Support multiple ranges in the benchmark (#257)

* Support multiple ranges in the benchmark

google-benchmark library allows to provide up to two ranges to the
benchmark method (range_x and range_y). However, in many cases it's not
sufficient. The patch introduces multi-range features, so user can easily
define multiple ranges by passing a vector of integers, and access values
through the method range(i).

* Remove redundant API

Functions State::range_x() and State::range_y() have been removed. They should
be replaced by State::range(0) and State::range(1).
Functions Benchmark::ArgPair() and Benchmark::RangePair() have been removed.
They should be replaced by Benchmark::Args() and Benchmark::Ranges().
This commit is contained in:
Marcin Kolny 2016-08-04 21:30:14 +02:00 committed by Dominic Hamon
parent 7f1da4a68b
commit dfe0260754
13 changed files with 225 additions and 180 deletions

View File

@ -40,13 +40,13 @@ measuring the speed of `memcpy()` calls of different lengths:
```c++
static void BM_memcpy(benchmark::State& state) {
char* src = new char[state.range_x()];
char* dst = new char[state.range_x()];
memset(src, 'x', state.range_x());
char* src = new char[state.range(0)];
char* dst = new char[state.range(0)];
memset(src, 'x', state.range(0));
while (state.KeepRunning())
memcpy(dst, src, state.range_x());
memcpy(dst, src, state.range(0));
state.SetBytesProcessed(int64_t(state.iterations()) *
int64_t(state.range_x()));
int64_t(state.range(0)));
delete[] src;
delete[] dst;
}
@ -70,7 +70,7 @@ BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10);
```
Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ].
You might have a benchmark that depends on two inputs. For example, the
You might have a benchmark that depends on two or more inputs. For example, the
following code defines a family of benchmarks for measuring the speed of set
insertion.
@ -78,21 +78,21 @@ insertion.
static void BM_SetInsert(benchmark::State& state) {
while (state.KeepRunning()) {
state.PauseTiming();
std::set<int> data = ConstructRandomSet(state.range_x());
std::set<int> data = ConstructRandomSet(state.range(0));
state.ResumeTiming();
for (int j = 0; j < state.range_y(); ++j)
for (int j = 0; j < state.range(1); ++j)
data.insert(RandomNumber());
}
}
BENCHMARK(BM_SetInsert)
->ArgPair(1<<10, 1)
->ArgPair(1<<10, 8)
->ArgPair(1<<10, 64)
->ArgPair(1<<10, 512)
->ArgPair(8<<10, 1)
->ArgPair(8<<10, 8)
->ArgPair(8<<10, 64)
->ArgPair(8<<10, 512);
->Args({1<<10, 1})
->Args({1<<10, 8})
->Args({1<<10, 64})
->Args({1<<10, 512})
->Args({8<<10, 1})
->Args({8<<10, 8})
->Args({8<<10, 64})
->Args({8<<10, 512});
```
The preceding code is quite repetitive, and can be replaced with the following
@ -101,7 +101,7 @@ product of the two specified ranges and will generate a benchmark for each such
pair.
```c++
BENCHMARK(BM_SetInsert)->RangePair(1<<10, 8<<10, 1, 512);
BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {1, 512}});
```
For more complex patterns of inputs, passing a custom function to `Apply` allows
@ -113,7 +113,7 @@ and a sparse range on the second.
static void CustomArguments(benchmark::internal::Benchmark* b) {
for (int i = 0; i <= 10; ++i)
for (int j = 32; j <= 1024*1024; j *= 8)
b->ArgPair(i, j);
b->Args({i, j});
}
BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
```
@ -125,12 +125,12 @@ running time and the normalized root-mean square error of string comparison.
```c++
static void BM_StringCompare(benchmark::State& state) {
std::string s1(state.range_x(), '-');
std::string s2(state.range_x(), '-');
std::string s1(state.range(0), '-');
std::string s2(state.range(0), '-');
while (state.KeepRunning()) {
benchmark::DoNotOptimize(s1.compare(s2));
}
state.SetComplexityN(state.range_x());
state.SetComplexityN(state.range(0));
}
BENCHMARK(BM_StringCompare)
->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN);
@ -162,14 +162,14 @@ template <class Q> int BM_Sequential(benchmark::State& state) {
Q q;
typename Q::value_type v;
while (state.KeepRunning()) {
for (int i = state.range_x(); i--; )
for (int i = state.range(0); i--; )
q.push(v);
for (int e = state.range_x(); e--; )
for (int e = state.range(0); e--; )
q.Wait(&v);
}
// actually messages, not bytes:
state.SetBytesProcessed(
static_cast<int64_t>(state.iterations())*state.range_x());
static_cast<int64_t>(state.iterations())*state.range(0));
}
BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
```
@ -284,7 +284,7 @@ can be reported back with `SetIterationTime`.
```c++
static void BM_ManualTiming(benchmark::State& state) {
int microseconds = state.range_x();
int microseconds = state.range(0);
std::chrono::duration<double, std::micro> sleep_duration {
static_cast<double>(microseconds)
};

View File

@ -38,12 +38,12 @@ int main(int argc, char** argv) {
// of memcpy() calls of different lengths:
static void BM_memcpy(benchmark::State& state) {
char* src = new char[state.range_x()]; char* dst = new char[state.range_x()];
memset(src, 'x', state.range_x());
char* src = new char[state.range(0)]; char* dst = new char[state.range(0)];
memset(src, 'x', state.range(0));
while (state.KeepRunning())
memcpy(dst, src, state.range_x());
memcpy(dst, src, state.range(0));
state.SetBytesProcessed(int64_t(state.iterations()) *
int64_t(state.range_x()));
int64_t(state.range(0)));
delete[] src; delete[] dst;
}
BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);
@ -60,27 +60,27 @@ BENCHMARK(BM_memcpy)->Range(8, 8<<10);
static void BM_SetInsert(benchmark::State& state) {
while (state.KeepRunning()) {
state.PauseTiming();
set<int> data = ConstructRandomSet(state.range_x());
set<int> data = ConstructRandomSet(state.range(0));
state.ResumeTiming();
for (int j = 0; j < state.range_y(); ++j)
for (int j = 0; j < state.range(1); ++j)
data.insert(RandomNumber());
}
}
BENCHMARK(BM_SetInsert)
->ArgPair(1<<10, 1)
->ArgPair(1<<10, 8)
->ArgPair(1<<10, 64)
->ArgPair(1<<10, 512)
->ArgPair(8<<10, 1)
->ArgPair(8<<10, 8)
->ArgPair(8<<10, 64)
->ArgPair(8<<10, 512);
->Args({1<<10, 1})
->Args({1<<10, 8})
->Args({1<<10, 64})
->Args({1<<10, 512})
->Args({8<<10, 1})
->Args({8<<10, 8})
->Args({8<<10, 64})
->Args({8<<10, 512});
// The preceding code is quite repetitive, and can be replaced with
// the following short-hand. The following macro will pick a few
// appropriate arguments in the product of the two specified ranges
// and will generate a microbenchmark for each such pair.
BENCHMARK(BM_SetInsert)->RangePair(1<<10, 8<<10, 1, 512);
BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {1, 512}});
// For more complex patterns of inputs, passing a custom function
// to Apply allows programmatic specification of an
@ -90,7 +90,7 @@ BENCHMARK(BM_SetInsert)->RangePair(1<<10, 8<<10, 1, 512);
static void CustomArguments(benchmark::internal::Benchmark* b) {
for (int i = 0; i <= 10; ++i)
for (int j = 32; j <= 1024*1024; j *= 8)
b->ArgPair(i, j);
b->Args({i, j});
}
BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
@ -101,14 +101,14 @@ template <class Q> int BM_Sequential(benchmark::State& state) {
Q q;
typename Q::value_type v;
while (state.KeepRunning()) {
for (int i = state.range_x(); i--; )
for (int i = state.range(0); i--; )
q.push(v);
for (int e = state.range_x(); e--; )
for (int e = state.range(0); e--; )
q.Wait(&v);
}
// actually messages, not bytes:
state.SetBytesProcessed(
static_cast<int64_t>(state.iterations())*state.range_x());
static_cast<int64_t>(state.iterations())*state.range(0));
}
BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
@ -153,6 +153,8 @@ BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
#include <stddef.h>
#include <stdint.h>
#include <vector>
#include "macros.h"
#if defined(BENCHMARK_HAS_CXX11)
@ -268,7 +270,7 @@ typedef double(BigOFunc)(int);
// benchmark to use.
class State {
public:
State(size_t max_iters, bool has_x, int x, bool has_y, int y,
State(size_t max_iters, const std::vector<int>& ranges,
int thread_i, int n_threads);
// Returns true if the benchmark should continue through another iteration.
@ -423,17 +425,9 @@ public:
// Range arguments for this run. CHECKs if the argument has been set.
BENCHMARK_ALWAYS_INLINE
int range_x() const {
assert(has_range_x_);
((void)has_range_x_); // Prevent unused warning.
return range_x_;
}
BENCHMARK_ALWAYS_INLINE
int range_y() const {
assert(has_range_y_);
((void)has_range_y_); // Prevent unused warning.
return range_y_;
int range(std::size_t pos) const {
assert(range_.size() > pos);
return range_[pos];
}
BENCHMARK_ALWAYS_INLINE
@ -444,11 +438,7 @@ private:
bool finished_;
size_t total_iterations_;
bool has_range_x_;
int range_x_;
bool has_range_y_;
int range_y_;
std::vector<int> range_;
size_t bytes_processed_;
size_t items_processed_;
@ -503,20 +493,18 @@ public:
// REQUIRES: The function passed to the constructor must accept an arg1.
Benchmark* DenseRange(int start, int limit, int step = 1);
// Run this benchmark once with "x,y" as the extra arguments passed
// Run this benchmark once with "args" as the extra arguments passed
// to the function.
// REQUIRES: The function passed to the constructor must accept arg1,arg2.
Benchmark* ArgPair(int x, int y);
// REQUIRES: The function passed to the constructor must accept arg1, arg2 ...
Benchmark* Args(const std::vector<int>& args);
// Pick a set of values A from the range [lo1..hi1] and a set
// of values B from the range [lo2..hi2]. Run the benchmark for
// every pair of values in the cartesian product of A and B
// (i.e., for all combinations of the values in A and B).
// REQUIRES: The function passed to the constructor must accept arg1,arg2.
Benchmark* RangePair(int lo1, int hi1, int lo2, int hi2);
// Run this benchmark once for a number of values picked from the
// ranges [start..limit]. (starts and limits are always picked.)
// REQUIRES: The function passed to the constructor must accept arg1, arg2 ...
Benchmark* Ranges(const std::vector<std::pair<int, int> >& ranges);
// Pass this benchmark object to *func, which can customize
// the benchmark by calling various methods like Arg, ArgPair,
// the benchmark by calling various methods like Arg, Args,
// Threads, etc.
Benchmark* Apply(void (*func)(Benchmark* benchmark));
@ -725,11 +713,11 @@ protected:
// Old-style macros
#define BENCHMARK_WITH_ARG(n, a) BENCHMARK(n)->Arg((a))
#define BENCHMARK_WITH_ARG2(n, a1, a2) BENCHMARK(n)->ArgPair((a1), (a2))
#define BENCHMARK_WITH_ARG2(n, a1, a2) BENCHMARK(n)->Args({(a1), (a2)})
#define BENCHMARK_WITH_UNIT(n, t) BENCHMARK(n)->Unit((t))
#define BENCHMARK_RANGE(n, lo, hi) BENCHMARK(n)->Range((lo), (hi))
#define BENCHMARK_RANGE2(n, l1, h1, l2, h2) \
BENCHMARK(n)->RangePair((l1), (h1), (l2), (h2))
BENCHMARK(n)->RangePair({{(l1), (h1)}, {(l2), (h2)}})
#if __cplusplus >= 201103L

View File

@ -313,23 +313,20 @@ namespace internal {
// Information kept per benchmark we may want to run
struct Benchmark::Instance {
std::string name;
Benchmark* benchmark;
bool has_arg1;
int arg1;
bool has_arg2;
int arg2;
TimeUnit time_unit;
int range_multiplier;
bool use_real_time;
bool use_manual_time;
BigO complexity;
BigOFunc* complexity_lambda;
bool last_benchmark_instance;
int repetitions;
double min_time;
int threads; // Number of concurrent threads to use
bool multithreaded; // Is benchmark multi-threaded?
std::string name;
Benchmark* benchmark;
std::vector<int> arg;
TimeUnit time_unit;
int range_multiplier;
bool use_real_time;
bool use_manual_time;
BigO complexity;
BigOFunc* complexity_lambda;
bool last_benchmark_instance;
int repetitions;
double min_time;
int threads; // Number of concurrent threads to use
bool multithreaded; // Is benchmark multi-threaded?
};
// Class for managing registered benchmarks. Note that each registered
@ -362,8 +359,8 @@ public:
void Unit(TimeUnit unit);
void Range(int start, int limit);
void DenseRange(int start, int limit, int step = 1);
void ArgPair(int start, int limit);
void RangePair(int lo1, int hi1, int lo2, int hi2);
void Args(const std::vector<int>& args);
void Ranges(const std::vector<std::pair<int, int>>& ranges);
void RangeMultiplier(int multiplier);
void MinTime(double n);
void Repetitions(int n);
@ -378,12 +375,13 @@ public:
static void AddRange(std::vector<int>* dst, int lo, int hi, int mult);
int ArgsCnt() const { return args_.empty() ? -1 : static_cast<int>(args_.front().size()); }
private:
friend class BenchmarkFamilies;
std::string name_;
int arg_count_;
std::vector< std::pair<int, int> > args_; // Args for all benchmark runs
std::vector< std::vector<int> > args_; // Args for all benchmark runs
TimeUnit time_unit_;
int range_multiplier_;
double min_time_;
@ -431,10 +429,10 @@ bool BenchmarkFamilies::FindBenchmarks(
if (!bench_family) continue;
BenchmarkImp* family = bench_family->imp_;
if (family->arg_count_ == -1) {
family->arg_count_ = 0;
family->args_.emplace_back(-1, -1);
if (family->ArgsCnt() == -1) {
family->Args({});
}
for (auto const& args : family->args_) {
const std::vector<int>* thread_counts =
(family->thread_counts_.empty()
@ -445,10 +443,7 @@ bool BenchmarkFamilies::FindBenchmarks(
Benchmark::Instance instance;
instance.name = family->name_;
instance.benchmark = bench_family.get();
instance.has_arg1 = family->arg_count_ >= 1;
instance.arg1 = args.first;
instance.has_arg2 = family->arg_count_ == 2;
instance.arg2 = args.second;
instance.arg = args;
instance.time_unit = family->time_unit_;
instance.range_multiplier = family->range_multiplier_;
instance.min_time = family->min_time_;
@ -461,12 +456,10 @@ bool BenchmarkFamilies::FindBenchmarks(
instance.multithreaded = !(family->thread_counts_.empty());
// Add arguments to instance name
if (family->arg_count_ >= 1) {
AppendHumanReadable(instance.arg1, &instance.name);
}
if (family->arg_count_ >= 2) {
AppendHumanReadable(instance.arg2, &instance.name);
for (auto const& arg : args) {
AppendHumanReadable(arg, &instance.name);
}
if (!IsZero(family->min_time_)) {
instance.name += StringPrintF("/min_time:%0.3f", family->min_time_);
}
@ -495,7 +488,7 @@ bool BenchmarkFamilies::FindBenchmarks(
}
BenchmarkImp::BenchmarkImp(const char* name)
: name_(name), arg_count_(-1), time_unit_(kNanosecond),
: name_(name), time_unit_(kNanosecond),
range_multiplier_(kRangeMultiplier), min_time_(0.0), repetitions_(0),
use_real_time_(false), use_manual_time_(false),
complexity_(oNone) {
@ -505,9 +498,8 @@ BenchmarkImp::~BenchmarkImp() {
}
void BenchmarkImp::Arg(int x) {
CHECK(arg_count_ == -1 || arg_count_ == 1);
arg_count_ = 1;
args_.emplace_back(x, -1);
CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
args_.push_back({x});
}
void BenchmarkImp::Unit(TimeUnit unit) {
@ -515,42 +507,54 @@ void BenchmarkImp::Unit(TimeUnit unit) {
}
void BenchmarkImp::Range(int start, int limit) {
CHECK(arg_count_ == -1 || arg_count_ == 1);
arg_count_ = 1;
CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
std::vector<int> arglist;
AddRange(&arglist, start, limit, range_multiplier_);
for (int i : arglist) {
args_.emplace_back(i, -1);
args_.push_back({i});
}
}
void BenchmarkImp::DenseRange(int start, int limit, int step) {
CHECK(arg_count_ == -1 || arg_count_ == 1);
arg_count_ = 1;
CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
CHECK_GE(start, 0);
CHECK_LE(start, limit);
for (int arg = start; arg <= limit; arg += step) {
args_.emplace_back(arg, -1);
for (int arg = start; arg <= limit; arg+= step) {
args_.push_back({arg});
}
}
void BenchmarkImp::ArgPair(int x, int y) {
CHECK(arg_count_ == -1 || arg_count_ == 2);
arg_count_ = 2;
args_.emplace_back(x, y);
void BenchmarkImp::Args(const std::vector<int>& args)
{
args_.push_back(args);
}
void BenchmarkImp::RangePair(int lo1, int hi1, int lo2, int hi2) {
CHECK(arg_count_ == -1 || arg_count_ == 2);
arg_count_ = 2;
std::vector<int> arglist1, arglist2;
AddRange(&arglist1, lo1, hi1, range_multiplier_);
AddRange(&arglist2, lo2, hi2, range_multiplier_);
void BenchmarkImp::Ranges(const std::vector<std::pair<int, int>>& ranges) {
std::vector<std::vector<int>> arglists(ranges.size());
int total = 1;
for (std::size_t i = 0; i < ranges.size(); i++) {
AddRange(&arglists[i], ranges[i].first, ranges[i].second, range_multiplier_);
total *= arglists[i].size();
}
for (int i : arglist1) {
for (int j : arglist2) {
args_.emplace_back(i, j);
std::vector<std::size_t> ctr(total, 0);
for (int i = 0; i < total; i++) {
std::vector<int> tmp;
for (std::size_t j = 0; j < arglists.size(); j++) {
tmp.push_back(arglists[j][ctr[j]]);
}
args_.push_back(tmp);
for (std::size_t j = 0; j < arglists.size(); j++) {
if (ctr[j] + 1 < arglists[j].size()) {
++ctr[j];
break;
}
ctr[j] = 0;
}
}
}
@ -648,6 +652,7 @@ Benchmark::Benchmark(Benchmark const& other)
}
Benchmark* Benchmark::Arg(int x) {
CHECK(imp_->ArgsCnt() == -1 || imp_->ArgsCnt() == 1);
imp_->Arg(x);
return this;
}
@ -658,22 +663,27 @@ Benchmark* Benchmark::Unit(TimeUnit unit) {
}
Benchmark* Benchmark::Range(int start, int limit) {
CHECK(imp_->ArgsCnt() == -1 || imp_->ArgsCnt() == 1);
imp_->Range(start, limit);
return this;
}
Benchmark* Benchmark::Ranges(const std::vector<std::pair<int, int>>& ranges)
{
CHECK(imp_->ArgsCnt() == -1 || imp_->ArgsCnt() == static_cast<int>(ranges.size()));
imp_->Ranges(ranges);
return this;
}
Benchmark* Benchmark::DenseRange(int start, int limit, int step) {
CHECK(imp_->ArgsCnt() == -1 || imp_->ArgsCnt() == 1);
imp_->DenseRange(start, limit, step);
return this;
}
Benchmark* Benchmark::ArgPair(int x, int y) {
imp_->ArgPair(x, y);
return this;
}
Benchmark* Benchmark::RangePair(int lo1, int hi1, int lo2, int hi2) {
imp_->RangePair(lo1, hi1, lo2, hi2);
Benchmark* Benchmark::Args(const std::vector<int>& args) {
CHECK(imp_->ArgsCnt() == -1 || imp_->ArgsCnt() == static_cast<int>(args.size()));
imp_->Args(args);
return this;
}
@ -751,7 +761,7 @@ namespace {
void RunInThread(const benchmark::internal::Benchmark::Instance* b,
size_t iters, int thread_id,
ThreadStats* total) EXCLUDES(GetBenchmarkLock()) {
State st(iters, b->has_arg1, b->arg1, b->has_arg2, b->arg2, thread_id, b->threads);
State st(iters, b->arg, thread_id, b->threads);
b->benchmark->Run(st);
CHECK(st.iterations() == st.max_iterations) <<
"Benchmark returned before State::KeepRunning() returned false!";
@ -925,11 +935,10 @@ RunBenchmark(const benchmark::internal::Benchmark::Instance& b,
} // namespace
State::State(size_t max_iters, bool has_x, int x, bool has_y, int y,
State::State(size_t max_iters, const std::vector<int>& ranges,
int thread_i, int n_threads)
: started_(false), finished_(false), total_iterations_(0),
has_range_x_(has_x), range_x_(x),
has_range_y_(has_y), range_y_(y),
range_(ranges),
bytes_processed_(0), items_processed_(0),
complexity_n_(0),
error_occurred_(false),

View File

@ -51,6 +51,9 @@ add_test(register_benchmark_test register_benchmark_test --benchmark_min_time=0.
compile_benchmark_test(map_test)
add_test(map_test map_test --benchmark_min_time=0.01)
compile_benchmark_test(multiple_ranges_test)
add_test(multiple_ranges_test multiple_ranges_test --benchmark_min_time=0.01)
compile_benchmark_test(reporter_output_test)
add_test(reporter_output_test reporter_output_test --benchmark_min_time=0.01)

View File

@ -14,7 +14,7 @@ BENCHMARK(BM_empty)->ThreadPerCpu();
void BM_spin_empty(benchmark::State& state) {
while (state.KeepRunning()) {
for (int x = 0; x < state.range_x(); ++x) {
for (int x = 0; x < state.range(0); ++x) {
benchmark::DoNotOptimize(x);
}
}
@ -23,11 +23,11 @@ BASIC_BENCHMARK_TEST(BM_spin_empty);
BASIC_BENCHMARK_TEST(BM_spin_empty)->ThreadPerCpu();
void BM_spin_pause_before(benchmark::State& state) {
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
while(state.KeepRunning()) {
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}
@ -39,11 +39,11 @@ BASIC_BENCHMARK_TEST(BM_spin_pause_before)->ThreadPerCpu();
void BM_spin_pause_during(benchmark::State& state) {
while(state.KeepRunning()) {
state.PauseTiming();
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
state.ResumeTiming();
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}
@ -64,11 +64,11 @@ BENCHMARK(BM_pause_during)->UseRealTime()->ThreadPerCpu();
void BM_spin_pause_after(benchmark::State& state) {
while(state.KeepRunning()) {
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}
@ -77,15 +77,15 @@ BASIC_BENCHMARK_TEST(BM_spin_pause_after)->ThreadPerCpu();
void BM_spin_pause_before_and_after(benchmark::State& state) {
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
while(state.KeepRunning()) {
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}
for (int i = 0; i < state.range_x(); ++i) {
for (int i = 0; i < state.range(0); ++i) {
benchmark::DoNotOptimize(i);
}
}

View File

@ -67,7 +67,7 @@ BENCHMARK(BM_Factorial)->UseRealTime();
static void BM_CalculatePiRange(benchmark::State& state) {
double pi = 0.0;
while (state.KeepRunning())
pi = CalculatePi(state.range_x());
pi = CalculatePi(state.range(0));
std::stringstream ss;
ss << pi;
state.SetLabel(ss.str());
@ -87,25 +87,25 @@ BENCHMARK(BM_CalculatePi)->ThreadPerCpu();
static void BM_SetInsert(benchmark::State& state) {
while (state.KeepRunning()) {
state.PauseTiming();
std::set<int> data = ConstructRandomSet(state.range_x());
std::set<int> data = ConstructRandomSet(state.range(0));
state.ResumeTiming();
for (int j = 0; j < state.range_y(); ++j)
for (int j = 0; j < state.range(1); ++j)
data.insert(rand());
}
state.SetItemsProcessed(state.iterations() * state.range_y());
state.SetBytesProcessed(state.iterations() * state.range_y() * sizeof(int));
state.SetItemsProcessed(state.iterations() * state.range(1));
state.SetBytesProcessed(state.iterations() * state.range(1) * sizeof(int));
}
BENCHMARK(BM_SetInsert)->RangePair(1<<10,8<<10, 1,10);
BENCHMARK(BM_SetInsert)->Ranges({{1<<10,8<<10}, {1,10}});
template<typename Container, typename ValueType = typename Container::value_type>
static void BM_Sequential(benchmark::State& state) {
ValueType v = 42;
while (state.KeepRunning()) {
Container c;
for (int i = state.range_x(); --i; )
for (int i = state.range(0); --i; )
c.push_back(v);
}
const size_t items_processed = state.iterations() * state.range_x();
const size_t items_processed = state.iterations() * state.range(0);
state.SetItemsProcessed(items_processed);
state.SetBytesProcessed(items_processed * sizeof(v));
}
@ -117,8 +117,8 @@ BENCHMARK_TEMPLATE(BM_Sequential, std::vector<int>, int)->Arg(512);
#endif
static void BM_StringCompare(benchmark::State& state) {
std::string s1(state.range_x(), '-');
std::string s2(state.range_x(), '-');
std::string s1(state.range(0), '-');
std::string s2(state.range(0), '-');
while (state.KeepRunning())
benchmark::DoNotOptimize(s1.compare(s2));
}
@ -147,14 +147,14 @@ BENCHMARK(BM_SetupTeardown)->ThreadPerCpu();
static void BM_LongTest(benchmark::State& state) {
double tracker = 0.0;
while (state.KeepRunning()) {
for (int i = 0; i < state.range_x(); ++i)
for (int i = 0; i < state.range(0); ++i)
benchmark::DoNotOptimize(tracker += i);
}
}
BENCHMARK(BM_LongTest)->Range(1<<16,1<<28);
static void BM_ParallelMemset(benchmark::State& state) {
int size = state.range_x() / sizeof(int);
int size = state.range(0) / sizeof(int);
int thread_size = size / state.threads;
int from = thread_size * state.thread_index;
int to = from + thread_size;
@ -179,7 +179,7 @@ BENCHMARK(BM_ParallelMemset)->Arg(10 << 20)->ThreadRange(1, 4);
static void BM_ManualTiming(benchmark::State& state) {
size_t slept_for = 0;
int microseconds = state.range_x();
int microseconds = state.range(0);
std::chrono::duration<double, std::micro> sleep_duration {
static_cast<double>(microseconds)
};

View File

@ -161,7 +161,7 @@ int AddComplexityTest(std::vector<TestCase>* console_out, std::vector<TestCase>*
void BM_Complexity_O1(benchmark::State& state) {
while (state.KeepRunning()) {
}
state.SetComplexityN(state.range_x());
state.SetComplexityN(state.range(0));
}
BENCHMARK(BM_Complexity_O1) -> Range(1, 1<<18) -> Complexity(benchmark::o1);
BENCHMARK(BM_Complexity_O1) -> Range(1, 1<<18) -> Complexity();
@ -198,12 +198,12 @@ std::vector<int> ConstructRandomVector(int size) {
}
void BM_Complexity_O_N(benchmark::State& state) {
auto v = ConstructRandomVector(state.range_x());
const int item_not_in_vector = state.range_x()*2; // Test worst case scenario (item not in vector)
auto v = ConstructRandomVector(state.range(0));
const int item_not_in_vector = state.range(0)*2; // Test worst case scenario (item not in vector)
while (state.KeepRunning()) {
benchmark::DoNotOptimize(std::find(v.begin(), v.end(), item_not_in_vector));
}
state.SetComplexityN(state.range_x());
state.SetComplexityN(state.range(0));
}
BENCHMARK(BM_Complexity_O_N) -> RangeMultiplier(2) -> Range(1<<10, 1<<16) -> Complexity(benchmark::oN);
BENCHMARK(BM_Complexity_O_N) -> RangeMultiplier(2) -> Range(1<<10, 1<<16) -> Complexity([](int n) -> double{return n; });
@ -227,11 +227,11 @@ ADD_COMPLEXITY_CASES(&ConsoleOutputTests, &JSONOutputTests, &CSVOutputTests,
// ========================================================================= //
static void BM_Complexity_O_N_log_N(benchmark::State& state) {
auto v = ConstructRandomVector(state.range_x());
auto v = ConstructRandomVector(state.range(0));
while (state.KeepRunning()) {
std::sort(v.begin(), v.end());
}
state.SetComplexityN(state.range_x());
state.SetComplexityN(state.range(0));
}
BENCHMARK(BM_Complexity_O_N_log_N) -> RangeMultiplier(2) -> Range(1<<10, 1<<16) -> Complexity(benchmark::oNLogN);
BENCHMARK(BM_Complexity_O_N_log_N) -> RangeMultiplier(2) -> Range(1<<10, 1<<16) -> Complexity([](int n) {return n * std::log2(n); });

View File

@ -44,7 +44,7 @@ BENCHMARK_DEFINE_F(MyFixture, Bar)(benchmark::State& st) {
assert(data.get() != nullptr);
assert(*data == 42);
}
st.SetItemsProcessed(st.range_x());
st.SetItemsProcessed(st.range(0));
}
BENCHMARK_REGISTER_F(MyFixture, Bar)->Arg(42);
BENCHMARK_REGISTER_F(MyFixture, Bar)->Arg(42)->ThreadPerCpu();

View File

@ -17,7 +17,7 @@ std::map<int, int> ConstructRandomMap(int size) {
// Basic version.
static void BM_MapLookup(benchmark::State& state) {
const int size = state.range_x();
const int size = state.range(0);
while (state.KeepRunning()) {
state.PauseTiming();
std::map<int, int> m = ConstructRandomMap(size);
@ -34,7 +34,7 @@ BENCHMARK(BM_MapLookup)->Range(1 << 3, 1 << 12);
class MapFixture : public ::benchmark::Fixture {
public:
void SetUp(const ::benchmark::State& st) {
m = ConstructRandomMap(st.range_x());
m = ConstructRandomMap(st.range(0));
}
void TearDown(const ::benchmark::State&) {
@ -45,7 +45,7 @@ class MapFixture : public ::benchmark::Fixture {
};
BENCHMARK_DEFINE_F(MapFixture, Lookup)(benchmark::State& state) {
const int size = state.range_x();
const int size = state.range(0);
while (state.KeepRunning()) {
for (int i = 0; i < size; ++i) {
benchmark::DoNotOptimize(m.find(rand() % size));

View File

@ -0,0 +1,45 @@
#include "benchmark/benchmark.h"
#include <set>
#include <cassert>
class MultipleRangesFixture : public ::benchmark::Fixture {
public:
MultipleRangesFixture() {
expectedValues = {
{1, 3, 5}, {1, 3, 8}, {1, 3, 15}, {2, 3, 5}, {2, 3, 8}, {2, 3, 15},
{1, 4, 5}, {1, 4, 8}, {1, 4, 15}, {2, 4, 5}, {2, 4, 8}, {2, 4, 15},
{1, 7, 5}, {1, 7, 8}, {1, 7, 15}, {2, 7, 5}, {2, 7, 8}, {2, 7, 15},
{7, 6, 3}
};
}
void SetUp(const ::benchmark::State& state) {
std::vector<int> ranges = {state.range(0), state.range(1), state.range(2)};
assert(expectedValues.find(ranges) != expectedValues.end());
actualValues.insert(ranges);
}
virtual ~MultipleRangesFixture() {
assert(actualValues.size() == expectedValues.size());
}
std::set<std::vector<int>> expectedValues;
std::set<std::vector<int>> actualValues;
};
BENCHMARK_DEFINE_F(MultipleRangesFixture, Empty)(benchmark::State& state) {
while (state.KeepRunning()) {
int product = state.range(0) * state.range(1) * state.range(2);
for (int x = 0; x < product; x++) {
benchmark::DoNotOptimize(x);
}
}
}
BENCHMARK_REGISTER_F(MultipleRangesFixture, Empty)->RangeMultiplier(2)->Ranges({{1, 2}, {3, 7}, {5, 15}})->Args({7, 6, 3});
BENCHMARK_MAIN()

View File

@ -9,7 +9,7 @@ void BM_basic(benchmark::State& state) {
}
void BM_basic_slow(benchmark::State& state) {
std::chrono::milliseconds sleep_duration(state.range_x());
std::chrono::milliseconds sleep_duration(state.range(0));
while (state.KeepRunning()) {
std::this_thread::sleep_for(
std::chrono::duration_cast<std::chrono::nanoseconds>(sleep_duration)
@ -25,8 +25,8 @@ BENCHMARK(BM_basic_slow)->Arg(1000)->Unit(benchmark::kMillisecond);
BENCHMARK(BM_basic)->Range(1, 8);
BENCHMARK(BM_basic)->RangeMultiplier(2)->Range(1, 8);
BENCHMARK(BM_basic)->DenseRange(10, 15);
BENCHMARK(BM_basic)->ArgPair(42, 42);
BENCHMARK(BM_basic)->RangePair(64, 512, 64, 512);
BENCHMARK(BM_basic)->Args({42, 42});
BENCHMARK(BM_basic)->Ranges({{64, 512}, {64, 512}});
BENCHMARK(BM_basic)->MinTime(0.7);
BENCHMARK(BM_basic)->UseRealTime();
BENCHMARK(BM_basic)->ThreadRange(2, 4);

View File

@ -185,7 +185,7 @@ ADD_CASES(&CSVOutputTests, {
void BM_Complexity_O1(benchmark::State& state) {
while (state.KeepRunning()) {
}
state.SetComplexityN(state.range_x());
state.SetComplexityN(state.range(0));
}
BENCHMARK(BM_Complexity_O1)->Range(1, 1<<18)->Complexity(benchmark::o1);

View File

@ -74,7 +74,7 @@ ADD_CASES("BM_error_before_running",
void BM_error_during_running(benchmark::State& state) {
int first_iter = true;
while (state.KeepRunning()) {
if (state.range_x() == 1 && state.thread_index <= (state.threads / 2)) {
if (state.range(0) == 1 && state.thread_index <= (state.threads / 2)) {
assert(first_iter);
first_iter = false;
state.SkipWithError("error message");
@ -116,7 +116,7 @@ ADD_CASES(
void BM_error_while_paused(benchmark::State& state) {
bool first_iter = true;
while (state.KeepRunning()) {
if (state.range_x() == 1 && state.thread_index <= (state.threads / 2)) {
if (state.range(0) == 1 && state.thread_index <= (state.threads / 2)) {
assert(first_iter);
first_iter = false;
state.PauseTiming();