mirror of https://github.com/google/benchmark.git
Fixed compiler warnings (#1697)
* fixed warnings used proper math functions * ran clang format * used a more up-to-date clang-format * space twedling * reveretd CMakeLists.txt
This commit is contained in:
parent
b40db86945
commit
a543fcd410
|
@ -108,7 +108,7 @@ BenchmarkReporter::Run CreateRunReport(
|
|||
report.memory_result = memory_result;
|
||||
report.allocs_per_iter =
|
||||
memory_iterations ? static_cast<double>(memory_result->num_allocs) /
|
||||
memory_iterations
|
||||
static_cast<double>(memory_iterations)
|
||||
: 0;
|
||||
}
|
||||
|
||||
|
|
|
@ -37,12 +37,14 @@ BigOFunc* FittingCurve(BigO complexity) {
|
|||
return [](IterationCount n) -> double { return std::pow(n, 3); };
|
||||
case oLogN:
|
||||
/* Note: can't use log2 because Android's GNU STL lacks it */
|
||||
return
|
||||
[](IterationCount n) { return kLog2E * log(static_cast<double>(n)); };
|
||||
return [](IterationCount n) {
|
||||
return kLog2E * std::log(static_cast<double>(n));
|
||||
};
|
||||
case oNLogN:
|
||||
/* Note: can't use log2 because Android's GNU STL lacks it */
|
||||
return [](IterationCount n) {
|
||||
return kLog2E * n * log(static_cast<double>(n));
|
||||
return kLog2E * static_cast<double>(n) *
|
||||
std::log(static_cast<double>(n));
|
||||
};
|
||||
case o1:
|
||||
default:
|
||||
|
@ -105,12 +107,12 @@ LeastSq MinimalLeastSq(const std::vector<int64_t>& n,
|
|||
double rms = 0.0;
|
||||
for (size_t i = 0; i < n.size(); ++i) {
|
||||
double fit = result.coef * fitting_curve(n[i]);
|
||||
rms += pow((time[i] - fit), 2);
|
||||
rms += std::pow((time[i] - fit), 2);
|
||||
}
|
||||
|
||||
// Normalized RMS by the mean of the observed values
|
||||
double mean = sigma_time / n.size();
|
||||
result.rms = sqrt(rms / n.size()) / mean;
|
||||
double mean = sigma_time / static_cast<double>(n.size());
|
||||
result.rms = std::sqrt(rms / static_cast<double>(n.size())) / mean;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@ -171,8 +173,10 @@ std::vector<BenchmarkReporter::Run> ComputeBigO(
|
|||
BM_CHECK_GT(run.complexity_n, 0)
|
||||
<< "Did you forget to call SetComplexityN?";
|
||||
n.push_back(run.complexity_n);
|
||||
real_time.push_back(run.real_accumulated_time / run.iterations);
|
||||
cpu_time.push_back(run.cpu_accumulated_time / run.iterations);
|
||||
real_time.push_back(run.real_accumulated_time /
|
||||
static_cast<double>(run.iterations));
|
||||
cpu_time.push_back(run.cpu_accumulated_time /
|
||||
static_cast<double>(run.iterations));
|
||||
}
|
||||
|
||||
LeastSq result_cpu;
|
||||
|
|
|
@ -27,10 +27,10 @@ double Finish(Counter const& c, IterationCount iterations, double cpu_time,
|
|||
v /= num_threads;
|
||||
}
|
||||
if (c.flags & Counter::kIsIterationInvariant) {
|
||||
v *= iterations;
|
||||
v *= static_cast<double>(iterations);
|
||||
}
|
||||
if (c.flags & Counter::kAvgIterations) {
|
||||
v /= iterations;
|
||||
v /= static_cast<double>(iterations);
|
||||
}
|
||||
|
||||
if (c.flags & Counter::kInvert) { // Invert is *always* last.
|
||||
|
|
|
@ -218,9 +218,10 @@ inline BENCHMARK_ALWAYS_INLINE int64_t Now() {
|
|||
asm volatile("%0 = C15:14" : "=r"(pcycle));
|
||||
return static_cast<double>(pcycle);
|
||||
#else
|
||||
// The soft failover to a generic implementation is automatic only for ARM.
|
||||
// For other platforms the developer is expected to make an attempt to create
|
||||
// a fast implementation and use generic version if nothing better is available.
|
||||
// The soft failover to a generic implementation is automatic only for ARM.
|
||||
// For other platforms the developer is expected to make an attempt to create
|
||||
// a fast implementation and use generic version if nothing better is
|
||||
// available.
|
||||
#error You need to define CycleTimer for your OS and CPU
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -32,7 +32,7 @@ auto StatisticsSum = [](const std::vector<double>& v) {
|
|||
|
||||
double StatisticsMean(const std::vector<double>& v) {
|
||||
if (v.empty()) return 0.0;
|
||||
return StatisticsSum(v) * (1.0 / v.size());
|
||||
return StatisticsSum(v) * (1.0 / static_cast<double>(v.size()));
|
||||
}
|
||||
|
||||
double StatisticsMedian(const std::vector<double>& v) {
|
||||
|
@ -71,8 +71,11 @@ double StatisticsStdDev(const std::vector<double>& v) {
|
|||
// Sample standard deviation is undefined for n = 1
|
||||
if (v.size() == 1) return 0.0;
|
||||
|
||||
const double avg_squares = SumSquares(v) * (1.0 / v.size());
|
||||
return Sqrt(v.size() / (v.size() - 1.0) * (avg_squares - Sqr(mean)));
|
||||
const double avg_squares =
|
||||
SumSquares(v) * (1.0 / static_cast<double>(v.size()));
|
||||
return Sqrt(static_cast<double>(v.size()) /
|
||||
(static_cast<double>(v.size()) - 1.0) *
|
||||
(avg_squares - Sqr(mean)));
|
||||
}
|
||||
|
||||
double StatisticsCV(const std::vector<double>& v) {
|
||||
|
|
|
@ -655,7 +655,7 @@ double GetCPUCyclesPerSecond(CPUInfo::Scaling scaling) {
|
|||
&freq)) {
|
||||
// The value is in kHz (as the file name suggests). For example, on a
|
||||
// 2GHz warpstation, the file contains the value "2000000".
|
||||
return freq * 1000.0;
|
||||
return static_cast<double>(freq) * 1000.0;
|
||||
}
|
||||
|
||||
const double error_value = -1;
|
||||
|
|
|
@ -102,7 +102,8 @@ double MakeTime(thread_basic_info_data_t const& info) {
|
|||
#endif
|
||||
#if defined(CLOCK_PROCESS_CPUTIME_ID) || defined(CLOCK_THREAD_CPUTIME_ID)
|
||||
double MakeTime(struct timespec const& ts) {
|
||||
return ts.tv_sec + (static_cast<double>(ts.tv_nsec) * 1e-9);
|
||||
return static_cast<double>(ts.tv_sec) +
|
||||
(static_cast<double>(ts.tv_nsec) * 1e-9);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
|
|
@ -175,7 +175,7 @@ BENCHMARK(BM_Complexity_O_N_log_N)
|
|||
->RangeMultiplier(2)
|
||||
->Range(1 << 10, 1 << 16)
|
||||
->Complexity([](benchmark::IterationCount n) {
|
||||
return kLog2E * static_cast<double>(n) * log(static_cast<double>(n));
|
||||
return kLog2E * static_cast<double>(n) * std::log(static_cast<double>(n));
|
||||
});
|
||||
BENCHMARK(BM_Complexity_O_N_log_N)
|
||||
->RangeMultiplier(2)
|
||||
|
|
Loading…
Reference in New Issue