMARK(BM_SetInsert)->RangePair(1<<10,8<<10, 1,10); template static void BM_Sequential(benchmark::State& state) { typename Q::value_type v = 42; while (state.KeepRunning()) { Q q; for (int i = state.range_x(); --i; ) q.push_back(v); } const int64_t items_processed = static_cast(state.iterations()) * state.range_x(); state.SetItemsProcessed(items_processed); state.SetBytesProcessed(items_processed * sizeof(v)); } BENCHMARK_TEMPLATE(BM_Sequential, std::vector)->Range(1 << 0, 1 << 10); BENCHMARK_TEMPLATE(BM_Sequential, std::list)->Range(1 << 0, 1 << 10); static void BM_StringCompare(benchmark::State& state) { std::string s1(state.range_x(), '-'); std::string s2(state.range_x(), '-'); int r = 0; while (state.KeepRunning()) r |= s1.compare(s2); // Prevent compiler optimizations assert(r != std::numeric_limits::max()); } BENCHMARK(BM_StringCompare)->Range(1, 1<<20); static void BM_SetupTeardown(benchmark::State& state) { if (state.thread_index == 0) { // No need to lock test_vector_mu here as this is running single-threaded. test_vector = new std::vector(); } int i = 0; while (state.KeepRunning()) { std::lock_guard l(test_vector_mu); if (i%2 == 0) test_vector->push_back(i); else test_vector->pop_back(); ++i; } if (state.thread_index == 0) { delete test_vector; } } BENCHMARK(BM_SetupTeardown)->ThreadPerCpu(); static void BM_LongTest(benchmark::State& state) { double tracker = 0.0; while (state.KeepRunning()) for (int i = 0; i < state.range_x(); ++i) tracker += i; assert(tracker != 0.0); } BENCHMARK(BM_LongTest)->Range(1<<16,1<<28); class TestReporter : public benchmark::internal::ConsoleReporter { public: virtual bool ReportContext(const Context& context) const { return ConsoleReporter::ReportContext(context); }; virtual void ReportRuns(const std::vector& report) const { ++count_; ConsoleReporter::ReportRuns(report); }; TestReporter() : count_(0) {} virtual ~TestReporter() {} size_t GetCount() const { return count_; } private: mutable size_t count_; }; int main(int argc, const char* argv[]) { benchmark::Initialize(&argc, argv); #if 0 // TODO(ericwf): Remove this or figure out its purpose. assert(Factorial(8) == 40320); #endif assert(CalculatePi(1) == 0.0); TestReporter test_reporter; benchmark::RunSpecifiedBenchmarks(&test_reporter); // Make sure we ran all of the tests const size_t count = test_reporter.GetCount(); const size_t expected = (argc == 2) ? std::stoul(argv[1]) : count; if (count != expected) { std::cerr << "ERROR: Expected " << expected << " tests to be ran but only " << count << " completed" << std::endl; return -1; } }