#undef NDEBUG #include "benchmark/benchmark.h" #include "output_test.h" // ========================================================================= // // ---------------------- Testing Prologue Output -------------------------- // // ========================================================================= // ADD_CASES(TC_ConsoleOut, {{"^[-]+$", MR_Next}, {"^Benchmark %s Time %s CPU %s Iterations UserCounters...$", MR_Next}, {"^[-]+$", MR_Next}}); ADD_CASES(TC_CSVOut, {{"%csv_header,\"bar\",\"foo\""}}); // ========================================================================= // // ------------------------- Simple Counters Output ------------------------ // // ========================================================================= // void BM_Counters_Simple(benchmark::State& state) { while (state.KeepRunning()) { } state.counters["foo"] = 1; state.counters["bar"] = 2 * state.iterations(); } BENCHMARK(BM_Counters_Simple); ADD_CASES(TC_ConsoleOut, {{"^BM_Counters_Simple %console_report bar=%hrfloat foo=%hrfloat$"}}); ADD_CASES(TC_JSONOut, {{"\"name\": \"BM_Counters_Simple\",$"}, {"\"iterations\": %int,$", MR_Next}, {"\"real_time\": %int,$", MR_Next}, {"\"cpu_time\": %int,$", MR_Next}, {"\"time_unit\": \"ns\",$", MR_Next}, {"\"bar\": %float,$", MR_Next}, {"\"foo\": %float$", MR_Next}, {"}", MR_Next}}); ADD_CASES(TC_CSVOut, {{"^\"BM_Counters_Simple\",%csv_report,%float,%float$"}}); CHECK_BENCHMARK_RESULTS("BM_Counters_Simple", [](Results const& e) { double its = e.GetAs< double >("iterations"); CHECK_COUNTER_VALUE(e, int, "foo", EQ, 1); // check that the value of bar is within 0.1% of the expected value CHECK_COUNTER_VALUE_EPS(e, "bar", EQ_EPS, 2.*its, 0.001); }); // ========================================================================= // // --------------------- Counters+Items+Bytes/s Output --------------------- // // ========================================================================= // namespace { int num_calls1 = 0; } void BM_Counters_WithBytesAndItemsPSec(benchmark::State& state) { while (state.KeepRunning()) { } state.counters["foo"] = 1; state.counters["bar"] = ++num_calls1; state.SetBytesProcessed(364); state.SetItemsProcessed(150); } BENCHMARK(BM_Counters_WithBytesAndItemsPSec); ADD_CASES(TC_ConsoleOut, {{"^BM_Counters_WithBytesAndItemsPSec %console_report " "bar=%hrfloat foo=%hrfloat +%hrfloatB/s +%hrfloat items/s$"}}); ADD_CASES(TC_JSONOut, {{"\"name\": \"BM_Counters_WithBytesAndItemsPSec\",$"}, {"\"iterations\": %int,$", MR_Next}, {"\"real_time\": %int,$", MR_Next}, {"\"cpu_time\": %int,$", MR_Next}, {"\"time_unit\": \"ns\",$", MR_Next}, {"\"bytes_per_second\": %int,$", MR_Next}, {"\"items_per_second\": %int,$", MR_Next}, {"\"bar\": %float,$", MR_Next}, {"\"foo\": %float$", MR_Next}, {"}", MR_Next}}); ADD_CASES(TC_CSVOut, {{"^\"BM_Counters_WithBytesAndItemsPSec\"," "%csv_bytes_items_report,%float,%float$"}}); CHECK_BENCHMARK_RESULTS("BM_Counters_WithBytesAndItemsPSec", [](Results const& e) { double t = e.DurationCPUTime(); // this (and not real time) is the time used CHECK_COUNTER_VALUE(e, int, "foo", EQ, 1); CHECK_COUNTER_VALUE(e, int, "bar", EQ, num_calls1); // check that the values are within 0.1% of the expected values CHECK_RESULT_VALUE_EPS(e, "bytes_per_second", EQ_EPS, 364./t, 0.001); CHECK_RESULT_VALUE_EPS(e, "items_per_second", EQ_EPS, 150./t, 0.001); }); // ========================================================================= // // ------------------------- Rate Counters Output -------------------------- // // ========================================================================= // void BM_Counters_Rate(benchmark::State& state) { while (state.KeepRunning()) { } namespace bm = benchmark; state.counters["foo"] = bm::Counter{1, bm::Counter::kIsRate}; state.counters["bar"] = bm::Counter{2, bm::Counter::kIsRate}; } BENCHMARK(BM_Counters_Rate); ADD_CASES(TC_ConsoleOut, {{"^BM_Counters_Rate %console_report bar=%hrfloat/s foo=%hrfloat/s$"}}); ADD_CASES(TC_JSONOut, {{"\"name\": \"BM_Counters_Rate\",$"}, {"\"iterations\": %int,$", MR_Next}, {"\"real_time\": %int,$", MR_Next}, {"\"cpu_time\": %int,$", MR_Next}, {"\"time_unit\": \"ns\",$", MR_Next}, {"\"bar\": %float,$", MR_Next}, {"\"foo\": %float$", MR_Next}, {"}", MR_Next}}); ADD_CASES(TC_CSVOut, {{"^\"BM_Counters_Rate\",%csv_report,%float,%float$"}}); CHECK_BENCHMARK_RESULTS("BM_Counters_Rate", [](Results const& e) { double t = e.DurationCPUTime(); // this (and not real time) is the time used // check that the values are within 0.1% of the expected values CHECK_COUNTER_VALUE_EPS(e, "foo", EQ_EPS, 1./t, 0.001); CHECK_COUNTER_VALUE_EPS(e, "bar", EQ_EPS, 2./t, 0.001); }); // ========================================================================= // // ------------------------- Thread Counters Output ------------------------ // // ========================================================================= // void BM_Counters_Threads(benchmark::State& state) { while (state.KeepRunning()) { } state.counters["foo"] = 1; state.counters["bar"] = 2; } BENCHMARK(BM_Counters_Threads)->ThreadRange(1, 8); ADD_CASES(TC_ConsoleOut, {{"^BM_Counters_Threads/threads:%int %console_report bar=%hrfloat foo=%hrfloat$"}}); ADD_CASES(TC_JSONOut, {{"\"name\": \"BM_Counters_Threads/threads:%int\",$"}, {"\"iterations\": %int,$", MR_Next}, {"\"real_time\": %int,$", MR_Next}, {"\"cpu_time\": %int,$", MR_Next}, {"\"time_unit\": \"ns\",$", MR_Next}, {"\"bar\": %float,$", MR_Next}, {"\"foo\": %float$", MR_Next}, {"}", MR_Next}}); ADD_CASES(TC_CSVOut, {{"^\"BM_Counters_Threads/threads:%int\",%csv_report,%float,%float$"}}); CHECK_BENCHMARK_RESULTS("BM_Counters_Threads/threads:%int", [](Results const& e) { CHECK_COUNTER_VALUE(e, int, "foo", EQ, e.NumThreads()); CHECK_COUNTER_VALUE(e, int, "bar", EQ, 2 * e.NumThreads()); }); // ========================================================================= // // ---------------------- ThreadAvg Counters Output ------------------------ // // ========================================================================= // void BM_Counters_AvgThreads(benchmark::State& state) { while (state.KeepRunning()) { } namespace bm = benchmark; state.counters["foo"] = bm::Counter{1, bm::Counter::kAvgThreads}; state.counters["bar"] = bm::Counter{2, bm::Counter::kAvgThreads}; } BENCHMARK(BM_Counters_AvgThreads)->ThreadRange(1, 8); ADD_CASES(TC_ConsoleOut, {{"^BM_Counters_AvgThreads/threads:%int %console_report bar=%hrfloat foo=%hrfloat$"}}); ADD_CASES(TC_JSONOut, {{"\"name\": \"BM_Counters_AvgThreads/threads:%int\",$"}, {"\"iterations\": %int,$", MR_Next}, {"\"real_time\": %int,$", MR_Next}, {"\"cpu_time\": %int,$", MR_Next}, {"\"time_unit\": \"ns\",$", MR_Next}, {"\"bar\": %float,$", MR_Next}, {"\"foo\": %float$", MR_Next}, {"}", MR_Next}}); ADD_CASES(TC_CSVOut, {{"^\"BM_Counters_AvgThreads/threads:%int\",%csv_report,%float,%float$"}}); CHECK_BENCHMARK_RESULTS("BM_Counters_AvgThreads/threads:%int", [](Results const& e) { CHECK_COUNTER_VALUE(e, int, "foo", EQ, 1); CHECK_COUNTER_VALUE(e, int, "bar", EQ, 2); }); // ========================================================================= // // ---------------------- ThreadAvg Counters Output ------------------------ // // ========================================================================= // void BM_Counters_AvgThreadsRate(benchmark::State& state) { while (state.KeepRunning()) { } namespace bm = benchmark; state.counters["foo"] = bm::Counter{1, bm::Counter::kAvgThreadsRate}; state.counters["bar"] = bm::Counter{2, bm::Counter::kAvgThreadsRate}; } BENCHMARK(BM_Counters_AvgThreadsRate)->ThreadRange(1, 8); ADD_CASES(TC_ConsoleOut, {{"^BM_Counters_AvgThreadsRate/threads:%int %console_report bar=%hrfloat/s foo=%hrfloat/s$"}}); ADD_CASES(TC_JSONOut, {{"\"name\": \"BM_Counters_AvgThreadsRate/threads:%int\",$"}, {"\"iterations\": %int,$", MR_Next}, {"\"real_time\": %int,$", MR_Next}, {"\"cpu_time\": %int,$", MR_Next}, {"\"time_unit\": \"ns\",$", MR_Next}, {"\"bar\": %float,$", MR_Next}, {"\"foo\": %float$", MR_Next}, {"}", MR_Next}}); ADD_CASES(TC_CSVOut, {{"^\"BM_Counters_AvgThreadsRate/threads:%int\",%csv_report,%float,%float$"}}); CHECK_BENCHMARK_RESULTS("BM_Counters_AvgThreadsRate/threads:%int", [](Results const& e) { CHECK_COUNTER_VALUE_EPS(e, "foo", EQ_EPS, 1./e.DurationCPUTime(), 0.001); CHECK_COUNTER_VALUE_EPS(e, "bar", EQ_EPS, 2./e.DurationCPUTime(), 0.001); }); // ========================================================================= // // --------------------------- TEST CASES END ------------------------------ // // ========================================================================= // int main(int argc, char* argv[]) { RunOutputTests(argc, argv); }